Risk assessment of landslides induced by the Ms6.2 earthquake in Jishishan, Gansu Province
-
摘要:
2023年12月18日23时59分,甘肃省积石山县发生Ms6.2级地震,造成大量人员伤亡及崩塌和滑坡等地震次生灾害。基于震前震后高分辨率卫星影像,利用目视解译的灾害点和影响因子特征集构建MaxEnt模型进行地震后滑坡灾害危险性评价,研究认为:(1)地震诱发滑坡灾害点主要分布在
1700 ~2250 m高程带、坡度20°~25°的阳坡范围内,在距道路距离1.5 km、距断裂带距离1.7 km、距地震中心距离5 km区间广布;(2)由影响因子的贡献率和置换重要性、测试效益值、AUC 值和正则化训练增益值综合得到地震诱发滑坡的主要影响因子为距断裂带的距离、海拔和人口分布;(3)基于构建的MaxEnt模型,得出极高和高危险区主要分布于地震烈度为Ⅷ度区,其面积为5.368 km2,占极高和高危险区总面积的77.82%,而低和极低危险区主要分布于Ⅵ和Ⅶ度区,面积百分比分别为75.33%和97.55%。文章在影响因子重要性分析基础上构建MaxEnt 模型进行震区滑坡灾害危险性评价,研究结果将为震区灾后重建提供参考。Abstract:On December 18, 2023, at 23:59, a magnitude Ms6.2 earthquake occurred in Jishishan County, Gansu Province, resulting in significant casualties and triggering numerous secondary geological disasters such as landslides and collapses. Utilizing high-resolution satellite imagery from before and after the earthquake, this study employs a MaxEnt model, constructed with visually interpreted disaster points and a set of impact factor characteristics, to assess the post-earthquake landslide hazard post-earthquake landslide hazard. The research conclusions are as follows: 1) Earthquake-induced landslide disasters are predominantly distributed within sunny slopes at elevations of
1800 to2300 m and slope gradient of 20° to 25°, extensively across areas 1.5 km from roads, 1.7 km from fault zones, and within 5 km of the earthquake’s epicenter. The majority of the disasters occurred in cropland and loam areas with higher population density in the earthquake region. 2) The main influencing factors for earthquake-induced landslides determined by factor contribution rates, permutation importance, test benefit values, AUC values, and regularization training gain value were comprehensively determined as follows: Distance from the fault zone, Elevation, and Population density; 3) Based on the constructed MaxEnt model, it is found that there is a good consistency between the extremely high and high-risk areas of landslide disasters in the earthquake zone and the seismic intensity. Among them, the extremely high and high-risk areas are mainly distributed in the intensity Ⅷ zone, with an area of 5.368km2, accounting for 77.82% of the total area of the extremely high and high-risk zones. The low and very low-risk areas are mainly distributed in the intensity Ⅵ and Ⅶ zones, accounting for 92.80% of the total area of the study region. This study constructs the MaxEnt model based on the importance analysis of impact factors to evaluate the landslide hazard in the earthquake area, providing references for post-disaster reconstruction in the earthquake zone.-
Keywords:
- Jishishan Ms6.2 earthquake /
- landslide /
- factor /
- importance analysis /
- MaxEnt model /
- risk assessment
-
0. 引言
强降雨作用下,山地丘陵区极易发生山洪、崩塌、滑坡、泥石流等地质灾害,并且可能阻断河流,形成堰塞湖,威胁堰塞体上下游人民生命财产安全[1 − 3]。据统计,近年来我国地质灾害造成的年死亡人数达200~400人[4]。山地丘陵地区由降雨引发的滑坡、泥石流灾害频发,造成严重的人员伤亡和经济财产损失[5]。在自然降雨条件下,山区中堆积的松散土体会在强降雨作用下诱发滑坡和泥石流灾害。大体积滑坡和泥石流汇入江河后,极易堵塞河道形成堰塞坝,壅高上游水位,堰塞坝一旦溃决将在下游造成巨大的洪水灾害,形成滑坡/泥石流-堰塞湖-溃决洪水灾害链[6 − 8]。
降雨是滑坡/泥石流-堰塞湖-溃决洪水灾害链的主要诱发因素,尤其是强度大、持续时间长的降雨往往是引发滑坡/泥石流-堰塞湖-溃决洪水灾害链的关键控制因素[9 − 11]。通过降雨试验揭示降雨诱发滑坡/泥石流-堰塞湖-溃决洪水灾害链的机理对防灾减灾工作具有重要意义。目前,众多学者采用物理模型试验揭示降雨诱发地质灾害的机理,王如宾等[12]基于人工模拟降雨室内大型滑坡模型试验,揭示了降雨诱发滑坡变形破坏机理。胡华等[13]设计了降雨滑坡模拟试验,研究了降雨强度和斜坡坡度对滑塌破坏的影响。部分学者通过现场试验来揭示降雨诱发地质灾害的机理,谭建民等[14]开展了降雨边坡破坏现场试验,探究了降雨作用下花岗岩风化土坡的失稳机制。周中等[15]综合通过人工降雨模拟试验和原位综合监测手段,探究了降雨条件下土石混合体滑坡的失稳机理。王刚等[16]开展降雨型滑坡现场试验研究,探究了不同雨强条件下天然黄土边坡的入渗规律及变形破坏模式。詹良通等[17]对非饱和膨胀土进行了降雨试验和原位监测,揭示了降雨入渗对边坡失稳的影响。综上可知,目前在利用模型试验和现场试验揭示降雨滑坡诱发机理方面已经开展了大量研究,取得了一些新的认识,但是,室内模型试验存在尺寸效应,难以还原灾害的真实情况,而现有现场试验多不是在灾害现场开展的原位试验。因此,在灾害现场开展原位试验对进一步探究降雨诱发滑坡、泥石流灾害机理至关重要。
本文选取2020年发生在四川省凉山州甘洛县黑西洛沟的山洪-滑坡-泥石流-堰塞湖灾害链残留边坡开展现场人工降雨试验,综合利用三维激光扫描仪、孔隙水压力计、土壤含水率传感器、EDS能谱分析等多种设备和方法,探究降雨诱发该处滑坡的机理,以期为当地的防灾减灾提供有益借鉴。
1. 灾害概况
黑西洛沟位于四川省凉山州甘洛县,为尼日河右侧的一条小山沟,长度约5 km。经现场调查,沟道两侧松散物源分布广泛,植被不发育。在非汛期,沟内仅有较小溪流流出,在枯水季节沟内偶尔断流。2020年8月31日上午8时,在持续的降雨作用下,黑西洛沟内发生了山洪-滑坡-泥石流-堰塞湖灾害链。灾害发生时,黑西洛沟内原有松散物源被山洪裹挟带走,并在运移过程中不断铲刮沟道底部物源,导致沟边两侧边坡失稳,逐渐演变为滑坡灾害。沟内通道不断下切过程中,两侧岸坡持续垮塌,崩塌体进入沟道后,滑坡规模急速扩大,最终演变为泥石流灾害。大量泥石流物源几乎呈垂直状态冲入尼日河,形成堰塞坝,堵塞尼日河,如图1(a)所示。经现场测量,形成的堰塞坝沿河道纵向方向长度约200 m,顺河向长度约为400 m,高度约30 m,堰塞坝体积约100×104 m3。堰塞坝自然溃决后冲毁下游场镇、村庄、学校和道路,造成阿兹觉乡一千余名群众受灾,3人失踪,黑西洛沟口的成昆铁路桥梁被冲毁,成昆铁路断道数月,堰塞坝下游的国道G245约1.2 km道路和多处桥梁被掩埋、冲毁,多栋房屋损毁,经济损失严重。堰塞坝材料在下游1 km范围内淤积,导致下游阿兹觉村挖哈组、乃牛组两个组被完全掩埋。
通过现场调查和资料收集,本次滑坡-泥石流-堰塞湖灾害链是一次典型的“小水大灾”灾害,本文聚焦该灾害链中的滑坡灾害,通过现场降雨试验和室内EDS能谱分析,以期揭示降雨作用下边坡侵蚀破坏的发生机理。
2. 现场试验
2.1 试验边坡概况
本次现场模型试验在2020年黑西洛沟灾害后的残余边坡上进行,试验边坡高度约为2.2 m,宽约2.0 m,坡长约3.0 m,天然坡度约为49°,如图1(b)所示。降雨试验前对坡面进行简单平整,清除坡面杂草、大块石等影响坡面径流和入渗的障碍物。现场筛分试验测得黑西洛沟内松散堆积体的颗粒级配曲线如图2所示[18]。
2.2 降雨及监测设备
降雨装置主要包括支架、雨水输送管道、喷头和雨量计。喷头设置在边坡顶部并延伸至坡面,喷头顶部可通过调节流量的方式模拟不同的雨强。
试验中设计了两排喷头,试验中经过多次调试,最终确定喷头间距约为0.7 m,每排喷头间距约为0.5 m,经现场观察,这一间距能够确保坡面降雨的均匀性。雨量计放置在边坡试验区,位于试验降雨区内,以实时测量坡面的降雨量,测得值能代表试验区的平均雨量,降雨试验装置如图3所示。
试验中数据采集设备包括孔隙水压力传感器、土壤含水率传感器、雨量计以及三维激光扫描仪,其中孔隙水压力传感器3个,土壤含水率传感器3个。孔隙水压力传感器量程是10 kPa,准确度误差≤0.5 F∙S,土壤含水率传感器测量范围0~100%。黑西洛沟滑坡灾害的主要原因就是堆积体浅层物源浸水后被冲出,故为了与灾害实际情况相似,本次试验所用传感器埋入边坡表层,深度为0.3 m。孔隙水压力计和土壤含水率传感器放入预挖的孔洞后,利用坡体原样土回填后进行人工夯实,保证夯实后孔内的土体与天然状态一致。边坡尺寸和传感器埋设的位置如图4所示。三维激光扫描仪立于边坡的正面,通过不同阶段的扫描,以获取降雨过程中边坡的三维地形点云数据,由此识别边坡的变形破坏过程。
2.3 降雨试验方案
根据甘洛县水利局的实测数据,本次灾害发生前后黑西洛沟临近监测站点的降雨数据如图5所示。临近监测站点位于苏雄镇,距离灾害点约500 m,本站点降雨数据可以代表真实的降雨量。灾害发生时当地已连续降雨约15 h,持续降雨导致沟内的松散物源浸水饱和,并最终被沟内山洪裹挟冲出,诱发链生的滑坡、泥石流和堰塞湖灾害,降雨是此次灾害链发生的主要诱因。为了更好地分析灾害链发生机理,试验降雨量尽量保证与灾害实际情况相符。受现场试验条件限制,经雨量计实测,此次现场试验共计降雨量为28 mm,降雨历时150 min,小时降雨量为11.2mm,试验小时降雨量与灾害发生时的降雨量接近,如图5所示。
3. 试验结果分析
本研究通过对试验数据的分析,揭示降雨条件下黑西洛沟内残余边坡内部的孔隙水压力和土壤含水率变化规律,同时通过三维激光扫描仪精准识别边坡表面的变形破坏过程。
3.1 孔隙水压力监测结果分析
根据现场监测结果,得出降雨过程中边坡内孔隙水压力随降雨历时的变化规律,如图6所示。
由图6可知,边坡体内孔隙水压力的变化过程大致可分为三个阶段:加速上升、下降和趋于稳定。降雨初期,雨水未入渗至坡体内部,孔隙水压力传感器监测数据未发生明显变化。随着降雨的持续进行,雨水在入渗过程中逐渐汇聚在坡面,形成坡面径流和坡内渗流,导致孔隙水压力开始变化,其中A1和A3孔隙水压力传感器在40 min至50 min陡然增加,边坡表面出现冲刷痕迹。继续降雨,边坡表面产生拉裂缝,雨水通过裂缝
不断渗入坡体内部,孔隙水压力持续上升,致使边坡的抗剪强度由于有效应力的减少而降低。降雨后期,边坡表面出现局部塌陷,坡体内部渗透路径发生变化,导致孔隙水压力开始下降。
降雨35~50 min时间段内,A1和A3传感器的孔隙水压力开始增加,坡面有明显的降雨冲蚀痕迹。继续降雨,A1和A3传感器的数据持续上升。降雨65 min后,A2孔隙水压力传感器才开始快速增加,并且此位置的含水率传感器也有明显响应,含水率曲线开始发生变化,土体的含水率开始逐渐上升,含水率和孔隙水压力变化一致。此时坡面的雨水冲蚀痕迹加深,侵蚀破坏范围扩大,土体颗粒被水流带走堆积在坡脚,整个坡面有明显的冲刷破坏。继续进行降雨,边坡土体开裂,雨水沿着拉裂缝进入坡体内部,孔隙水软化了边坡土体,土体有效应力减少,边坡稳定性下降,坡面产生了明显的局部塌陷,内部渗流场发生变化,孔隙水压力开始下降,直至不再改变。
不同位置的孔隙水压力传感器变化有明显差异,原因是,A3传感器位于坡顶,A1传感器位于边坡中部,降雨过程中,A1传感器由于受到降雨入渗和上部土体水分沿拉裂缝入渗的补给,上升速度更快,孔隙水压力相较更大。A2孔隙水压力传感器数据明显滞后,因为该传感器周围有无法清理的大块石,降雨过程中,雨水流经坡面,块石改变了雨水的渗流路径,导致其渗透速度变慢。
3.2 土壤含水率监测结果分析
持续降雨条件下边坡不同位置的土壤含水率变化规律如图7所示。
由图7可知,降雨过程中,含水率持续增大,并最终趋于稳定。土体含水率随降雨历时共经历3个变化阶段:基本不变、加速增大和保持稳定。在降雨初期,边坡雨水入渗量较少,各个监测点的土壤含水率均无明显变化,坡体处在基本稳定状态。随着降雨历时的增加,雨水逐渐从坡面向
坡体内部渗透,土壤含水率开始增加,降雨入渗使得土体由非饱和状态向饱和状态过渡,坡面土体遇水软化,强度降低,表面出现多处裂缝,在土体内部形成渗流通道,B2和B3位置的土壤含水率处于快速增长阶段,降雨后期,B1传感器才有明显的变化,最后土壤含水率都保持平稳状态。出现这种现象的原因是,雨水流经坡体表面,表层土体被冲刷而流失,水分子与土粒在表面形成阻碍入渗的结合水膜,土体内部气体无法排出,使得雨水难以下渗,边坡内的水分保持平衡,土壤含水率达到稳定,但此时边坡土体并未达到饱和状态。
土壤含水率明显变化的这段时间内,含水率传感器埋设位置的孔隙水压力也在迅速上升。降雨50 min左右,雨水流过坡面形成冲沟,坡面产生侵蚀破坏,如图8(a)所示。B3土壤含水率传感器开始快速增加,此时该位置的孔隙水压力也处在快速上升阶段,土体抗侵蚀性下降,坡体表面出现雨水冲蚀痕迹,发生降雨侵蚀破坏;降雨90 min左右,B3含水率传感器达到最大值并保持不变,此时土体孔隙水压力也达到稳定值,不再改变,边坡上部土体侵蚀破坏范围扩大,土体稳定性降低。降雨后期,B1传感器才开始加速上升。整个坡面的侵蚀进一步扩大,表面出现局部塌陷,如图8(b)所示。整个降雨过程中,雨水聚集在边坡表面,流经边坡使其受到侵蚀破坏,同时在降雨过程中,坡面产生裂缝,形成渗流优势通道,更有利于雨水的入渗,使得土体含水率不断增大。
3.3 边坡破坏过程分析
降雨试验过程中的边坡坡面形态变化过程如图9所示。试验过程中,分别在持续降雨45,90,135 min三个时间点对坡面的三维形体进行扫描,获取坡面点云数据,经多期作差后,可以识别出边坡不同阶段的坡面三维形态变化,降雨过程中坡面形态变化云图如图10所示。
由图10可知,持续降雨过程中,边坡的破坏过程具体表现为:持续降雨45 min后,坡面出现了侵蚀破坏,雨水在坡面聚集,形成表面径流,带走坡体表面的松散颗粒。从边坡坡面变形云图可以看到,边坡表面有明显的冲刷区域,被冲刷掉的土体堆积在了坡脚。随着时间与累计降雨量的增大,试验边坡坡面破坏开始逐渐明显,坡面的冲刷痕迹不断加深,冲刷范围不断扩大,边坡上部土体流失,在边坡中部位置发生局部垮塌现象,如图9所示。这段时间,土体内部孔隙水压力也在迅速增大,变形破坏与孔隙水压力之间响应关系明显。降雨120 min后,如图9(b)所示,边坡前缘的冲沟逐渐加宽加深,表面出现多处拉裂缝,雨水沿着裂缝进入土体内部,边坡变形破坏范围不断扩大,此时土壤含水率陡然增加,边坡产生局部垮塌,土体内部渗透路径发生改变,孔隙水压力开始下降。持续降雨135 min后,由图10可知,边坡表面有更多的土体流失且在坡脚堆积。从坡面形态图中可以看出,位移变化的对应位置有裂缝产生和局部小范围的塌陷,雨水的冲蚀痕迹明显,坡脚堆积土体明显增多。
基于多次三维激光扫描获取的点云数据,通过计算得到本次整个降雨试验过程中边坡坡面的冲刷物源体积约为10.0 dm3。
3.4 EDS测试结果分析
为进一步揭示该残余边坡的变形破坏原因,对试验土样开展了X射线能谱分析(EDS)测试。能谱仪配合扫描电子显微镜与透射电子显微镜的
使用,可以获取土样成分的元素种类及含量,其测试结果如表1所示。
表 1 边坡物质成分组成表Table 1. Composition of slope material components元素 质量百分比/% 原子百分比/% 标准样品标签 C 8.08 12.91 C O 49.38 59.23 SiO2 Na 1.84 1.54 Albite(钠长石) Mg 0.39 0.31 MgO Al 6.96 4.95 Al2O3 Si 26.51 18.11 SiO2 K 3.72 1.82 KBr Ca 0.28 0.14 Wollastonite(硅石灰) Ti 0.36 0.14 Ti Fe 2.49 0.86 Fe 总量 100 100 由表1可知,边坡的物质成分较为复杂,主要化学成分为SiO2和Al2O3,含少量Mg、Fe、Na元素。物质组成表明边坡土体中含有伊利石和高岭石等黏土矿物,而伊利石和高岭石是影响膨胀土性质的主要矿物。膨胀土吸水膨胀,遇水崩解或软化,抗冲刷性能差。因此,含有伊利石和高岭石等黏性矿物的边坡表面极易吸水膨胀,抗冲刷能力降低,导致边坡表层土体强度急剧衰减,在降雨作用下极易冲刷破坏。
由图9可知,降雨120 min后,边坡表面出现了侵蚀破坏和局部塌陷,土体被雨水带走堆积在坡脚,整体稳定性受到影响,原因在于:非饱和膨胀土在长时间的持续降雨作用下,雨水入渗会使得浅表层土体孔隙水压力上升和吸力降低。孔隙水压力的升高会导致坡体滑动力增加,且土体的有效应力下降,边坡强度降低,边坡坡面发生侵蚀冲刷。同时吸力下降将使得土层发生膨胀,含有高岭石、伊利石等黏性矿物的边坡土体会因为吸水膨胀而软化,导致土体的抗冲刷性能下降,土颗粒之间的黏聚力随时间而降低,在重力和雨水裹挟作用下,导致边坡出现了多处拉裂缝,拉裂缝的产生使得雨水进一步入渗,雨水充满裂缝产生水压力导致边坡强度降低,加剧边坡的破坏,最终边坡坡面产生冲刷破坏和局部塌陷。
4. 结论
(1)降雨作用下,边坡土壤含水率发生明显增加;同时孔隙水压力在降雨期间也会增大,后期土体发生变形破坏,孔隙水压力开始下降。
(2)三维激光扫描结果表明:边坡表面有明显的冲刷区域且范围不断扩大,持续降雨导致边坡的抗侵蚀能力变弱,土体被雨水冲刷而流失,流失的土颗粒堆积在坡脚。整个降雨试验过程中,边坡坡面的冲刷物源体积约为10.0 dm3。
(3)EDS测试结果表明边坡土体含有伊利石和高岭石等黏性矿物,遇水后极易发生膨胀而软化,导致土体黏聚力降低,边坡抗侵蚀能力变弱,边坡产生拉裂缝,雨水充满裂缝产生水压力加剧边坡破坏,恶化了边坡稳定性,最终发生冲刷破坏和局部塌陷。
(4)试验对揭示降雨作用下边坡侵蚀破坏机理具有重要意义。降雨入渗使得边坡土体内的含水率和孔隙水压力发生波动陡增,导致土体基质吸力减小,土体软化,从而导致边坡土体强度降低是边坡发生侵蚀破坏的主要原因。
-
表 1 甘肃积石山Ms6.2级地震及余震数据
Table 1 Ms6.2 Jishishan earthquake and its aftershocks in Gansu Province
序号 发震时刻 纬度 经度 深度/km 震级/Ms 地名 备注 1 2023-12-18T23:59:30.0 35°42′ 102°47′ 10 6.2 积石山县 震中 2 2023-12-19T00:24:49.9 35°44′ 102°47′ 10 3.9 积石山县 余震 3 2023-12-19T00:36:18.3 35°47′ 102°47′ 10 4.0 积石山县 余震 4 2023-12-19T00:43:12.9 35°47′ 102°46′ 10 3.4 积石山县 余震 5 2023-12-19T00:56:51.3 35°42′ 102°47′ 10 3.4 积石山县 余震 6 2023-12-19T00:59:11.3 35°44′ 102°46′ 10 3.1 积石山县 余震 7 2023-12-19T00:59:39.0 35°50′ 102°47′ 10 4.1 积石山县 余震 8 2023-12-19T01:10:31.4 35°48′ 102°47′ 10 3.2 积石山县 余震 9 2023-12-19T01:20:12.6 35°48′ 102°46′ 10 3.2 积石山县 余震 10 2023-12-19T02:10:06.4 35°50′ 102°46′ 10 3.2 积石山县 余震 11 2023-12-19T00:32:52.9 35°46′ 102°47′ 9 3.4 积石山县 余震 表 2 甘肃积石山Ms6.2级地震诱发滑坡灾害影响因子数据
Table 2 Disaster-causing factors of landslides induced by the Ms6.2 Jishishan earthquake in Gansu Province
环境变量 影响因子 数据来源 地形因子 高程、坡度、坡向、剖面曲率、平面曲率、
曲率、距河流距离、TWI高程数据为数字高程模型(DEM),下载自ASF官网(https://search.asf.alaska.edu/#/),
其它因子数据为DEM的派生数据断裂带 距断裂带的距离 断裂带数据下载自国家地震科学数据中心(https://search.asf.alaska.edu/#/) 土壤质地 土壤质地数据 下载自世界土壤数据库(https://www.fao.org/) 道路 距道路的距离 OSM官网(https://www.openstreetmap.org/) 人口 人口分布密度 OSM官网(https://www.openstreetmap.org/) 土地利用 地表覆盖 武汉大学CLCD数据集(https://zenodo.org/) 植被 归一化植被指数 国家青藏高原科学数据中心(https://data.tpda.ac.cn/home ) 表 3 AUC评价标准
Table 3 AUC evaluation criteria
AUC值 精度评价 [0, 0.6) 很差 [0.6, 0.7) 较差 [0.7, 0.8) 一般 [0.8, 0.9) 好 [0.9, 1] 极好 表 4 滑坡灾害主要影响因子贡献率和置换重要性
Table 4 Contribution rates and permutation importance of main disaster-causing factors of landslides
序号 因子 贡献率/% 置换重要性/% 1 距断裂带距离 39 48.3 2 高程 38.1 45.1 3 人口分布 17.8 1.4 4 土壤质地 1.3 1.3 5 距河流距离 1.2 2.4 6 归一化植被指数 0.8 0.6 7 坡度 0.8 0.1 8 距道路距离 0.6 0.5 9 坡向 0.3 0.2 10 地形湿度指数 0.1 0 11 土地利用 0 0 12 平面曲率 0 0 13 剖面曲率 0 0 14 曲率 0 0 表 5 不同地震烈度区的危险性等级面积百分比统计
Table 5 Area percentage of different risk grades in various seismic intensity zones
地震烈度 极高危险/% 高危险/% 中危险/% 低危险/% 极低危险/% Ⅷ区 6.91 19.47 28.82 11.76 33.05 Ⅶ区 1.80 5.95 16.92 16.12 59.21 Ⅵ区 0.03 0.23 2.19 6.15 91.40 -
[1] 中国地震台网中心. 12月18日23时59分在甘肃省临夏州积石山县发生6.2级地震[EB/OL]. [2023-12-27]. https://www.cenc.ac.cn/cenc/dzxx/409064/index.html. [China Earthquake Networks Center. A magnitude 6.2 earthquake struck Jishishan County, Linxia Prefecture, Gansu Province at 23:59 on December 18[EB/OL]. [2023-12-27]. https://www.cenc.ac.cn/cenc/dzxx/409064/index.html.] China Earthquake Networks Center. A magnitude 6.2 earthquake struck Jishishan County, Linxia Prefecture, Gansu Province at 23:59 on December 18[EB/OL]. [2023-12-27]. https://www.cenc.ac.cn/cenc/dzxx/409064/index.html.
[2] 王勤彩,罗钧,陈翰林,等. 2023年12月18日甘肃积石山6.2级地震震源机制解[J]. 地震,2024,44(1):185 − 188. [WANG Qincai,LUO Jun,CHEN Hanlin,et al. Focal mechanism for the December 18,2023,Jishishan Ms6.2 earthquake in Gansu Province[J]. Earthquake,2024,44(1):185 − 188. (in Chinese with English abstract)] WANG Qincai, LUO Jun, CHEN Hanlin, et al. Focal mechanism for the December 18, 2023, Jishishan Ms6.2 earthquake in Gansu Province[J]. Earthquake, 2024, 44(1): 185 − 188. (in Chinese with English abstract)
[3] 许强,黄润秋. “5•12”汶川大地震诱发大型崩滑灾害动力特征初探[C]//中国岩石力学与工程学会. 汶川大地震工程震害调查分析与研究,北京:科学出版社,2009:8. [XU Qiang,HUANG Runqiu. A preliminary study of the dynamic characteristics of large-scale landslide disasters induced by the “5•12” Wenchuan earthquake[C]//China Society of Rock Mechanics and Engineering. The Wenchuan earthquake engineering seismic damage investigation and research,Beijing:Science Press,2009:8. (in Chinese with English abstract)] XU Qiang, HUANG Runqiu. A preliminary study of the dynamic characteristics of large-scale landslide disasters induced by the “5•12” Wenchuan earthquake[C]//China Society of Rock Mechanics and Engineering. The Wenchuan earthquake engineering seismic damage investigation and research, Beijing: Science Press, 2009: 8. (in Chinese with English abstract)
[4] 刘俊来,张进江,张培震. 中国构造地质学发展:百年回顾与展望[J]. 地质学报,2022,96(10):3283 − 3296. [LIU Junlai,ZHANG Jinjiang,ZHANG Peizhen. Structural geology development in China:One hundred years[J]. Acta Geologica Sinica,2022,96(10):3283 − 3296. (in Chinese with English abstract)] LIU Junlai, ZHANG Jinjiang, ZHANG Peizhen. Structural geology development in China: One hundred years[J]. Acta Geologica Sinica, 2022, 96(10): 3283 − 3296. (in Chinese with English abstract)
[5] 李振洪,朱武,余琛,等. 影像大地测量学发展现状与趋势[J]. 测绘学报,2023,52(11):1805 − 1834. [LI Zhenhong,ZHU Wu,YU Chen,et al. Development status and trends of imaging geodesy[J]. Acta Geodaetica et Cartographica Sinica,2023,52(11):1805 − 1834. (in Chinese with English abstract)] LI Zhenhong, ZHU Wu, YU Chen, et al. Development status and trends of imaging geodesy[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(11): 1805 − 1834. (in Chinese with English abstract)
[6] 黄润秋. 汶川8.0级地震触发崩滑灾害机制及其地质力学模式[J]. 岩石力学与工程学报,2009,28(6):1239 − 1249. [HUANG Runqiu. Mechanism and geomechanical modes of landslide hazards triggered by Wenchuan 8.0 earthquake[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(6):1239 − 1249. (in Chinese with English abstract)] HUANG Runqiu. Mechanism and geomechanical modes of landslide hazards triggered by Wenchuan 8.0 earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(6): 1239 − 1249. (in Chinese with English abstract)
[7] 柴贺军,刘汉超,张倬元. 中国滑坡堵江事件目录[J]. 地质灾害与环境保护,1995,6(4):1 − 9. [CHAI Hejun,LIU Hanchao,ZHANG Zhuoyuan. The catalog of Chinese landslide dam events[J]. Journal of Geological Hazards and Environment Preservation,1995,6(4):1 − 9. (in Chinese with English abstract)] CHAI Hejun, LIU Hanchao, ZHANG Zhuoyuan. The catalog of Chinese landslide dam events[J]. Journal of Geological Hazards and Environment Preservation, 1995, 6(4): 1 − 9. (in Chinese with English abstract)
[8] 许冲,戴福初,肖建章. “5•12” 汶川地震诱发滑坡特征参数统计分析[J]. 自然灾害学报,2011,20(4):147 − 153. [XU Chong,DAI Fuchu,XIAO Jianzhang. Statistical analysis of characteristic parameters of landslides triggered by May 12,2008 Wenchuan earthquake[J]. Journal of Natural Disasters,2011,20(4):147 − 153. (in Chinese with English abstract)] XU Chong, DAI Fuchu, XIAO Jianzhang. Statistical analysis of characteristic parameters of landslides triggered by May 12, 2008 Wenchuan earthquake[J]. Journal of Natural Disasters, 2011, 20(4): 147 − 153. (in Chinese with English abstract)
[9] 陶和平,刘斌涛,刘淑珍,等. 遥感在重大自然灾害监测中的应用前景——以5•12汶川地震为例[J]. 山地学报,2008,26(3):276 − 279. [TAO Heping,LIU Bintao,LIU Shuzhen,et al. Natural hazards monitoring using remote sensing:A case study of 5•12 Wenchuan earthquake[J]. Mountain Research,2008,26(3):276 − 279. (in Chinese with English abstract)] TAO Heping, LIU Bintao, LIU Shuzhen, et al. Natural hazards monitoring using remote sensing: A case study of 5•12 Wenchuan earthquake[J]. Mountain Research, 2008, 26(3): 276 − 279. (in Chinese with English abstract)
[10] 许冲,徐锡伟,戴福初,等. 2010年4月14日玉树地震滑坡空间分布与控制变量分析[J]. 工程地质学报,2011,19(4):505 − 510. [XU Chong,XU Xiwei,DAI Fuchu,et al. Analysis of spatial distribution and controlling parameters of landslides triggered by the April 14,2010 Yushu earthquake[J]. Journal of Engineering Geology,2011,19(4):505 − 510. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1004-9665.2011.04.011 XU Chong, XU Xiwei, DAI Fuchu, et al. Analysis of spatial distribution and controlling parameters of landslides triggered by the April 14, 2010 Yushu earthquake[J]. Journal of Engineering Geology, 2011, 19(4): 505 − 510. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2011.04.011
[11] NIU Quanfu,CHENG Weiming,LIU Yong,et al. Risk assessment of secondary geological disasters induced by the Yushu earthquake[J]. Journal of Mountain Science,2012,9(2):232 − 242. DOI: 10.1007/s11629-012-2076-4
[12] 和海霞,李素菊,刘明,等. 云南鲁甸6.5级地震灾区滑坡分布特征研判分析[J]. 灾害学,2016,31(1):92 − 95. [HE Haixia,LI Suju,LIU Ming,et al. Research on landslide spatial distribution in Ludian earthquake disaster area[J]. Journal of Catastrophology,2016,31(1):92 − 95. (in Chinese with English abstract)] HE Haixia, LI Suju, LIU Ming, et al. Research on landslide spatial distribution in Ludian earthquake disaster area[J]. Journal of Catastrophology, 2016, 31(1): 92 − 95. (in Chinese with English abstract)
[13] 梁昌健. 四川九寨沟Ms7.0级地震的发震构造及成因机制分析[D]. 成都:成都理工大学,2019. [LIANG Changjian. Analysis of seismogenic structure and genetic mechanism of Jiuzhaigou earthquake with Ms7.0 in Sichuan Province[D]. Chengdu:Chengdu University of Technology,2019. (in Chinese with English abstract)] LIANG Changjian. Analysis of seismogenic structure and genetic mechanism of Jiuzhaigou earthquake with Ms7.0 in Sichuan Province[D]. Chengdu: Chengdu University of Technology, 2019. (in Chinese with English abstract)
[14] 徐浪,陈强,吴远昆,等. 2022年泸定Mw6.7地震滑动模型及地震风险性评估[J]. 大地测量与地球动力学,2024,44(5):473 − 478. [XU Lang,CHEN Qiang,WU Yuankun,et al. Coseismic slip model of the 2022 Luding Mw6.7 earthquake and seismic risk assessment[J]. Journal of Geodesy and Geodynamics,2024,44(5):473 − 478. (in Chinese with English abstract)] XU Lang, CHEN Qiang, WU Yuankun, et al. Coseismic slip model of the 2022 Luding Mw6.7 earthquake and seismic risk assessment[J]. Journal of Geodesy and Geodynamics, 2024, 44(5): 473 − 478. (in Chinese with English abstract)
[15] 铁永波,张宪政,曹佳文,等. 积石山Ms6.2级和泸定Ms6.8级地震地质灾害发育规律对比[J]. 成都理工大学学报(自然科学版),2024,51(1):9 − 21. [TIE Yongbo,ZHANG Xianzheng,CAO Jiawen,et al. Comparative research of the characteristics of geological hazards induced by the Jishishan(Ms6.2) and Luding(Ms6.8) earthquakes[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2024,51(1):9 − 21. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-9727.2024.01.02 TIE Yongbo, ZHANG Xianzheng, CAO Jiawen, et al. Comparative research of the characteristics of geological hazards induced by the Jishishan(Ms6.2) and Luding(Ms6.8) earthquakes[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2024, 51(1): 9 − 21. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-9727.2024.01.02
[16] 杜源,王纯,张勤,等. 顾及黄土滑坡灾害状态特征的实时GNSS滤波算法[J]. 武汉大学学报(信息科学版),2023,48(7):1216 − 1222. [DU Yuan,WANG Chun,ZHANG Qin,et al. Real-time GNSS filtering algorithm considering state characteristics of loess landslide hazards[J]. Geomatics and Information Science of Wuhan University,2023,48(7):1216 − 1222. (in Chinese with English abstract)] DU Yuan, WANG Chun, ZHANG Qin, et al. Real-time GNSS filtering algorithm considering state characteristics of loess landslide hazards[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1216 − 1222. (in Chinese with English abstract)
[17] 黄观文,景策,李东旭,等. 甘肃积石山6.2级地震对滑坡易发区的变形影响分析[J/OL]. 武汉大学学报(信息科学版) [2024-01-09](2024-05-08). https://doi.org/10.13203/j.whugis20230490. [HUANG Guanwen,JING Ce,LI Dongxu,et al. Analysis of deformation impacts on landslide-prone areas by the magnitude 6.2 earthquake in Jishishan,Gansu[J/OL]. Geomatics and Information Science of Wuhan University. [2024-01-09](2024-05-08). https://doi.org/10.13203/j.whugis20230490. (in Chinese with English abstract)] HUANG Guanwen, JING Ce, LI Dongxu, et al. Analysis of deformation impacts on landslide-prone areas by the magnitude 6.2 earthquake in Jishishan, Gansu[J/OL]. Geomatics and Information Science of Wuhan University. [2024-01-09](2024-05-08). https://doi.org/10.13203/j.whugis20230490. (in Chinese with English abstract)
[18] 于开宁,吴涛,魏爱华,等. 基于AHP-突变理论组合模型的地质灾害危险性评价——以河北平山县为例[J]. 中国地质灾害与防治学报,2023,34(2):146 − 155. [YU Kaining,WU Tao,WEI Aihua,et al. Geological hazard assessment based on the models of AHP,catastrophe theory and their combination:A case study in Pingshan County of Hebei Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(2):146 − 155. (in Chinese with English abstract)] YU Kaining, WU Tao, WEI Aihua, et al. Geological hazard assessment based on the models of AHP, catastrophe theory and their combination: A case study in Pingshan County of Hebei Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(2): 146 − 155. (in Chinese with English abstract)
[19] 牛全福,冯尊斌,张映雪,等. 基于GIS的兰州地区滑坡灾害孕灾环境敏感性评价[J]. 灾害学,2017,32(3):29 − 35. [NIU Quanfu,FENG Zunbin,ZHANG Yingxue,et al. Susceptibility assessment of disaster environment for landslide hazard based on GIS in Lanzhou area[J]. Journal of Catastrophology,2017,32(3):29 − 35. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-811X.2017.03.006 NIU Quanfu, FENG Zunbin, ZHANG Yingxue, et al. Susceptibility assessment of disaster environment for landslide hazard based on GIS in Lanzhou area[J]. Journal of Catastrophology, 2017, 32(3): 29 − 35. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-811X.2017.03.006
[20] 杨得虎,朱杰勇,刘帅,等. 基于信息量、加权信息量与逻辑回归耦合模型的云南罗平县崩滑灾害易发性评价对比分析[J]. 中国地质灾害与防治学报,2023,34(5):43 − 53. [YANG Dehu,ZHU Jieyong,LIU Shuai,et al. Comparative analyses of susceptibility assessment for landslide disasters based on information value,weighted information value and logistic regression coupled model in Luoping County,Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(5):43 − 53. (in Chinese with English abstract)] YANG Dehu, ZHU Jieyong, LIU Shuai, et al. Comparative analyses of susceptibility assessment for landslide disasters based on information value, weighted information value and logistic regression coupled model in Luoping County, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(5): 43 − 53. (in Chinese with English abstract)
[21] 朱吉祥,张礼中,周小元,等. 基于信息熵的灰色模型在地质灾害评价中的应用——以四川青川县为例[J]. 灾害学,2012,27(1):78 − 82. [ZHU Jixiang,ZHANG Lizhong,ZHOU Xiaoyuan,et al. Application of entropy-based grey model in geological hazard assessment:A case study of Qingchuan County,Sichuan Province[J]. Journal of Catastrophology,2012,27(1):78 − 82. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-811X.2012.01.016 ZHU Jixiang, ZHANG Lizhong, ZHOU Xiaoyuan, et al. Application of entropy-based grey model in geological hazard assessment: A case study of Qingchuan County, Sichuan Province[J]. Journal of Catastrophology, 2012, 27(1): 78 − 82. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-811X.2012.01.016
[22] SHAHINUZZAMAN M,HAQUE M N,SHAHID S. Delineation of groundwater potential zones using a parsimonious concept based on catastrophe theory and analytical hierarchy process[J]. Hydrogeology Journal,2021,29(3):1091 − 1116. DOI: 10.1007/s10040-021-02322-2
[23] 王立朝,侯圣山,董英,等. 甘肃积石山Ms6.2级地震的同震地质灾害基本特征及风险防控建议[J]. 中国地质灾害与防治学报,2024,35(3):108 − 118. [WANG Lichao,HOU Shengshan,DONG Ying,et al. Basic characteristics of co-seismic geological hazards induced by Jishishan Ms6.2 earthquake and suggestions for their risk control[J]. The Chinese Journal of Geological Hazard and Control,2024,35(3):108 − 118. (in Chinese with English abstract)] WANG Lichao, HOU Shengshan, DONG Ying, et al. Basic characteristics of co-seismic geological hazards induced by Jishishan Ms6.2 earthquake and suggestions for their risk control[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 108 − 118. (in Chinese with English abstract)
[24] 郭富赟,张永军,窦晓东,等. 甘肃积石山Ms 6.2地震次生地质灾害分布规律与发育特征[J]. 兰州大学学报(自然科学版),2024,60(1):6 − 12. [GUO Fuyun,ZHANG Yongjun,DOU Xiaodong,et al. Distribution patterns and development characteristics of secondary geological hazards caused by the Ms 6.2 earthquake in Jishishan,Gansu[J]. Journal of Lanzhou University (Natural Sciences),2024,60(1):6 − 12. (in Chinese with English abstract)] GUO Fuyun, ZHANG Yongjun, DOU Xiaodong, et al. Distribution patterns and development characteristics of secondary geological hazards caused by the Ms 6.2 earthquake in Jishishan, Gansu[J]. Journal of Lanzhou University (Natural Sciences), 2024, 60(1): 6 − 12. (in Chinese with English abstract)
[25] 陈博,宋闯,陈毅,等. 2023年甘肃积石山Ms6.2地震同震滑坡和建筑物损毁情况应急识别与影响因素研究[J/OL]. 武汉大学学报(信息科学版)[2024-01-09](2024-05-08). https://doi.org/10.13203/J.whugis20. [CHEN Bo,SONG Chuang,CHEN Yi,et al. Study on contingency identification and influencing factors for co-seismic landslides and building damage in the 2023 Gansu Jishishan Ms6.2 earthquake[J/OL]. Geomatics and Information Science of Wuhan University [2024-01-09](2024-05-08). https://doi.org/10.13203/J.whugis20. (in Chinese with English abstract)] CHEN Bo, SONG Chuang, CHEN Yi, et al. Study on contingency identification and influencing factors for co-seismic landslides and building damage in the 2023 Gansu Jishishan Ms6.2 earthquake[J/OL]. Geomatics and Information Science of Wuhan University [2024-01-09](2024-05-08). https://doi.org/10.13203/J.whugis20. (in Chinese with English abstract)
[26] 王浩,牛全福,刘博,等. 基于MaxEnt结合粒子群优化的陇南市山洪灾害空间分布预测研究[J/OL]. 武汉大学学报(信息科学版),2023. [2023-10-20](2024-05-08). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=WHCH20231018002&dbname=CJFD&dbcode=CJFQ. [WANG Hao,NIU Quanfu,LIU Bo,et al. Study on spatial distribution prediction of mountain torrents in Longnan city based on MaxEnt combined with particle swarm optimization[J/OL]. China Industrial Economics,2023. [2023-10-20](2024-05-08) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=WHCH20231018002&dbname=CJFD&dbcode=CJFQ. (in Chinese with English abstract)] WANG Hao, NIU Quanfu, LIU Bo, et al. Study on spatial distribution prediction of mountain torrents in Longnan city based on MaxEnt combined with particle swarm optimization[J/OL]. China Industrial Economics, 2023. [2023-10-20](2024-05-08) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=WHCH20231018002&dbname=CJFD&dbcode=CJFQ. (in Chinese with English abstract)
[27] 牛全福,熊超,雷姣姣,等. 基于FFPI模型的甘肃陇南山区山洪灾害风险评价[J]. 自然灾害学报,2023,32(4):36 − 47. [NIU Quanfu,XIONG Chao,LEI Jiaojiao,et al. Risk assessment of flash flood disasters in Longnan mountain area of Gansu Province based on FFPI model[J]. Journal of Natural Disasters,2023,32(4):36 − 47. (in Chinese with English abstract)] NIU Quanfu, XIONG Chao, LEI Jiaojiao, et al. Risk assessment of flash flood disasters in Longnan mountain area of Gansu Province based on FFPI model[J]. Journal of Natural Disasters, 2023, 32(4): 36 − 47. (in Chinese with English abstract)
[28] 欧阳泽怡,李志辉,欧阳硕龙,等. 基于Maxent和ArcGIS的赤皮青冈在中国的潜在适生区预测[J]. 中南林业科技大学学报,2023,43(2):19 − 26. [OUYANG Zeyi,LI Zhihui,OUYANG Shuolong,et al. Prediction of the potential distribution of Cyclobalanopsis gilva in China based on the Maxent and ArcGIS model[J]. Journal of Central South University of Forestry & Technology,2023,43(2):19 − 26. (in Chinese with English abstract)] OUYANG Zeyi, LI Zhihui, OUYANG Shuolong, et al. Prediction of the potential distribution of Cyclobalanopsis gilva in China based on the Maxent and ArcGIS model[J]. Journal of Central South University of Forestry & Technology, 2023, 43(2): 19 − 26. (in Chinese with English abstract)
[29] 姚政宇,韩其飞,林彬. 基于最大熵模型的新疆主要有毒杂草分布区预测[J]. 生态学报,2023,43(12):5096 − 5109. [YAO Zhengyu,HAN Qifei,LIN Bin. Prediction of distribution area of main noxious and miscellaneous weeds in Xinjiang based on MaxEnt model[J]. Acta Ecologica Sinica,2023,43(12):5096 − 5109. (in Chinese with English abstract)] YAO Zhengyu, HAN Qifei, LIN Bin. Prediction of distribution area of main noxious and miscellaneous weeds in Xinjiang based on MaxEnt model[J]. Acta Ecologica Sinica, 2023, 43(12): 5096 − 5109. (in Chinese with English abstract)
[30] 刘明明,刘丹丹,芦星,等. 基于MaxEnt模型的新疆地区钝缘蜱适生区分布研究[J]. 中国媒介生物学及控制杂志,2023,34(5):671 − 678. [LIU Mingming,LIU Dandan,LU Xing,et al. MaxEnt model-based analysis of distribution of suitable habitats of Ornithodoros ticks in Xinjiang Uygur Autonomous Region,China[J]. Chinese Journal of Vector Biology and Control,2023,34(5):671 − 678. (in Chinese with English abstract)] DOI: 10.11853/j.issn.1003.8280.2023.05.015 LIU Mingming, LIU Dandan, LU Xing, et al. MaxEnt model-based analysis of distribution of suitable habitats of Ornithodoros ticks in Xinjiang Uygur Autonomous Region, China[J]. Chinese Journal of Vector Biology and Control, 2023, 34(5): 671 − 678. (in Chinese with English abstract) DOI: 10.11853/j.issn.1003.8280.2023.05.015
[31] 牛全福,冯尊斌,党星海,等. 黄土区滑坡研究中地形因子的选取与适宜性分析[J]. 地球信息科学学报,2017,19(12):1584 − 1592. [NIU Quanfu,FENG Zunbin,DANG Xinghai,et al. Suitability analysis of topographic factors in loess landslide research[J]. Journal of Geo-Information Science,2017,19(12):1584 − 1592. (in Chinese with English abstract)] NIU Quanfu, FENG Zunbin, DANG Xinghai, et al. Suitability analysis of topographic factors in loess landslide research[J]. Journal of Geo-Information Science, 2017, 19(12): 1584 − 1592. (in Chinese with English abstract)
[32] 王晓帆,段雨萱,金露露,等. 基于优化的最大熵模型预测中国高山栎组植物的历史、现状与未来分布变化[J]. 生态学报,2023,43(16):6590 − 6604. [WANG Xiaofan,DUAN Yuxuan,JIN Lulu,et al. Prediction of historical,present and future distribution of Quercus sect. Heterobalanus based on the optimized MaxEnt model in China[J]. Acta Ecologica Sinica,2023,43(16):6590 − 6604. (in Chinese with English abstract)] WANG Xiaofan, DUAN Yuxuan, JIN Lulu, et al. Prediction of historical, present and future distribution of Quercus sect. Heterobalanus based on the optimized MaxEnt model in China[J]. Acta Ecologica Sinica, 2023, 43(16): 6590 − 6604. (in Chinese with English abstract)
[33] 何学高,刘欢,张婧,等. 基于优化的MaxEnt模型预测青海省祁连圆柏潜在分布区[J]. 北京林业大学学报,2023,45(12):19 − 31. [HE Xuegao,LIU Huan,ZHANG Jing,et al. Predicting potential suitable distribution areas for Juniperus przewalskii in Qinghai Province of northwestern China based on the optimized MaxEnt model[J]. Journal of Beijing Forestry University,2023,45(12):19 − 31. (in Chinese with English abstract)] HE Xuegao, LIU Huan, ZHANG Jing, et al. Predicting potential suitable distribution areas for Juniperus przewalskii in Qinghai Province of northwestern China based on the optimized MaxEnt model[J]. Journal of Beijing Forestry University, 2023, 45(12): 19 − 31. (in Chinese with English abstract)
[34] 刘怡彤,郭慧,裴顺祥,等. 基于MaxEnt模型的天然元宝枫在我国的适生区区划及合理性分析[J]. 林业科学,2023,59(12):13 − 24. [LIU Yitong,GUO Hui,PEI Shunxiang,et al. Regionalization and rationality analysis of natural acer truncatum in China based on MaxEnt model[J]. Scientia Silvae Sinicae,2023,59(12):13 − 24. (in Chinese with English abstract)] DOI: 10.11707/j.1001-7488.LYKX20210823 LIU Yitong, GUO Hui, PEI Shunxiang, et al. Regionalization and rationality analysis of natural acer truncatum in China based on MaxEnt model[J]. Scientia Silvae Sinicae, 2023, 59(12): 13 − 24. (in Chinese with English abstract) DOI: 10.11707/j.1001-7488.LYKX20210823
[35] 周安晟,成彦丽,陈鸿,等. 基于MaxEnt模型预测含笑在中国的潜在适生区[J]. 安徽科技学院学报,2023,37(6):19 − 27. [ZHOU Ansheng,CHENG Yanli,CHEN Hong,et al. Prediction of potential suitable areas of Michelia figo in China based on MaxEnt model[J]. Journal of Anhui Science and Technology University,2023,37(6):19 − 27. (in Chinese with English abstract)] ZHOU Ansheng, CHENG Yanli, CHEN Hong, et al. Prediction of potential suitable areas of Michelia figo in China based on MaxEnt model[J]. Journal of Anhui Science and Technology University, 2023, 37(6): 19 − 27. (in Chinese with English abstract)
[36] 黄煜,谢婉丽,刘琦琦,等. 基于GIS与MaxEnt模型的滑坡易发性评价——以铜川市中部城区为例[J]. 西北地质,2023,56(1):266 − 275. [HUANG Yu,XIE Wanli,LIU Qiqi,et al. Landslide susceptibility assessment based on GIS and MaxEnt model:Example from central districts in Tongchuan City[J]. Northwestern Geology,2023,56(1):266 − 275. (in Chinese with English abstract)] HUANG Yu, XIE Wanli, LIU Qiqi, et al. Landslide susceptibility assessment based on GIS and MaxEnt model: Example from central districts in Tongchuan City[J]. Northwestern Geology, 2023, 56(1): 266 − 275. (in Chinese with English abstract)
[37] 王兰民,许世阳,王平,等. 2023年积石山6.2级地震诱发大规模黄土液化流滑的特征与启示[J]. 岩土工程学报,2024,46(2):235 − 243. [WANG Lanmin,XU Shiyang,WANG Ping,et al. Characteristics and lessons of liquefaction-triggered large-scale flow slide in loess deposit during Jishishan M6.2 earthquake in 2023[J]. Chinese Journal of Geotechnical Engineering,2024,46(2):235 − 243. (in Chinese with English abstract)] WANG Lanmin, XU Shiyang, WANG Ping, et al. Characteristics and lessons of liquefaction-triggered large-scale flow slide in loess deposit during Jishishan M6.2 earthquake in 2023[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 235 − 243. (in Chinese with English abstract)
[38] NIU Quanfu,DANG Xinghai,LI Yuefeng,et al. Suitability analysis for topographic factors in loess landslide research:A case study of Gangu County,China[J]. Environmental Earth Sciences,2018,77(7):294. DOI: 10.1007/s12665-018-7462-y