ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

浸水作用下泥岩膨胀特性及其关键界面响应机制

张功基, 李长冬, 孟杰, 张子涵, 黄德崴

张功基,李长冬,孟杰,等. 浸水作用下泥岩膨胀特性及其关键界面响应机制[J]. 中国地质灾害与防治学报,2025,36(0): 1-11. DOI: 10.16031/j.cnki.issn.1003-8035.202406013
引用本文: 张功基,李长冬,孟杰,等. 浸水作用下泥岩膨胀特性及其关键界面响应机制[J]. 中国地质灾害与防治学报,2025,36(0): 1-11. DOI: 10.16031/j.cnki.issn.1003-8035.202406013
ZHANG Gong-ji,LI Chang-dong,MENG Jie,et al. Mudstone Swelling Characteristics and Key Interface Response under Water Immersion[J]. The Chinese Journal of Geological Hazard and Control,2025,36(0): 1-11. DOI: 10.16031/j.cnki.issn.1003-8035.202406013
Citation: ZHANG Gong-ji,LI Chang-dong,MENG Jie,et al. Mudstone Swelling Characteristics and Key Interface Response under Water Immersion[J]. The Chinese Journal of Geological Hazard and Control,2025,36(0): 1-11. DOI: 10.16031/j.cnki.issn.1003-8035.202406013

浸水作用下泥岩膨胀特性及其关键界面响应机制

基金项目: 国家自然科学基金重大项目课题(No. 42090054),湖北省自然科学基金创新群体项目(No.2022CFA002)
详细信息
    作者简介:

    张功基(2001—),男,江西赣州人,硕士研究生,研究方向为岩体多尺度演化研究,E-mail:zhanggongji@cug.edu.cn

    通讯作者:

    李长冬(1981—),男,汉族,湖北云梦人,教授,博士生导师,从事地质灾害演化机理与防治研究,E-mail:lichangdong@cug.edu.cn

Mudstone Swelling Characteristics and Key Interface Response under Water Immersion

  • 摘要:

    富黏土矿物泥岩在遇水后的膨胀性是诱发多种地质灾害的关键因素之一。然而,当前对黏土矿物在泥岩膨胀过程中的微观与宏观响应机制,特别是涉及分子尺度界面作用的深入探讨仍然不足。本文采用盐离子作为“探针”,结合试验与分子动力学模拟,探究了浸水作用下关键界面在泥岩膨胀过程中的控制作用,结果表明:泥岩内部裂隙的大量产生是其发生膨胀变形的主要原因,添加盐离子后泥岩的膨胀与吸水受到相近的抑制作用;分子层面上,模拟表明盐离子抑制了蒙脱石水化过程中的层间扩展,指示了蒙脱石对泥岩膨胀的关键影响;而伊利石因其层间强相互作用与边界氢键网络形成而难以发生水化膨胀。进一步基于界面作用阐明了泥岩膨胀变形的两种界面响应机制:其一为蒙脱石分子内层间界面水化,在致密的团聚体中发生结晶膨胀而产生结构裂隙;其二为分子间微孔、裂隙界面浸润,导致泥岩内空气压缩而造成原生裂隙扩展与裂隙网络形成。研究结果可为进一步深入理解涉水泥岩地层的灾变过程提供依据。

    Abstract:

    The swelling of clay mineral-rich mudstones upon water exposure is a critical factor contributing to various geological hazards. However, there remains a lack of in-depth investigation into the microscopic and macroscopic response mechanisms of clay minerals during the swelling process of mudstones, particularly at the molecular scale. This study employs salt ions are as a ‘probe,’ integrating experimental methods and molecular dynamics simulations to investigate the role of key interfaces in controlling the swelling process of mudstone under water immersion. Results indicate that the formation of numerous internal cracks within the mudstone is the primary cause of its swelling and deformation. The addition of salt ions exerts a similar inhibitory effect on both the swelling and water absorption of the mudstone. At the molecular level, simulations reveal that salt ions suppress the interlayer expansion during the hydration process of montmorillonite, highlighting the crucial role of montmorillonite in mudstone swelling. In contrast, illite resists hydration swelling due to strong interlayer interactions and the formation of a boundary hydrogen-bond network. Furthermore, two interfacial response mechanisms underlying mudstone swelling and deformation are elucidated: (1) hydration of intramolecular interlayer interfaces of montmorillonite, which generates structural cracks through crystalline expansion within dense agglomerates; and (2) infiltration at intermolecular micropore and crack interfaces, leading to air compression within the mudstone, which causes primary crack expansion and the formation of a crack network. This study provides a foundation for advancing the understanding of catastrophic processes associated with water-related mudstone strata.

  • 泥岩作为常见的沉积岩之一,在我国广泛分布[1]。由于泥岩特殊的结构组成与物理性质,其在吸湿[2]、吸水[3]、浸水[4]等不同水环境作用过程中,极易发生膨胀软化与崩解风化,继而成为诱发各类如滑坡[57]、崩塌[89]、泥石流[10]等地质灾害产生的关键因素。

    浸水作用作为较为广泛且直接的一种水-岩作用形式,通常发生于强降雨、库水位调节等行为后的岩石地层中[11],是导致泥岩膨胀的主要原因[4, 12],而泥岩膨胀又极大地支配了其物理结构和力学性能的演变[1314]。因此,聚焦于浸水作用下泥岩膨胀致使的力学损伤,是众多学者的研究目标。叶朝良等[15]开展了一系列浸水作用下泥岩的力学测试,得出泥岩膨胀性能与其干密度有关,浸水膨胀软化将显著降低泥岩的抗剪强度。Liu等[16]对泥岩进行了浸水膨胀与不同含水量下的单轴、三轴压缩等试验,揭示了泥岩吸水膨胀对其力学性质的损伤规律。丁秀丽等[3]将水化膨胀作用引入泥岩的统计损伤模型中,表征了膨胀对于泥岩各力学强度参数的损伤影响。

    浸水作用下泥岩膨胀所造成的力学损伤,源于其强烈且复杂的结构劣化效应[1718],因而与泥岩膨胀同步发生的结构劣化,也引发了学者们的广泛关注。Jiang等[19]采用CT扫描技术观测了浸水作用诱导泥岩裂缝产生的演变过程,指出泥岩的水致劣化是由于其不均匀膨胀应力所引起的内部裂隙累积。孙怡等[20]研究发现红层泥质岩在浸水-失水过程中将发生胀缩变形,其在浸水下的膨胀作用受制于内部裂隙的扩展情况。Geng等[21]认为泥岩吸水膨胀后会产生强烈拉应力而引起局部变形并产生裂隙网络,致使岩石结构由致密变为疏松。

    为进一步揭示浸水作用下泥岩膨胀时结构劣化的内在诱因,已有研究从其原生结构[12]、矿物组成[22]与水化环境[23]等方面开展了较为深入的微观机理研究。泥岩中黏土矿物主要包括蒙脱石、伊利石与高岭石等[24],其均为由硅片与铝片所构成的复合铝-硅酸盐晶体[25]。伊利石在形成过程中层间发生钾离子嵌入而结合紧密,被认为具微弱膨胀性或不具膨胀性[2526];而蒙脱石层间联结力由较弱的范德华力提供,是具有强烈膨胀性的黏土矿物[27],其含量通常作为评判岩石膨胀性能与崩解程度的指标[17]。李长冬等[28]研究了水作用下岩石结构多尺度演变特征,指出蒙脱石的膨胀行为是黏土矿物团聚体溶胀压力的主要来源,为造成其结构破坏的重要因素。Zhang等[29]基于分析水作用下的胀缩试验现象与分子动力学模拟的结果,认为蒙脱石的膨胀效应是泥岩发生劣化的主要原因。此外,也有部分学者指出伊利石可使岩石发生50~60%的体积膨胀[3031]。谢小帅等[32]、刘凤云等[33]在探讨泥岩等软岩的膨胀机理时,认为岩石内含有的伊利石发挥了主要的膨胀贡献。Wu等[34]在研究了泥岩不同尺度下的水致劣化与力学响应现象后,将其破坏机理主要归因于伊利石引起的膨胀作用。上述研究表明,蒙脱石与伊利石被认为是导致泥岩膨胀的关键因素,然而在不同研究背景下,两种矿物膨胀性差异对控制泥岩膨胀特性的具体作用尚未明确,从而也导致了在泥岩膨胀的微-宏观响应机制认识上存在不足。

    基于此,本文采用盐离子作为“探针”,将其作为一种可避免短时间内对泥岩样本的化学结构产生额外干扰的敏感指标,集中研究微观机制控制下同一岩体泥岩对盐离子作用的差异性反馈,从而揭示浸水作用下泥岩的膨胀演化与界面响应过程。基于分子动力学模拟深入探究两种黏土矿物的水化膨胀特征,对泥岩膨胀的关键界面作用与膨胀微-宏观响应机制作出进一步解释。

    三峡库区是我国地质灾害最为频发的地区之一,其广泛分布的泥岩地层也是引发关注最多的致灾地层之一[35]。本文所用样品采自三峡库区秭归盆地的侏罗系紫红色泥岩,将其加工成直径与高度为50 mm × 50 mm、50 mm × 25 mm的两种圆柱体尺寸以满足研究需要,部分样品如图1所示。泥岩样本外表光滑、不见层理,镜下矿物颗粒多微小难辨,含钙泥质杂基与原岩碎屑。

    图  1  研究区域与部分泥岩样品,(a-b)采样地理位置与地层分布;(c-d)样品外观形态与镜下特征
    Figure  1.  Study area and mudstone samples, (a-b) geographic location and stratigraphic distribution; (c-d) appearance and microscopic features of samples

    泥岩的基础物理指标的测定结果见表1所示,由于其遇水后发生强烈膨胀,孔隙率基于压汞试验所获取。

    表  1  岩样基础物理指标
    Table  1.  Basic physical indices of rock samples
    天然密度/(g·cm−3干密度/(g·cm−3天然含水量/%孔隙率/%
    2.6112.5462.5813.604
    下载: 导出CSV 
    | 显示表格

    利用Ragiku Smartlab X射线多晶衍射仪进行矿物成分分析,得到泥岩的矿物成分组成见图2所示。泥岩的矿物成分主要由黏土矿物及石英组成,两者的占比之和超过80%。

    图  2  泥岩矿物组成情况
    Figure  2.  Mineral composition of mudstone samples

    本研究分别采用去离子与添加盐离子(1wt%、3wt%、5wt%与10wt%NaCl,选择不同浓度以增强盐离子的影响并避免单一浓度的局限性)的水溶液对50 mm × 25 mm的泥岩样品了进行膨胀性重复试验,以研究泥岩的膨胀特性。根据《工程岩体试验方法标准》(GB T 50266-2013)中的规定,岩石侧限膨胀率为:

    $$ V_{\mathrm{HP}}=\frac{\varDelta H_{1}}{H} \times 100 \% $$ (1)

    式中:VHP——侧限膨胀率/%;

    H——试件高度/mm;

    ΔH1——侧向约束试件的轴向变形值/mm。

    CT扫描是研究岩石内部结构的重要技术手段[36],为对泥岩膨胀过程中内部结构进行可视化分析,额外制备了10 mm × 10 mm的圆柱体试样以开展精度为10~11 μm的μCT扫描试验,试验仪器为通用电气公司的Phoenix v|tome|x s工业CT。将泥岩分别浸泡在去离子水与5wt%NaCl溶液中,以获取其内部结构随浸水时间的演变过程。

    由于泥岩的膨胀主要为吸水所诱导,同步开展了一维毛细吸水试验以研究泥岩的吸水特性。试验所用泥岩尺寸为50 mm × 50 mm,其仅下端面进行吸水,上端面与周身均涂抹环氧树脂,以防止水分润湿与蒸发。在达到相应的吸水时间后,将岩样从水中取出,用湿毛巾将其底部表面的水分擦净后置于高精度电子天平上称得质量以计算其吸水率:

    $$ w=\frac{m_{\mathrm{w}}-m_{\mathrm{d}}}{m_{\mathrm{d}}} \times 100 \% $$ (2)

    式中:w——某时刻的吸水率/%;

    md——烘干后泥岩的质量/g;

    mw——某时刻泥岩的总质量/g。

    本文利用分子动力学模拟研究伊利石与蒙脱石的关键影响。所用泥岩中主要含有伊利石与伊/蒙混层,伊/蒙混层是由伊利石晶层和蒙脱石晶层沿C轴或(001)方向组成的层状硅酸盐矿物[37],其膨胀性取决于伊利石和蒙脱石的组成比与电荷分布[38, 39],蒙脱石为其膨胀性的主要来源(伊/蒙混层内发生蒙脱石向伊利石转变后,整体的膨胀性明显降低)[40]。因此,伊/蒙混层的性质可通过伊利石与蒙脱石反映。采取适用于模拟溶液与水合物的SPC水分子模型,参考Skipper等人[41]蒙脱石模型:Na0.75(Si7.75Al0.25)(Al3.25Mg0.75)O20(OH)4·nH2O,单位晶胞晶格常数α = 90°,β = 99°,γ = 90°;晶格大小为a $\approx $ 5.23 $\mathring{{\mathrm{A}}} $,b $\approx $ 9.60 $\mathring{{\mathrm{A}}} $,基底间距(Base spacing) c随层间水分子数改变,干燥时c $\approx $ 9.6 $\mathring{{\mathrm{A}}} $,吸附三层水分子时c $\approx $ 18.5 $\mathring{{\mathrm{A}}} $。如图3所示,构建了含有一层水分子的8a × 4b × 2c蒙脱石超晶胞模型,用于模拟其水化膨胀。此外,为了对比伊利石的水化膨胀性能,参考Drits等[42]的试验数据构建伊利石模型:Kx+1[Si(8−x)Alx](Al(4−x)Mg)O20(OH)4(x=1),单位晶胞的晶格常数α = 90°,β = 101.57°,γ = 90°;a $\approx $ 5.20 $\mathring{{\mathrm{A}}} $,b $\approx $ 8.98 $\mathring{{\mathrm{A}}} $,c ≈ 10.23 $\mathring{{\mathrm{A}}} $,由于伊利石最多仅能含有一层水分子,构建了初始干燥的8a × 4b × 2c伊利石超晶胞模型(图3)。

    图  3  蒙脱石与伊利石分子结构模型
    Figure  3.  Molecular structure models of montmorillonite and illite

    为了提高模拟精度与模拟效率,蒙脱石与伊利石的水化膨胀模拟将分步展开,一个模拟步仅引入一定量的溶液分子,具体设定见表2。首先,将设定的溶液分子数引入层间并进行几何优化与能量最小化(图4所示);而后分别进行步长0.5 fs时长100 ps的NVT与NPT系综(温度298 K,压强105 Pa),使系统达到能量平衡与密度稳定;平衡后测定其基底间距变化以反映膨胀。重复上述操作直到层间内含有总溶液分子量后,进行步长0.1 fs时长1000 ps的NVT与NPT系综以实现系统的充分弛豫。采取适用于黏土矿物的CLAYFF力场[43]进行模拟计算,力场参数如表3所示。模拟控温控压方式为Nosé-Hoover法,短程相互作用的截断距离为9 $\mathring{{\mathrm{A}}} $,采用Ewald求和法计算长程静电场。

    表  2  膨胀模拟设定
    Table  2.  Settings for Expansion simulation
    0wt%NaCl/分子个数 相对原子质量 5wt%NaCl/分子个数 相对原子质量
    蒙脱石单次130H2O2340.0124H2O + 2NaCl2349.0
    共计780H2O14040.0744H2O + 12NaCl14094.0
    伊利石共计65H2O1170.062H2O + 1NaCl1174.5
    共计390H2O7020.0372H2O + 6NaCl7047.0
    下载: 导出CSV 
    | 显示表格
    图  4  单次膨胀模拟具体过程
    Figure  4.  Detailed process of a single expansion simulation
    表  3  力场参数[43, 45]
    Table  3.  Force field parameters
    物质原子/离子间距σ能量ε/(kcal·mol−1电荷q/e
    矿物
    分子
    桥联O3.553 20.155 4−1.050 0
    羟基O3.553 20.155 4−0.950 0
    有八面体取代的桥联O3.553 20.155 4−1.180 8
    有四面体取代的桥联O3.553 20.155 4−1.168 8
    有取代的羟基O3.553 20.155 4−1.080 8
    羟基H0.000 00.000 00.425 0
    四面体Si3.706 41.840 5×10−62.100 0
    四面体Al3.706 41.840 5×10−61.575 0
    八面体Al4.794 31.329 8×10−61.575 0
    八面体Mg5.909 09.029 8×10−71.360 0
    Na2.637 80.130 11.000 0
    K3.742 30.100 01.000 0
    水分子O3.553 20.155 4−0.820 0
    H0.000 00.000 00.410 0
    下载: 导出CSV 
    | 显示表格

    Lennard-Jones (L-J)势函数用于描述van der Waals相互作用能[44]

    $$ V=\sum_{i<j}\left\{\frac{C q_{\mathrm{i}} q_{\mathrm{j}}}{\varepsilon_{0} r_{\mathrm{ij}}}+4 \varepsilon_{ \mathrm{ij}}\left[\left(\frac{\sigma_{\mathrm{ij}}}{r_{\mathrm{ij}}}\right)^{12}-\left(\frac{\sigma_{\mathrm{ij}}}{r_{\mathrm{ij}}}\right)^{6}\right]\right\} $$ (3)

    式中:qiqj——i和j的电荷;

    rij——i和j之间的距离;

    C——库伦相互作用常数;

    σij——位势为零时(即平衡位置)i和j之间的有 限距离;

    εij——势阱深度;

    ε0——相对介电常数。

    侧限膨胀试验中泥岩共经历72 h连续膨胀,且不同溶液中膨胀率随时间均呈现明显的阶段二分性(见图5),即前期的迅速膨胀与后期的缓慢膨胀。不同溶液中泥岩80%膨胀均发生在前30 min,此后膨胀曲线几乎水平,膨胀率增长十分缓慢。当盐离子浓度在0~3wt%变化时,其对泥岩的膨胀抑制作用十分显著,膨胀率从17.58%降至5.764%;而盐离子浓度3~10wt%时,泥岩对其敏感性大幅下降,膨胀率仅降低0.751%。

    图  5  浸泡在不同溶液中泥岩的膨胀曲线
    Figure  5.  Swelling curves of mudstones immersed in different solutions

    完成试验后取出自然风干的泥岩样品,可见泥岩经历膨胀后将发生明显结构破坏(图5),且随膨胀率降低该破坏程度逐渐减弱。表现为去离子水作用下泥岩严重崩解,完全丧失原有结构;盐离子浓度0~3wt%时,随浓度增长,泥岩膨胀率与结构裂隙数量、体积同步下降;此后,浓度增长并未引起泥岩膨胀率的显著降低,其结构裂隙演变也相对微弱。

    上述试验现象表明,去离子水作用下泥岩将发生快速膨胀崩解,添加盐离子后泥岩膨胀性受到显著抑制,且该抑制作用在1~10wt%范围内不因浓度的变化而消失。此外,泥岩膨胀可能与其内部裂隙的产生与发展有着极为重要的关联,而盐离子可能通过减少其内部裂隙产生以抑制膨胀。

    基于μCT扫描的结果进一步揭示了盐离子、膨胀与裂隙产生之间的关联性。如图6所示,在浸水作用过程中,泥岩内部产生了大量裂隙,总体表现为由单裂隙分布逐渐发展成复杂贯通裂隙网络的演变规律,且盐离子可极大地减少泥岩内裂隙的产生。通过盒计数法(Box-counting Method)计算了泥岩裂隙网络的计盒维数(Box Dimension),其为使用最广泛的分形维数之一,由Falconer提出[46]

    图  6  浸水作用下泥岩内部产生的裂隙
    Figure  6.  Cracks formed in mudstone under water immersion
    $$ D_{B}=-\lim _{\delta \rightarrow 0} \frac{\ln N_{\delta}(F)}{\ln \delta} $$ (4)

    式中:DB——计盒维数;

    δ——盒子边长;

    F——计算的有界非空子集;

    Nδ(F)——该集合与盒子网格的相交数。

    DB值越大,表明泥岩内部的裂隙网络越复杂。具体参数如表4所示,可知在浸水前30 min,泥岩分形维数陡增,5wt%NaCl溶液与去离子水中泥岩裂隙体积分别呈现50到600倍左右的增长。该结果对应了泥岩在前30 min内发生的迅速膨胀,同时与盐离子在泥岩侧限膨胀试验中的抑制作用具有一致性。而浸水30~240 min内,由于未对泥岩进行侧向约束,两种溶液中泥岩裂隙总体积将随着时间的推移继续增长,但该增长主要表现为扩展已有裂隙的结果,新产生的裂隙较少,分形维数变化不大。

    表  4  泥岩裂隙网络参数
    Table  4.  Parameters of the mudstone crack network
    分形维数 裂隙体积总和/mm3
    0% 5% 0% 5%
    0 min 1.435 1.459 0.039 0.122
    30 min 2.372 2.131 25.085 6.740
    240 min 2.440 2.305 52.890 24.105
    下载: 导出CSV 
    | 显示表格

    裂隙网络演化过程总体说明了浸水作用下泥岩所发生的结构劣化,表明泥岩宏观膨胀是内部裂隙导致其体积增大、发生竖向位移的表现形式。此结果一方面可能反映了泥岩中黏土矿物膨胀对其内在结构所具有的强烈破坏效应;另一方面,也可能表征了泥岩内部毛细吸力所引起的空气压裂(air-breakage)作用[22]

    不同溶液中泥岩的毛细吸水曲线如图7所示,吸水过程共经历10天,吸水曲线表现出与膨胀相似的阶段性。前4 h内泥岩在三种溶液中的吸附趋势较为一致,毛细吸水率均随时间迅速增长,且4 h时三者达到的吸水率无明显差别。随后,5wt%与10wt%NaCl溶液中泥岩立即进入缓慢吸水阶段,而去离子水中泥岩的吸水曲线发展成三个阶段,5~40 h内仍以稳定的速率增长,并且泥岩外表同时产生肉眼可见的裂隙。直到40 h后,三种溶液中的泥岩都为一致的缓慢吸水,吸水曲线平直,最终去离子水、5wt%、10wt%NaCl溶液中毛细吸水率分别达到7.25%、4.29%、4.10%。

    图  7  泥岩毛细吸水曲线
    Figure  7.  Capillary water absorption curve of mudstone

    上述试验结果表明,相对于盐离子溶液,泥岩对去离子水具有更强的毛细吸力,且该吸力可能对泥岩的结构具有破坏作用。根据Young-Laplace方程可计算岩石内的毛细吸力[47]

    $$ P_{0}=\frac{2 \gamma \cos \theta}{r} $$ (5)

    式中:Pc——毛细吸力;

    γ——界面张力;

    θ——界面接触角;

    r——毛细管的半径。

    若将岩石内的微孔、裂隙看作毛细管,泥岩毛细吸水本质是其原生微孔、裂隙界面(矿物分子与矿物分子之间形成的界面)发生浸润的过程,根据空气压裂理论与Young-Laplace方程[22],泥岩毛细吸水可压缩内部空气而形成扩容应力(空气压力),并在该过程中达到毛细吸力与扩容应力的动态平衡。由于毛细吸力与界面接触角呈负相关,因而盐离子可通过增大溶液浸润接触角的方式降低空气扩容应力,从而削弱浸水时泥岩的空气压裂作用。

    泥岩主要存在三种膨胀模式:机械膨胀、渗透膨胀和结晶膨胀。其中,黏土矿物主导了泥岩的结晶膨胀,而结晶膨胀是蒙脱石与伊利石层间界面水化的表现形式。因此,本文基于分子动力学模拟实现对蒙脱石与伊利石的结晶膨胀研究,并以两层分子结构的平均基底间距作为评判其结晶膨胀程度的指标。

    模拟结果表明(图8),蒙脱石的基底间距小于15 $\mathring{{\mathrm{A}}} $时,盐离子对其结晶膨胀的抑制作用并不明显,随着吸附的溶液分子数量逐渐增多,该抑制作用才逐渐表现。对比最终的模拟结果,蒙脱石层间引入等量的去离子水与5wt%NaCl溶液后,基底间距从12.70 $\mathring{{\mathrm{A}}} $分别扩展到18.23 $\mathring{{\mathrm{A}}} $与17.96 $\mathring{{\mathrm{A}}} $,盐离子对蒙脱石结晶膨胀具有显著影响,使其基底间距减少0.27 $\mathring{{\mathrm{A}}} $,且该影响存在随着基底间距增大而增加的趋势。盐离子对伊利石结晶膨胀的抑制作用同样表现在模拟的后半段,且相较于蒙脱石,该作用明显减弱。引入去离子水后与5wt%NaCl溶液,伊利石基底间距从10.23 $\mathring{{\mathrm{A}}} $分别扩展到12.99 $\mathring{{\mathrm{A}}} $与12.86 $\mathring{{\mathrm{A}}} $,后者仅减少0.13 $\mathring{{\mathrm{A}}} $。

    图  8  蒙脱石与伊利石结晶膨胀过程中基底间距变化
    Figure  8.  Variation in basal spacing during crystallization expansion of montmorillonite and illite

    蒙脱石与伊利石分子结晶膨胀的模拟表明,添加盐离子后蒙脱石与伊利石在膨胀过程中基底间距的扩展受到抑制,且其对于蒙脱石的抑制作用更加明显。此外,由于模拟引入的溶液分子的总质量是相等的,同种矿物结晶膨胀时层间具有等质量的溶液分子,而盐离子所导致的膨胀差异可能是通过提高矿物分子层间密度的方式,减少了溶液在矿物层间所空间,进而减少了其间距扩展距离。

    尽管蒙脱石与伊利石水化膨胀的模拟过程表明了盐离子对蒙脱石的显著影响与宏观试验现象更为相符,但所得伊利石的模拟结果依然无法明确二者的差异膨胀特征。这主要是由于聚焦对比矿物水化膨胀时基底间距的变化,前述膨胀模拟忽略了膨胀发生前层间的吸附过程而直接将溶液分子引入矿物层间。因此,为了深入探讨伊利石的膨胀特征,展开了对伊利石膨胀的先期吸附模拟。

    图9所示构建了模拟伊利石吸水的系统框架,为至少存在一个截断面使得水分子能够进入层间,将4a × 2b × 2c的伊利石超晶胞模型沿(010)面进行截断,其余X与Z方向均可无限延伸。共计908个水分子作为溶液引入系统,位于伊利石两侧,整体几何优化与能量最小化后,对其进行步长0.1 fs总时间1000 ps的NVT系综以达到能量平衡,并计算氢键。模拟结果显示,伊利石略微向下发生偏移,溶液中的水分子会自发地向其靠近,并在接触边界处形成了氢键网络,但始终无法在本模拟条件下(298 K,105 Pa,0.1 fs步长)发生层间吸附。

    图  9  伊利石层间吸水模拟
    Figure  9.  Simulation of water absorption in illite interlayers

    由此可见,在完整的吸水膨胀过程中,由于伊利石层间具有强相互作用且水分子易在其边界形成氢键网络,伊利石通常难以对水分子进行层间吸附并发生层间扩展(即水化膨胀)。因而在一般条件下,可以认为伊利石在泥岩的整体体积膨胀中较难发挥作用;相比之下,蒙脱石或含有蒙脱石的伊/蒙混层更可能是在泥岩的膨胀特性中具有关键贡献作用的矿物。

    在本研究中,通过单一外部控制因素,即盐离子“探针”,分析了在微观机制控制下泥岩对盐离子作用的差异性反馈(即侧向膨胀、裂隙生成、毛细吸水等差异),进而揭示了浸水作用下泥岩的膨胀演化与界面响应过程。

    泥岩在无外力作用下遇水后发生强烈膨胀崩解(图10(b))可能主要取决于两种微观机理(界面作用):①蒙脱石产生的膨胀应力:泥岩具有明显的膨胀性并伴随裂隙产生(如图5所示),引入盐离子后该膨胀性与蒙脱石层间扩展一致减弱,指示了蒙脱石对泥岩膨胀的关键影响;②浸润作用产生的空气应力:泥岩干密度大(2.546 g·cm−3)且孔隙率极低(3.604%),其内部十分致密(图1(d))并可能仅发育微孔、裂隙,浸润作用下可在半封闭空间内形成强空气应力,引入盐离子后泥岩裂隙生成与毛细吸水(如图7所示)受到抑制,根据Young-Laplace方程,这与盐离子通过增大接触角而削弱浸润作用存在明显关联,表明该空气应力同时影响了泥岩伴随膨胀而产生裂隙的过程。

    图  10  泥岩膨胀的微宏观响应机理,(a)分子内界面水化;(b)泥岩膨胀崩解;(c)分子间界面浸润;(d)泥岩地层泥化
    Figure  10.  Micro- and macroscopic response mechanism of mudstone swelling, (a) hydration process at the intramolecular interface; (b) swelling and disintegration of mudstone; (c) infiltration process at the intermolecular interface; (d) Argillation of mudstone strata

    对于蒙脱石分子而言,由于其具有特殊的微观结构,在层间仅存在较弱的范德华力,加之层间离子的水化能力很强,能够吸附大量的水分子。如图10(a)所示,泥岩在浸水时,内部致密的蒙脱石或伊/蒙混层团聚体遇水后发生结晶膨胀,该膨胀应变在致密的空间内逐渐积累并释放,导致泥岩局部结构变形。在初始水分迁移的差异接触、矿物的非均质性分布等影响下,泥岩内部发生不均匀膨胀,从而形成拉张应力作用而产生微裂隙。该微裂隙又为水分提供运移与赋存的空间,使得泥岩内部裂隙网络的逐步形成,体积膨胀与结构破坏的持续发生。对于矿物分子间界面作用,如图10(c)所示,致密的黏土矿物团聚体通常发育十分微小的孔、裂隙,该微孔、裂隙结构在界面张力的作用下具有很强的润湿性,能提供强大的毛细吸力而极易发生界面浸润。根据空气压裂理论,在此过程中水分将进入原赋存有空气的微小空间内,进而压缩空气形成扩容应力。并由于泥岩结构致密,形成的应力将直接作用在泥岩骨架上,最终使得原生微孔、裂隙不断发育扩展以形成裂隙网络。

    综上所述,浸水作用是造成泥岩崩解泥化的关键因素,泥岩的膨胀泥化包含多种复杂作用过程与机制。在微观尺度上主要涉及重要的界面作用,包括蒙脱石分子内界面吸附水化所诱导的膨胀,以及分子间界面张力与润湿性引起的水分浸润。在泥岩膨胀行为中,该界面性质在岩石尺度上控制着其从局部到整体的膨胀应变与裂隙产生,最终造成了泥岩的物理变形与崩解。而在更进一步的宏观尺度响应过程中,该微观界面作用的影响将渐进累积并逐步扩大至泥岩地层上,特别是在三峡库区侏罗系的软弱相间地层中(图10(d)),频繁的强降雨与库水位调节行为将引起泥岩发生膨胀破坏,进而使得泥岩地层逐渐泥化,成为诱发库区边坡失稳、崩塌滑坡的关键软弱层或滑动带。因此,本研究结果为深入理解涉水泥岩地层的灾变过程,提供了分子尺度关键界面作用对控制泥岩膨胀破坏上的进一步认知。

    本研究采用盐离子作为“探针”,从侧限膨胀、毛细吸水与裂隙发育过程等方面表征了三峡库区秭归盆地紫红色泥岩的膨胀泥化特性,结合分子动力学模拟阐明了泥岩的关键矿物膨胀特性与界面响应机制。主要结论如下:

    (1)浸水作用下泥岩内部将产生大规模裂隙网络,其扩展了泥岩的总体积,为泥岩侧限膨胀位移的主要来源;

    (2)伊利石层间具有强相互作用,与水分子接触后边界易形成氢键网络,因而难以发生界面水化与结晶膨胀,对泥岩膨胀特性贡献较小;

    (3)泥岩结构破坏与体积膨胀由两种关键界面作用控制,具有显著膨胀性的蒙脱石分子内界面水化可使泥岩膨胀变形,致密矿物分子间界面浸润可引起泥岩内空气压裂。

  • 图  1   研究区域与部分泥岩样品,(a-b)采样地理位置与地层分布;(c-d)样品外观形态与镜下特征

    Figure  1.   Study area and mudstone samples, (a-b) geographic location and stratigraphic distribution; (c-d) appearance and microscopic features of samples

    图  2   泥岩矿物组成情况

    Figure  2.   Mineral composition of mudstone samples

    图  3   蒙脱石与伊利石分子结构模型

    Figure  3.   Molecular structure models of montmorillonite and illite

    图  4   单次膨胀模拟具体过程

    Figure  4.   Detailed process of a single expansion simulation

    图  5   浸泡在不同溶液中泥岩的膨胀曲线

    Figure  5.   Swelling curves of mudstones immersed in different solutions

    图  6   浸水作用下泥岩内部产生的裂隙

    Figure  6.   Cracks formed in mudstone under water immersion

    图  7   泥岩毛细吸水曲线

    Figure  7.   Capillary water absorption curve of mudstone

    图  8   蒙脱石与伊利石结晶膨胀过程中基底间距变化

    Figure  8.   Variation in basal spacing during crystallization expansion of montmorillonite and illite

    图  9   伊利石层间吸水模拟

    Figure  9.   Simulation of water absorption in illite interlayers

    图  10   泥岩膨胀的微宏观响应机理,(a)分子内界面水化;(b)泥岩膨胀崩解;(c)分子间界面浸润;(d)泥岩地层泥化

    Figure  10.   Micro- and macroscopic response mechanism of mudstone swelling, (a) hydration process at the intramolecular interface; (b) swelling and disintegration of mudstone; (c) infiltration process at the intermolecular interface; (d) Argillation of mudstone strata

    表  1   岩样基础物理指标

    Table  1   Basic physical indices of rock samples

    天然密度/(g·cm−3干密度/(g·cm−3天然含水量/%孔隙率/%
    2.6112.5462.5813.604
    下载: 导出CSV

    表  2   膨胀模拟设定

    Table  2   Settings for Expansion simulation

    0wt%NaCl/分子个数 相对原子质量 5wt%NaCl/分子个数 相对原子质量
    蒙脱石单次130H2O2340.0124H2O + 2NaCl2349.0
    共计780H2O14040.0744H2O + 12NaCl14094.0
    伊利石共计65H2O1170.062H2O + 1NaCl1174.5
    共计390H2O7020.0372H2O + 6NaCl7047.0
    下载: 导出CSV

    表  3   力场参数[43, 45]

    Table  3   Force field parameters

    物质原子/离子间距σ能量ε/(kcal·mol−1电荷q/e
    矿物
    分子
    桥联O3.553 20.155 4−1.050 0
    羟基O3.553 20.155 4−0.950 0
    有八面体取代的桥联O3.553 20.155 4−1.180 8
    有四面体取代的桥联O3.553 20.155 4−1.168 8
    有取代的羟基O3.553 20.155 4−1.080 8
    羟基H0.000 00.000 00.425 0
    四面体Si3.706 41.840 5×10−62.100 0
    四面体Al3.706 41.840 5×10−61.575 0
    八面体Al4.794 31.329 8×10−61.575 0
    八面体Mg5.909 09.029 8×10−71.360 0
    Na2.637 80.130 11.000 0
    K3.742 30.100 01.000 0
    水分子O3.553 20.155 4−0.820 0
    H0.000 00.000 00.410 0
    下载: 导出CSV

    表  4   泥岩裂隙网络参数

    Table  4   Parameters of the mudstone crack network

    分形维数 裂隙体积总和/mm3
    0% 5% 0% 5%
    0 min 1.435 1.459 0.039 0.122
    30 min 2.372 2.131 25.085 6.740
    240 min 2.440 2.305 52.890 24.105
    下载: 导出CSV
  • [1] 丁瑜,周忠浩,吴立新,等. 重庆地区红层泥岩球状风化剥落特征及其形成机制[J]. 中国地质灾害与防治学报,2015,26(1):108 − 112. [DING Yu,ZHOU Zhonghao,WU Lixin,et al. Characteristics and mechanism of spheroidal weathering exfoliation of reded mudstone in Chongqing[J]. The Chinese Journal of Geological Hazard and Control,2015,26(1):108 − 112. (in Chinese with English abstract)]

    DING Yu, ZHOU Zhonghao, WU Lixin, et al. Characteristics and mechanism of spheroidal weathering exfoliation of reded mudstone in Chongqing[J]. The Chinese Journal of Geological Hazard and Control, 2015, 26(1): 108 − 112. (in Chinese with English abstract)

    [2] 丁秀丽,赵化蒙,黄书岭. 基于吸湿–膨胀分析模型的岩石膨胀变形演化规律研究[J]. 岩石力学与工程学报,2021,40(增刊2):3005 − 3013. [DING Xiuli,ZHAO Huameng,HUANG Shuling. Study on swelling characteristics of mudstones considering adsorption-expansion analysis model[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(Sup 2):3005 − 3013. (in Chinese with English abstract)]

    DING Xiuli, ZHAO Huameng, HUANG Shuling. Study on swelling characteristics of mudstones considering adsorption-expansion analysis model[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(Sup 2): 3005 − 3013. (in Chinese with English abstract)

    [3] 丁秀丽,樊炫廷,黄书岭,等. 考虑水化和膨胀作用的泥岩统计损伤模型及验证[J]. 岩石力学与工程学报,2023,42(11):2601 − 2612. [DING Xiuli,FAN Xuanting,HUANG Shuling,et al. Statistical damage model of mudstone considering hydration and swelling and its verification[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(11):2601 − 2612. (in Chinese with English abstract)]

    DING Xiuli, FAN Xuanting, HUANG Shuling, et al. Statistical damage model of mudstone considering hydration and swelling and its verification[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(11): 2601 − 2612. (in Chinese with English abstract)

    [4] 程树范,曾亚武,高睿,等. 干湿作用下受荷石膏质泥岩的不可逆膨胀特征[J]. 岩土力学,2023,44(增刊1):332 − 340. [CHENG Shufan,ZENG Yawu,GAO Rui,et al. Unrecoverable expansion characteristic of confined compressive clay-sulfate rock under drying-wetting cycles[J]. Rock and Soil Mechanics,2023,44(Sup 1):332 − 340. (in Chinese)]

    CHENG Shufan, ZENG Yawu, GAO Rui, et al. Unrecoverable expansion characteristic of confined compressive clay-sulfate rock under drying-wetting cycles[J]. Rock and Soil Mechanics, 2023, 44(Sup 1): 332 − 340. (in Chinese)

    [5] 唐雅婷,谭杰,李长冬,等. 基于模型试验的动水驱动型顺层岩质滑坡启滑机制初探[J]. 地质科技通报,2022,41(6):137 − 148. [TANG Yating,TAN Jie,LI Changdong,et al. Preliminary study on the initiation mechanism of hydrodynamic-driven bedding rock landslides based on physical model tests[J]. Bulletin of Geological Science and Technology,2022,41(6):137 − 148. (in Chinese with English abstract)]

    TANG Yating, TAN Jie, LI Changdong, et al. Preliminary study on the initiation mechanism of hydrodynamic-driven bedding rock landslides based on physical model tests[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 137 − 148. (in Chinese with English abstract)

    [6] 王溢禧,赵俊彦,朱兴华,等. 贵德盆地席芨滩巨型滑坡前缘次级滑坡特征及其复活机理分析[J]. 中国地质灾害与防治学报,2024,35(6):1 − 14. [WANG Yixi,ZHAO Junyan,ZHU Xinghua,et al. Analysis on characteristics and reactivation mechanism of secondary landslides in the front part of the Xijitan giant landslide,Guide Basin[J]. The Chinese Journal of Geological Hazard and Control,2024,35(6):1 − 14. (in Chinese with English abstract)]

    WANG Yixi, ZHAO Junyan, ZHU Xinghua, et al. Analysis on characteristics and reactivation mechanism of secondary landslides in the front part of the Xijitan giant landslide, Guide Basin[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(6): 1 − 14. (in Chinese with English abstract)

    [7] 谭银龙,许万忠,曹家菊,等. 基于Midas-GTS的三峡库区金鸡岭滑坡成因机制与稳定性分析[J]. 水文地质工程地质,2023,50(1):113 − 121. [TAN Yinlong,XU Wanzhong,CAO Jiaju,et al. Mechanisms and stability analysis of the Jinjiling landslide in the Three Gorges Reservoir area based on Midas-GTS[J]. Hydrogeology & Engineering Geology,2023,50(1):113 − 121. (in Chinese)]

    TAN Yinlong, XU Wanzhong, CAO Jiaju, et al. Mechanisms and stability analysis of the Jinjiling landslide in the Three Gorges Reservoir area based on Midas-GTS[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 113 − 121. (in Chinese)

    [8] 魏正发,张俊才,曹小岩,等. 青海西宁南北山滑坡、崩塌成因及影响分析[J]. 中国地质灾害与防治学报,2021,32(4):47 − 55. [WEI Zhengfa,ZHANG Juncai,CAO Xiaoyan,et al. Causes and influential factor analysis of landslides and rockfalls in north & south mountain areas of Xining City,Qinghai Province[J]. The Chinese Journal of Geological Hazard and Control,2021,32(4):47 − 55. (in Chinese with English abstract)]

    WEI Zhengfa, ZHANG Juncai, CAO Xiaoyan, et al. Causes and influential factor analysis of landslides and rockfalls in north & south mountain areas of Xining City, Qinghai Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(4): 47 − 55. (in Chinese with English abstract)

    [9] 谢洪波,刘正疆,文广超,等. 四川金川-小金公路沿线滑坡、崩塌影响因素分析[J]. 中国地质灾害与防治学报,2021,32(1):10 − 17. [XIE Hongbo,LIU Zhengjiang,WEN Guangchao,et al. Influencing factors of landslides and rockfalls along the Jinchuan-Xiaojin highway in Sichuan[J]. The Chinese Journal of Geological Hazard and Control,2021,32(1):10 − 17. (in Chinese with English abstract)]

    XIE Hongbo, LIU Zhengjiang, WEN Guangchao, et al. Influencing factors of landslides and rockfalls along the Jinchuan-Xiaojin highway in Sichuan[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(1): 10 − 17. (in Chinese with English abstract)

    [10] 吴凯,倪万魁,武鹏. 宁夏隆德县坡面型泥石流形成机理分析[J]. 中国地质灾害与防治学报,2016,27(1):49 − 54. [WU Kai,NI Wankui,WU Peng. Analysis on the formation mechanism of debris flow on slope in Longde county of Ningxia[J]. The Chinese Journal of Geological Hazard and Control,2016,27(1):49 − 54. (in Chinese with English abstract)]

    WU Kai, NI Wankui, WU Peng. Analysis on the formation mechanism of debris flow on slope in Longde county of Ningxia[J]. The Chinese Journal of Geological Hazard and Control, 2016, 27(1): 49 − 54. (in Chinese with English abstract)

    [11] 李长冬,谭钦文. 动水驱动型滑坡物理启滑能够预测吗?[J]. 地球科学,2022,47(10):3908 − 3910. [LI Changdong,TAN Qinwen. Can the physical start-up of hydrodynamic landslide be predicted?[J]. Earth Science,2022,47(10):3908 − 3910. (in Chinese)]

    LI Changdong, TAN Qinwen. Can the physical start-up of hydrodynamic landslide be predicted?[J]. Earth Science, 2022, 47(10): 3908 − 3910. (in Chinese)

    [12] 柴肇云,张鹏,郭俊庆,等. 泥质岩膨胀各向异性与循环胀缩特征[J]. 岩土力学,2014,35(2):346 − 350. [CHAI Zhaoyun,ZHANG Peng,GUO Junqing,et al. Swelling anisotropy and cyclic swelling-shrinkage of argillaceous rock[J]. Rock and Soil Mechanics,2014,35(2):346 − 350. (in Chinese with English abstract)]

    CHAI Zhaoyun, ZHANG Peng, GUO Junqing, et al. Swelling anisotropy and cyclic swelling-shrinkage of argillaceous rock[J]. Rock and Soil Mechanics, 2014, 35(2): 346 − 350. (in Chinese with English abstract)

    [13] 赵建磊,王涛,梁昌玉,等. 基于风化红层泥岩蠕变特性的滑坡时效变形分析——以天水雒堡村滑坡为例[J]. 中国地质灾害与防治学报,2023,34(1):30 − 39. [ZHAO Jianlei,WANG Tao,LIANG Changyu,et al. Analysis on time-dependent deformation of landslide based on creep characteristics of weathered red mudstone:A case study of the Luobao landslide in Tianshui of Gansu Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1):30 − 39. (in Chinese with English abstract)]

    ZHAO Jianlei, WANG Tao, LIANG Changyu, et al. Analysis on time-dependent deformation of landslide based on creep characteristics of weathered red mudstone: A case study of the Luobao landslide in Tianshui of Gansu Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 30 − 39. (in Chinese with English abstract)

    [14] 郭永春,赵峰先,闫圣龙,等. 红层泥岩三轴膨胀力的试验研究[J]. 水文地质工程地质,2022,49(3):87 − 93. [GUO Yongchun,ZHAO Fengxian,YAN Shenglong,et al. An experimental study of the triaxial expansion force of red-bed mudstone[J]. Hydrogeology & Engineering Geology,2022,49(3):87 − 93. (in Chinese with English abstract)]

    GUO Yongchun, ZHAO Fengxian, YAN Shenglong, et al. An experimental study of the triaxial expansion force of red-bed mudstone[J]. Hydrogeology & Engineering Geology, 2022, 49(3): 87 − 93. (in Chinese with English abstract)

    [15] 叶朝良,薛飞招,谢玉芳,等. 炭质泥岩工程力学特性试验研究[J]. 铁道工程学报,2019,36(11):1 − 6. [YE Chaoliang,XUE Feizhao,XIE Yufang,et al. Experimental research on the engineering mechanical properties of carbon mudstone[J]. Journal of Railway Engineering Society,2019,36(11):1 − 6. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1006-2106.2019.11.001

    YE Chaoliang, XUE Feizhao, XIE Yufang, et al. Experimental research on the engineering mechanical properties of carbon mudstone[J]. Journal of Railway Engineering Society, 2019, 36(11): 1 − 6. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-2106.2019.11.001

    [16]

    LIU Changdong,CHENG Yi,JIAO Yuyong,et al. Experimental study on the effect of water on mechanical properties of swelling mudstone[J]. Engineering Geology,2021,295:106448. DOI: 10.1016/j.enggeo.2021.106448

    [17] 谭罗荣. 关于粘土岩崩解、泥化机理的讨论[J]. 岩土力学,2001,22(1):1 − 5. [TAN Luorong. Discussion on mechanism of disintegration and argillitization of clay-rock[J]. Rock and Soil Mechanics,2001,22(1):1 − 5. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2001.01.001

    TAN Luorong. Discussion on mechanism of disintegration and argillitization of clay-rock[J]. Rock and Soil Mechanics, 2001, 22(1): 1 − 5. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2001.01.001

    [18] 苏永华,赵明华,刘晓明. 软岩膨胀崩解试验及分形机理[J]. 岩土力学,2005,26(5):728 − 732. [SU Yonghua,ZHAO Minghua,LIU Xiaoming. Research of fractal mechanism for swelling & collapse of soft rock[J]. Rock and Soil Mechanics,2005,26(5):728 − 732. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2005.05.010

    SU Yonghua, ZHAO Minghua, LIU Xiaoming. Research of fractal mechanism for swelling & collapse of soft rock[J]. Rock and Soil Mechanics, 2005, 26(5): 728 − 732. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2005.05.010

    [19]

    JIANG Quan,CUI Jie,FENG Xiating,et al. Application of computerized tomographic scanning to the study of water-induced weakening of mudstone[J]. Bulletin of Engineering Geology and the Environment,2014,73(4):1293 − 1301. DOI: 10.1007/s10064-014-0597-5

    [20] 孙怡,邓荣贵,文琪鑫,等. 红层泥质岩循环干湿风化下变形特性试验研究[J]. 铁道科学与工程学报,2020,17(1):57 − 65. [SUN Yi,DENG Ronggui,WEN Qixin,et al. Experimental study on deformation characteristics of red-bed mudstone under cyclic dry-wet weathering[J]. Journal of Railway Science and Engineering,2020,17(1):57 − 65. (in Chinese with English abstract)]

    SUN Yi, DENG Ronggui, WEN Qixin, et al. Experimental study on deformation characteristics of red-bed mudstone under cyclic dry-wet weathering[J]. Journal of Railway Science and Engineering, 2020, 17(1): 57 − 65. (in Chinese with English abstract)

    [21]

    GENG Jishi,SUN Qiang,LI Houen,et al. Deterioration of mudstone exposed to cyclic hygrothermal conditions based on thermoacoustic emission[J]. Construction and Building Materials,2023,386:131581. DOI: 10.1016/j.conbuildmat.2023.131581

    [22] 柴肇云,张亚涛,张学尧. 泥岩耐崩解性与矿物组成相关性的试验研究[J]. 煤炭学报,2015,40(5):1188 − 1193. [CHAI Zhaoyun,ZHANG Yatao,ZHANG Xueyao. Experimental investigations on correlation with slake durability and mineral composition of mudstone[J]. Journal of China Coal Society,2015,40(5):1188 − 1193. (in Chinese with English abstract)]

    CHAI Zhaoyun, ZHANG Yatao, ZHANG Xueyao. Experimental investigations on correlation with slake durability and mineral composition of mudstone[J]. Journal of China Coal Society, 2015, 40(5): 1188 − 1193. (in Chinese with English abstract)

    [23] 张娜,王水兵,严成钢,等. 基于核磁共振技术的泥岩水化损伤孔隙结构演化试验[J]. 煤炭学报,2019,44(增刊1):110 − 117. [ZHANG Na,WANG Shuibing,YAN Chenggang,et al. Pore structure evolution of hydration damage of mudstone based on NMR technology[J]. Journal of China Coal Society,2019,44(Sup 1):110 − 117. (in Chinese with English abstract)]

    ZHANG Na, WANG Shuibing, YAN Chenggang, et al. Pore structure evolution of hydration damage of mudstone based on NMR technology[J]. Journal of China Coal Society, 2019, 44(Sup 1): 110 − 117. (in Chinese with English abstract)

    [24] 戴张俊,郭建华,周哲,等. 川中红层高铁路基长时上拱变形反演与预测[J]. 岩石力学与工程学报,2020,39(增刊2):3538 − 3548. [DAI Zhangjun,GUO Jianhua,ZHOU Zhe,et al. Inversion and prediction of long-term uplift deformation of high-speed railway subgrade in central Sichuan red-bed[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(Sup 2):3538 − 3548. (in Chinese with English abstract)]

    DAI Zhangjun, GUO Jianhua, ZHOU Zhe, et al. Inversion and prediction of long-term uplift deformation of high-speed railway subgrade in central Sichuan red-bed[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(Sup 2): 3538 − 3548. (in Chinese with English abstract)

    [25] 东南大学,浙江大学,南京工业大学,等. 土力学[M]. 北京:中国电力出版社,2010. [★★★. Soil mechanics[M]. Beijing:China Electric Power Press,2010. (in Chinese)]

    ★★★. Soil mechanics[M]. Beijing: China Electric Power Press, 2010. (in Chinese)

    [26] 刘梅全,蒲晓林,张谦,等. 无机盐作用下伊利石水化特性的分子模拟[J]. 西南石油大学学报(自然科学版),2021,43(4):81 − 89. [LIU Meiquan,PU Xiaolin,ZHANG Qian,et al. Molecular simulation for inorganic salts inhibition mechanism on illite hydration[J]. Journal of Southwest Petroleum University (Science & Technology Edition),2021,43(4):81 − 89. (in Chinese with English abstract)]

    LIU Meiquan, PU Xiaolin, ZHANG Qian, et al. Molecular simulation for inorganic salts inhibition mechanism on illite hydration[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2021, 43(4): 81 − 89. (in Chinese with English abstract)

    [27] 冯高顺,余飞,戴张俊,等. 川中红层泥岩吸水膨胀时效特征的试验研究[J]. 岩石力学与工程学报,2022,41(增刊1):2780 − 2790. [FENG Gaoshun,YU Fei,DAI Zhangjun,et al. Experimental study on time effect characteristics of red mudstone swelling in Central Sichuan[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(Sup 1):2780 − 2790. (in Chinese with English abstract)]

    FENG Gaoshun, YU Fei, DAI Zhangjun, et al. Experimental study on time effect characteristics of red mudstone swelling in Central Sichuan[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(Sup 1): 2780 − 2790. (in Chinese with English abstract)

    [28] 李长冬,孟杰,项林语,等. 白鹤滩库首区砂岩结构多尺度演变机制[J]. 地球科学,2023,48(12):4658 − 4667. [LI Changdong,MENG Jie,XIANG Linyu,et al. Multi-scale evolution mechanism of sandstone structure in Baihetan Reservoir head region[J]. Earth Science,2023,48(12):4658 − 4667. (in Chinese with English abstract)]

    LI Changdong, MENG Jie, XIANG Linyu, et al. Multi-scale evolution mechanism of sandstone structure in Baihetan Reservoir head region[J]. Earth Science, 2023, 48(12): 4658 − 4667. (in Chinese with English abstract)

    [29]

    ZHANG Zhenhua,CUI Wentian,LIU Zhidan,et al. Study on the cracking mechanism of strongly weathered purple mudstone under wetting and drying effect through experiments and molecular dynamics simulation[J]. Construction and Building Materials,2023,403:133104. DOI: 10.1016/j.conbuildmat.2023.133104

    [30] 黄宏伟,车平. 泥岩遇水软化微观机理研究[J]. 同济大学学报(自然科学版),2007,35(7):866 − 870. [HUANG Hongwei,CHE Ping. Research on micro-mechanism of softening and argillitization of mudstone[J]. Journal of Tongji University (Natural Science),2007,35(7):866 − 870. (in Chinese with English abstract)]

    HUANG Hongwei, CHE Ping. Research on micro-mechanism of softening and argillitization of mudstone[J]. Journal of Tongji University (Natural Science), 2007, 35(7): 866 − 870. (in Chinese with English abstract)

    [31] 张永安,李峰,陈军. 红层泥岩水岩作用特征研究[J]. 工程地质学报,2008,16(1):22 − 26. [ZHANG Yongan,LI Feng,CHEN Jun. Analysis of the interaction between mudstone and water[J]. Journal of Engineering Geology,2008,16(1):22 − 26. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1004-9665.2008.01.005

    ZHANG Yongan, LI Feng, CHEN Jun. Analysis of the interaction between mudstone and water[J]. Journal of Engineering Geology, 2008, 16(1): 22 − 26. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2008.01.005

    [32] 谢小帅,陈华松,肖欣宏,等. 水岩耦合下的红层软岩微观结构特征与软化机制研究[J]. 工程地质学报,2019,27(5):966 − 972. [XIE Xiaoshuai,CHEN Huasong,XIAO Xinhong,et al. Micro-structural characteristics and softening mechanism of red-bed soft rock under water-rock interaction condition[J]. Journal of Engineering Geology,2019,27(5):966 − 972. (in Chinese with English abstract)]

    XIE Xiaoshuai, CHEN Huasong, XIAO Xinhong, et al. Micro-structural characteristics and softening mechanism of red-bed soft rock under water-rock interaction condition[J]. Journal of Engineering Geology, 2019, 27(5): 966 − 972. (in Chinese with English abstract)

    [33] 刘凤云,谢飞,邱恩喜,等. 川西红层软岩崩解演变特征与微观响应机理试验研究[J]. 工程地质学报,2022,30(5):1597 − 1608. [LIU Fengyun,XIE Fei,QIU Enxi,et al. Experimental study on disintegration evolution charact-eristics and microscopic response mechanism of red-bed soft rock in western Sichuan[J]. Journal of Engineering Geology,2022,30(5):1597 − 1608. (in Chinese with English abstract)]

    LIU Fengyun, XIE Fei, QIU Enxi, et al. Experimental study on disintegration evolution charact-eristics and microscopic response mechanism of red-bed soft rock in western Sichuan[J]. Journal of Engineering Geology, 2022, 30(5): 1597 − 1608. (in Chinese with English abstract)

    [34]

    WU Qiong,LIU Yuxin,TANG Huiming,et al. Experimental study of the influence of wetting and drying cycles on the strength of intact rock samples from a red stratum in the Three Gorges Reservoir area[J]. Engineering Geology,2023,314:107013. DOI: 10.1016/j.enggeo.2023.107013

    [35] 唐辉明,李长冬,龚文平,等. 滑坡演化的基本属性与研究途径[J]. 地球科学,2022,47(12):4596 − 4608. [TANG Huiming,LI Changdong,GONG Wenping,et al. Fundamental attribute and research approach of landslide evolution[J]. Earth Science,2022,47(12):4596 − 4608. (in Chinese with English abstract)]

    TANG Huiming, LI Changdong, GONG Wenping, et al. Fundamental attribute and research approach of landslide evolution[J]. Earth Science, 2022, 47(12): 4596 − 4608. (in Chinese with English abstract)

    [36] 孟杰,李长冬,闫盛熠,等. 基于μCT技术的白鹤滩库区致密砂岩孔-裂隙三维成像特征研究[J]. 地质科技通报,2023,42(1):20 − 28. [MENG Jie,LI Changdong,YAN Shengyi,et al. 3D imaging characteristics of pore and fracture of tight sandstone in Baihetan reservoir area based on μCT technology[J]. Bulletin of Geological Science and Technology,2023,42(1):20 − 28. (in Chinese with English abstract)]

    MENG Jie, LI Changdong, YAN Shengyi, et al. 3D imaging characteristics of pore and fracture of tight sandstone in Baihetan reservoir area based on μCT technology[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 20 − 28. (in Chinese with English abstract)

    [37] 王春虹,李明慧,方小敏,等. 柴达木盆地西部SG-1钻孔中伊蒙混层结构特征及环境意义[J]. 第四纪研究,2016,36(4):917 − 925. [WANG Chunhong,LI Minghui,FANG Xiaomin,et al. Structural characteristic of mixed-layer illite/smectite clay minerals of the Sg-1 core in the western Qaidam basin and its environmental significance[J]. Quaternary Sciences,2016,36(4):917 − 925. (in Chinese with English abstract)] DOI: 10.11928/j.issn.1001-7410.2016.04.12

    WANG Chunhong, LI Minghui, FANG Xiaomin, et al. Structural characteristic of mixed-layer illite/smectite clay minerals of the Sg-1 core in the western Qaidam basin and its environmental significance[J]. Quaternary Sciences, 2016, 36(4): 917 − 925. (in Chinese with English abstract) DOI: 10.11928/j.issn.1001-7410.2016.04.12

    [38]

    RAHROMOSTAQIM M,SAHIMI M. Molecular dynamics simulation of hydration and swelling of mixed-layer clays[J]. The Journal of Physical Chemistry C,2018,122(26):14631 − 14639. DOI: 10.1021/acs.jpcc.8b03693

    [39]

    GHASEMI M,SHARIFI M. Effects of layer-charge distribution on swelling behavior of mixed-layer illite-montmorillonite clays:A molecular dynamics simulation study[J]. Journal of Molecular Liquids,2021,335:116188. DOI: 10.1016/j.molliq.2021.116188

    [40] 魏然,张丽雅,肖智睿,等. 基于MICP技术的膨胀土变形控制机理研究[J]. 岩土工程学报,2023,45(增刊1):92 − 96. [WEI Ran,ZHANG Liya,XIAO Zhirui,et al. Deformation and control mechanism of MICP-treated expansive soil[J]. Chinese Journal of Geotechnical Engineering,2023,45(Sup 1):92 − 96. (in Chinese with English abstract)]

    WEI Ran, ZHANG Liya, XIAO Zhirui, et al. Deformation and control mechanism of MICP-treated expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(Sup 1): 92 − 96. (in Chinese with English abstract)

    [41]

    SKIPPER N T,SPOSITO G,CHANG F C. Monte Carlo simulation of interlayer molecular structure in swelling clay minerals. 2. monolayer hydrates[J]. Clays and Clay Minerals,1995,43(3):294 − 303. DOI: 10.1346/CCMN.1995.0430304

    [42]

    DRITS V A,ZVIAGINA B B,MCCARTY D K,et al. Factors responsible for crystal-chemical variations in the solid solutions from illite to aluminoceladonite and from glauconite to celadonite[J]. American Mineralogist,2010,95(2/3):348 − 361.

    [43]

    CYGAN R T,LIANG Jianjie,KALINICHEV A G. Molecular models of hydroxide,oxyhydroxide,and clay phases and the development of a general force field[J]. The Journal of Physical Chemistry B,2004,108(4):1255 − 1266. DOI: 10.1021/jp0363287

    [44] 杨微,陈仁朋,康馨. 基于分子动力学模拟技术的黏土矿物微观行为研究应用[J]. 岩土工程学报,2019,41(增刊1):181 − 184. [YANG Wei,CHEN Renpeng,KANG Xin. Application of molecular dynamics simulation method in micro-properties of clay minerals[J]. Chinese Journal of Geotechnical Engineering,2019,41(Sup 1):181 − 184. (in Chinese with English abstract)]

    YANG Wei, CHEN Renpeng, KANG Xin. Application of molecular dynamics simulation method in micro-properties of clay minerals[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(Sup 1): 181 − 184. (in Chinese with English abstract)

    [45] 项林语,李长冬,李浩林,等. 基于分子动力学模拟的钙基蒙脱石表面润湿性研究[J]. 科学技术与工程,2022,22(36):15952 − 15958. [XIANG Linyu,LI Changdong,LI Haolin,et al. Surface wettability of Ca-montmorillonite based on molecular dynamics simulation[J]. Science Technology and Engineering,2022,22(36):15952 − 15958. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-1815.2022.36.011

    XIANG Linyu, LI Changdong, LI Haolin, et al. Surface wettability of Ca-montmorillonite based on molecular dynamics simulation[J]. Science Technology and Engineering, 2022, 22(36): 15952 − 15958. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2022.36.011

    [46]

    FALCONER K. Fractal geometry:mathematical foundations and applications[M]. Third edition. ©2014:John Wiley & Sons Inc. ,2014.

    [47]

    LIU Hailong,CAO Guoxin. Effectiveness of the young-Laplace equation at nanoscale[J]. Scientific Reports,2016,6:23936. DOI: 10.1038/srep23936

图(10)  /  表(4)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  4
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-10
  • 修回日期:  2024-10-18
  • 录用日期:  2025-01-08
  • 网络出版日期:  2025-01-16

目录

/

返回文章
返回