Evaluation of freeze-thaw wind erosion and analysis of influencing factors on the Tibetan Plateau based on the improved RWEQ
-
摘要:
冻融风蚀是指气温变化导致地表结构发生变化的过程,对地表地貌的形成和土壤的性质产生重要影响。然而,青藏高原地区的特殊性和复杂性使得冻融风蚀研究尚未得到广泛关注。针对青藏高原冻融风蚀定量化分析研究相对较少,本文采用引入冻结N因子的修正风蚀方程模型(Revised Wind Erosion Equation,RWEQ),分析2022年青藏高原冻融风蚀量的分布特征,并对青藏高原进行冻融风蚀强度分级。结果表明:①青藏高原冻融风蚀模数为8.90×108~4.95×105 (t·km−2·a−1),冻融风蚀总量为2.87×1013 t,冻融风蚀总面积2.41×106 km2;②青藏高原轻度以上冻融风蚀占全部冻融风蚀面积的84.26%,说明青藏高原冻融风蚀以轻微和轻度为主;③5个因子的显著性检验结果均为显著,对青藏高原冻融风蚀模数影响程度排序为气象因子>土壤结皮因子>土壤可蚀性因子>地表粗糙度因子>植被覆盖度因子。本研究不仅为青藏高原地区的环境保护和可持续发展提供了基础资料和实践参考,而且通过模型的应用,还为其他具有类似气候和地理特征的地区在冻融风蚀研究方面提供了多元方法和经验。
Abstract:Freeze-thaw wind erosion refers to the process in which temperature fluctuations cause changes in the surface structure, significantly impacting on the formation of surface landform and soil properties. However, due to the particularity and complexity of the Tibetan Plateau, the study of freeze-thaw wind erosion has not received widespread attention. Due to the relative scarcity of quantitative studies on the freeze-thaw wind erosion on the Tibetan Plateau, this study utilizes a Revised Wind Erosion Equation (RWEQ) that incorporates a freezing N-factor to analyze the distribution characteristics of freeze-thaw wind erosion on the Tibetan Plateau in 2022. The study also categorizes the intensity of freeze-thaw wind erosion across the Tibetan Plateau. The results indicate: (1) The freeze-thaw wind erosion modulus on the Qinghai- Tibet Plateau ranges from 8.90×108 to 4.95×105 (t·km−2·a−1), with a total erosion amount of 2.87×1013 t and a total affected area of 2.41×10 km2; (2) Moderate or greater freeze-thaw wind erosion accounts for 84.26% of the total affected area, indicating that light and mild erosion are predominant. (3) The significance tests of the five factors were all significant, and the influence of the freezing-thawing wind erosion modulus on the Qinghai-Tibet Plateau was ranked as meteorological factors > soil crust factors > soil erodibility factors > surface roughness factors>vegetation coverage factors. This study not only provides foundational data and practical references for environmental protection and sustainable development in the Qinghai-Tibet Plateau, but also offers a diverse range of methods and experiences for studying freeze-thaw wind erosion in other regions with similar climatic and geographical characteristics through the application of the model.
-
0. 引言
强降雨作用下,山地丘陵区极易发生山洪、崩塌、滑坡、泥石流等地质灾害,并且可能阻断河流,形成堰塞湖,威胁堰塞体上下游人民生命财产安全[1 − 3]。据统计,近年来我国地质灾害造成的年死亡人数达200~400人[4]。山地丘陵地区由降雨引发的滑坡、泥石流灾害频发,造成严重的人员伤亡和经济财产损失[5]。在自然降雨条件下,山区中堆积的松散土体会在强降雨作用下诱发滑坡和泥石流灾害。大体积滑坡和泥石流汇入江河后,极易堵塞河道形成堰塞坝,壅高上游水位,堰塞坝一旦溃决将在下游造成巨大的洪水灾害,形成滑坡/泥石流-堰塞湖-溃决洪水灾害链[6 − 8]。
降雨是滑坡/泥石流-堰塞湖-溃决洪水灾害链的主要诱发因素,尤其是强度大、持续时间长的降雨往往是引发滑坡/泥石流-堰塞湖-溃决洪水灾害链的关键控制因素[9 − 11]。通过降雨试验揭示降雨诱发滑坡/泥石流-堰塞湖-溃决洪水灾害链的机理对防灾减灾工作具有重要意义。目前,众多学者采用物理模型试验揭示降雨诱发地质灾害的机理,王如宾等[12]基于人工模拟降雨室内大型滑坡模型试验,揭示了降雨诱发滑坡变形破坏机理。胡华等[13]设计了降雨滑坡模拟试验,研究了降雨强度和斜坡坡度对滑塌破坏的影响。部分学者通过现场试验来揭示降雨诱发地质灾害的机理,谭建民等[14]开展了降雨边坡破坏现场试验,探究了降雨作用下花岗岩风化土坡的失稳机制。周中等[15]综合通过人工降雨模拟试验和原位综合监测手段,探究了降雨条件下土石混合体滑坡的失稳机理。王刚等[16]开展降雨型滑坡现场试验研究,探究了不同雨强条件下天然黄土边坡的入渗规律及变形破坏模式。詹良通等[17]对非饱和膨胀土进行了降雨试验和原位监测,揭示了降雨入渗对边坡失稳的影响。综上可知,目前在利用模型试验和现场试验揭示降雨滑坡诱发机理方面已经开展了大量研究,取得了一些新的认识,但是,室内模型试验存在尺寸效应,难以还原灾害的真实情况,而现有现场试验多不是在灾害现场开展的原位试验。因此,在灾害现场开展原位试验对进一步探究降雨诱发滑坡、泥石流灾害机理至关重要。
本文选取2020年发生在四川省凉山州甘洛县黑西洛沟的山洪-滑坡-泥石流-堰塞湖灾害链残留边坡开展现场人工降雨试验,综合利用三维激光扫描仪、孔隙水压力计、土壤含水率传感器、EDS能谱分析等多种设备和方法,探究降雨诱发该处滑坡的机理,以期为当地的防灾减灾提供有益借鉴。
1. 灾害概况
黑西洛沟位于四川省凉山州甘洛县,为尼日河右侧的一条小山沟,长度约5 km。经现场调查,沟道两侧松散物源分布广泛,植被不发育。在非汛期,沟内仅有较小溪流流出,在枯水季节沟内偶尔断流。2020年8月31日上午8时,在持续的降雨作用下,黑西洛沟内发生了山洪-滑坡-泥石流-堰塞湖灾害链。灾害发生时,黑西洛沟内原有松散物源被山洪裹挟带走,并在运移过程中不断铲刮沟道底部物源,导致沟边两侧边坡失稳,逐渐演变为滑坡灾害。沟内通道不断下切过程中,两侧岸坡持续垮塌,崩塌体进入沟道后,滑坡规模急速扩大,最终演变为泥石流灾害。大量泥石流物源几乎呈垂直状态冲入尼日河,形成堰塞坝,堵塞尼日河,如图1(a)所示。经现场测量,形成的堰塞坝沿河道纵向方向长度约200 m,顺河向长度约为400 m,高度约30 m,堰塞坝体积约100×104 m3。堰塞坝自然溃决后冲毁下游场镇、村庄、学校和道路,造成阿兹觉乡一千余名群众受灾,3人失踪,黑西洛沟口的成昆铁路桥梁被冲毁,成昆铁路断道数月,堰塞坝下游的国道G245约1.2 km道路和多处桥梁被掩埋、冲毁,多栋房屋损毁,经济损失严重。堰塞坝材料在下游1 km范围内淤积,导致下游阿兹觉村挖哈组、乃牛组两个组被完全掩埋。
通过现场调查和资料收集,本次滑坡-泥石流-堰塞湖灾害链是一次典型的“小水大灾”灾害,本文聚焦该灾害链中的滑坡灾害,通过现场降雨试验和室内EDS能谱分析,以期揭示降雨作用下边坡侵蚀破坏的发生机理。
2. 现场试验
2.1 试验边坡概况
本次现场模型试验在2020年黑西洛沟灾害后的残余边坡上进行,试验边坡高度约为2.2 m,宽约2.0 m,坡长约3.0 m,天然坡度约为49°,如图1(b)所示。降雨试验前对坡面进行简单平整,清除坡面杂草、大块石等影响坡面径流和入渗的障碍物。现场筛分试验测得黑西洛沟内松散堆积体的颗粒级配曲线如图2所示[18]。
2.2 降雨及监测设备
降雨装置主要包括支架、雨水输送管道、喷头和雨量计。喷头设置在边坡顶部并延伸至坡面,喷头顶部可通过调节流量的方式模拟不同的雨强。
试验中设计了两排喷头,试验中经过多次调试,最终确定喷头间距约为0.7 m,每排喷头间距约为0.5 m,经现场观察,这一间距能够确保坡面降雨的均匀性。雨量计放置在边坡试验区,位于试验降雨区内,以实时测量坡面的降雨量,测得值能代表试验区的平均雨量,降雨试验装置如图3所示。
试验中数据采集设备包括孔隙水压力传感器、土壤含水率传感器、雨量计以及三维激光扫描仪,其中孔隙水压力传感器3个,土壤含水率传感器3个。孔隙水压力传感器量程是10 kPa,准确度误差≤0.5 F∙S,土壤含水率传感器测量范围0~100%。黑西洛沟滑坡灾害的主要原因就是堆积体浅层物源浸水后被冲出,故为了与灾害实际情况相似,本次试验所用传感器埋入边坡表层,深度为0.3 m。孔隙水压力计和土壤含水率传感器放入预挖的孔洞后,利用坡体原样土回填后进行人工夯实,保证夯实后孔内的土体与天然状态一致。边坡尺寸和传感器埋设的位置如图4所示。三维激光扫描仪立于边坡的正面,通过不同阶段的扫描,以获取降雨过程中边坡的三维地形点云数据,由此识别边坡的变形破坏过程。
2.3 降雨试验方案
根据甘洛县水利局的实测数据,本次灾害发生前后黑西洛沟临近监测站点的降雨数据如图5所示。临近监测站点位于苏雄镇,距离灾害点约500 m,本站点降雨数据可以代表真实的降雨量。灾害发生时当地已连续降雨约15 h,持续降雨导致沟内的松散物源浸水饱和,并最终被沟内山洪裹挟冲出,诱发链生的滑坡、泥石流和堰塞湖灾害,降雨是此次灾害链发生的主要诱因。为了更好地分析灾害链发生机理,试验降雨量尽量保证与灾害实际情况相符。受现场试验条件限制,经雨量计实测,此次现场试验共计降雨量为28 mm,降雨历时150 min,小时降雨量为11.2mm,试验小时降雨量与灾害发生时的降雨量接近,如图5所示。
3. 试验结果分析
本研究通过对试验数据的分析,揭示降雨条件下黑西洛沟内残余边坡内部的孔隙水压力和土壤含水率变化规律,同时通过三维激光扫描仪精准识别边坡表面的变形破坏过程。
3.1 孔隙水压力监测结果分析
根据现场监测结果,得出降雨过程中边坡内孔隙水压力随降雨历时的变化规律,如图6所示。
由图6可知,边坡体内孔隙水压力的变化过程大致可分为三个阶段:加速上升、下降和趋于稳定。降雨初期,雨水未入渗至坡体内部,孔隙水压力传感器监测数据未发生明显变化。随着降雨的持续进行,雨水在入渗过程中逐渐汇聚在坡面,形成坡面径流和坡内渗流,导致孔隙水压力开始变化,其中A1和A3孔隙水压力传感器在40 min至50 min陡然增加,边坡表面出现冲刷痕迹。继续降雨,边坡表面产生拉裂缝,雨水通过裂缝
不断渗入坡体内部,孔隙水压力持续上升,致使边坡的抗剪强度由于有效应力的减少而降低。降雨后期,边坡表面出现局部塌陷,坡体内部渗透路径发生变化,导致孔隙水压力开始下降。
降雨35~50 min时间段内,A1和A3传感器的孔隙水压力开始增加,坡面有明显的降雨冲蚀痕迹。继续降雨,A1和A3传感器的数据持续上升。降雨65 min后,A2孔隙水压力传感器才开始快速增加,并且此位置的含水率传感器也有明显响应,含水率曲线开始发生变化,土体的含水率开始逐渐上升,含水率和孔隙水压力变化一致。此时坡面的雨水冲蚀痕迹加深,侵蚀破坏范围扩大,土体颗粒被水流带走堆积在坡脚,整个坡面有明显的冲刷破坏。继续进行降雨,边坡土体开裂,雨水沿着拉裂缝进入坡体内部,孔隙水软化了边坡土体,土体有效应力减少,边坡稳定性下降,坡面产生了明显的局部塌陷,内部渗流场发生变化,孔隙水压力开始下降,直至不再改变。
不同位置的孔隙水压力传感器变化有明显差异,原因是,A3传感器位于坡顶,A1传感器位于边坡中部,降雨过程中,A1传感器由于受到降雨入渗和上部土体水分沿拉裂缝入渗的补给,上升速度更快,孔隙水压力相较更大。A2孔隙水压力传感器数据明显滞后,因为该传感器周围有无法清理的大块石,降雨过程中,雨水流经坡面,块石改变了雨水的渗流路径,导致其渗透速度变慢。
3.2 土壤含水率监测结果分析
持续降雨条件下边坡不同位置的土壤含水率变化规律如图7所示。
由图7可知,降雨过程中,含水率持续增大,并最终趋于稳定。土体含水率随降雨历时共经历3个变化阶段:基本不变、加速增大和保持稳定。在降雨初期,边坡雨水入渗量较少,各个监测点的土壤含水率均无明显变化,坡体处在基本稳定状态。随着降雨历时的增加,雨水逐渐从坡面向
坡体内部渗透,土壤含水率开始增加,降雨入渗使得土体由非饱和状态向饱和状态过渡,坡面土体遇水软化,强度降低,表面出现多处裂缝,在土体内部形成渗流通道,B2和B3位置的土壤含水率处于快速增长阶段,降雨后期,B1传感器才有明显的变化,最后土壤含水率都保持平稳状态。出现这种现象的原因是,雨水流经坡体表面,表层土体被冲刷而流失,水分子与土粒在表面形成阻碍入渗的结合水膜,土体内部气体无法排出,使得雨水难以下渗,边坡内的水分保持平衡,土壤含水率达到稳定,但此时边坡土体并未达到饱和状态。
土壤含水率明显变化的这段时间内,含水率传感器埋设位置的孔隙水压力也在迅速上升。降雨50 min左右,雨水流过坡面形成冲沟,坡面产生侵蚀破坏,如图8(a)所示。B3土壤含水率传感器开始快速增加,此时该位置的孔隙水压力也处在快速上升阶段,土体抗侵蚀性下降,坡体表面出现雨水冲蚀痕迹,发生降雨侵蚀破坏;降雨90 min左右,B3含水率传感器达到最大值并保持不变,此时土体孔隙水压力也达到稳定值,不再改变,边坡上部土体侵蚀破坏范围扩大,土体稳定性降低。降雨后期,B1传感器才开始加速上升。整个坡面的侵蚀进一步扩大,表面出现局部塌陷,如图8(b)所示。整个降雨过程中,雨水聚集在边坡表面,流经边坡使其受到侵蚀破坏,同时在降雨过程中,坡面产生裂缝,形成渗流优势通道,更有利于雨水的入渗,使得土体含水率不断增大。
3.3 边坡破坏过程分析
降雨试验过程中的边坡坡面形态变化过程如图9所示。试验过程中,分别在持续降雨45,90,135 min三个时间点对坡面的三维形体进行扫描,获取坡面点云数据,经多期作差后,可以识别出边坡不同阶段的坡面三维形态变化,降雨过程中坡面形态变化云图如图10所示。
由图10可知,持续降雨过程中,边坡的破坏过程具体表现为:持续降雨45 min后,坡面出现了侵蚀破坏,雨水在坡面聚集,形成表面径流,带走坡体表面的松散颗粒。从边坡坡面变形云图可以看到,边坡表面有明显的冲刷区域,被冲刷掉的土体堆积在了坡脚。随着时间与累计降雨量的增大,试验边坡坡面破坏开始逐渐明显,坡面的冲刷痕迹不断加深,冲刷范围不断扩大,边坡上部土体流失,在边坡中部位置发生局部垮塌现象,如图9所示。这段时间,土体内部孔隙水压力也在迅速增大,变形破坏与孔隙水压力之间响应关系明显。降雨120 min后,如图9(b)所示,边坡前缘的冲沟逐渐加宽加深,表面出现多处拉裂缝,雨水沿着裂缝进入土体内部,边坡变形破坏范围不断扩大,此时土壤含水率陡然增加,边坡产生局部垮塌,土体内部渗透路径发生改变,孔隙水压力开始下降。持续降雨135 min后,由图10可知,边坡表面有更多的土体流失且在坡脚堆积。从坡面形态图中可以看出,位移变化的对应位置有裂缝产生和局部小范围的塌陷,雨水的冲蚀痕迹明显,坡脚堆积土体明显增多。
基于多次三维激光扫描获取的点云数据,通过计算得到本次整个降雨试验过程中边坡坡面的冲刷物源体积约为10.0 dm3。
3.4 EDS测试结果分析
为进一步揭示该残余边坡的变形破坏原因,对试验土样开展了X射线能谱分析(EDS)测试。能谱仪配合扫描电子显微镜与透射电子显微镜的
使用,可以获取土样成分的元素种类及含量,其测试结果如表1所示。
表 1 边坡物质成分组成表Table 1. Composition of slope material components元素 质量百分比/% 原子百分比/% 标准样品标签 C 8.08 12.91 C O 49.38 59.23 SiO2 Na 1.84 1.54 Albite(钠长石) Mg 0.39 0.31 MgO Al 6.96 4.95 Al2O3 Si 26.51 18.11 SiO2 K 3.72 1.82 KBr Ca 0.28 0.14 Wollastonite(硅石灰) Ti 0.36 0.14 Ti Fe 2.49 0.86 Fe 总量 100 100 由表1可知,边坡的物质成分较为复杂,主要化学成分为SiO2和Al2O3,含少量Mg、Fe、Na元素。物质组成表明边坡土体中含有伊利石和高岭石等黏土矿物,而伊利石和高岭石是影响膨胀土性质的主要矿物。膨胀土吸水膨胀,遇水崩解或软化,抗冲刷性能差。因此,含有伊利石和高岭石等黏性矿物的边坡表面极易吸水膨胀,抗冲刷能力降低,导致边坡表层土体强度急剧衰减,在降雨作用下极易冲刷破坏。
由图9可知,降雨120 min后,边坡表面出现了侵蚀破坏和局部塌陷,土体被雨水带走堆积在坡脚,整体稳定性受到影响,原因在于:非饱和膨胀土在长时间的持续降雨作用下,雨水入渗会使得浅表层土体孔隙水压力上升和吸力降低。孔隙水压力的升高会导致坡体滑动力增加,且土体的有效应力下降,边坡强度降低,边坡坡面发生侵蚀冲刷。同时吸力下降将使得土层发生膨胀,含有高岭石、伊利石等黏性矿物的边坡土体会因为吸水膨胀而软化,导致土体的抗冲刷性能下降,土颗粒之间的黏聚力随时间而降低,在重力和雨水裹挟作用下,导致边坡出现了多处拉裂缝,拉裂缝的产生使得雨水进一步入渗,雨水充满裂缝产生水压力导致边坡强度降低,加剧边坡的破坏,最终边坡坡面产生冲刷破坏和局部塌陷。
4. 结论
(1)降雨作用下,边坡土壤含水率发生明显增加;同时孔隙水压力在降雨期间也会增大,后期土体发生变形破坏,孔隙水压力开始下降。
(2)三维激光扫描结果表明:边坡表面有明显的冲刷区域且范围不断扩大,持续降雨导致边坡的抗侵蚀能力变弱,土体被雨水冲刷而流失,流失的土颗粒堆积在坡脚。整个降雨试验过程中,边坡坡面的冲刷物源体积约为10.0 dm3。
(3)EDS测试结果表明边坡土体含有伊利石和高岭石等黏性矿物,遇水后极易发生膨胀而软化,导致土体黏聚力降低,边坡抗侵蚀能力变弱,边坡产生拉裂缝,雨水充满裂缝产生水压力加剧边坡破坏,恶化了边坡稳定性,最终发生冲刷破坏和局部塌陷。
(4)试验对揭示降雨作用下边坡侵蚀破坏机理具有重要意义。降雨入渗使得边坡土体内的含水率和孔隙水压力发生波动陡增,导致土体基质吸力减小,土体软化,从而导致边坡土体强度降低是边坡发生侵蚀破坏的主要原因。
-
表 1 数据引用来源
Table 1 Data citation sources
数据 数据来源 数据精度 单位 青藏高原矢量边界 中国科学院资源环境科学与数据中心 青藏高原气象站点 中国科学院资源环境科学与数据中心 降雨数据 中国科学院资源环境科学与数据中心 日 mm 风速数据 中国科学院资源环境科学与数据中心 日 m/s 蒸散发量数据 时空三极环境大数据平台 月 mm 雪盖数据 中国科学院资源环境科学与数据中心 日 mm 地表温度数据 欧洲中期天气预报中心 日 °C 土壤数据 国家冰川冻土沙漠科学中心 土地利用数据 Zenodo平台 1km 数字高程模型数据 中国科学院资源环境科学与数据中心 1km 归一化植被指数 地球资源数据云平台 年 表 2 青藏高原冻融风蚀强度分级
Table 2 Classification of freeze-thaw wind erosion intensity on the Tibetan Plateau
等级 轻微 轻度 中度 强烈 极强烈 剧烈 分级标准
/(t·km−2·a−1)<2 2~25 25~50 50~80 80~150 >150 分布面积/km2 1388638 645200 149399 111901 74017 44472 面积占比/% 57.53% 26.73% 6.19% 4.64% 3.07% 1.84% 表 3 137Cs核素示踪实验值与模型模拟值对比
Table 3 Comparison of experimental values from the 137Cs nuclide tracer and the model simulation values
样点编码 S1 S3 S4 S5 S6 S7 实验值/(t·km−2·a−1) 8414 6943 2262 3068 2020 4759 改进模型计算结果
/(t·km−2·a−1)9447 4725 2387 3083 2103 4819 传统模型计算结果
/(t·km−2·a−1)10167 5896 1823 2110 1531 3290 表 4 个变量间的相关性
Table 4 correlations between variables
$ SL $ $ WF $ $ EF $ $ SCF $ $ {K}' $ $ C $ 冻融风蚀模数$ SL $ 1 −0.027 −0.013 0.020 0.007 0.007 气象因子$ WF $ −0.027 1 0.007 0.052 0.053 −0.072 土壤可蚀性因子$ EF $ −0.013 0.007 1 0.188 0.024 −0.033 土壤结皮因子$ SCF $ 0.020 0.052 0.188 1 0.045 0 地表粗糙度因子$ {K}' $ 0.007 0.053 0.024 0.045 1 −0.062 植被覆盖度因子$ C $ 0.007 −0.072 −0.033 0.000 −0.062 1 表 5 变量的显著性及共线性
Table 5 Significance and collinearity of variables
皮尔逊相关性 显著性 95%置信区间 共线性统计 下限 上限 容差 VIF $ SL-WF $ 0.027 0.001 −0.029 −0.025 0.981 1.019 $ SL-EF $ 0.013 0.001 −0.011 −0.015 0.309 3.233 $ SL-SCF $ 0.020 0.001 0.018 0.022 0.309 3.231 $ SL-K' $ 0.007 0.001 0.005 0.009 0.987 1.014 $ SL-C $ 0.007 0.001 0.005 0.009 0.989 1.011 表 6 回归系数
Table 6 Regression coefficients
模型 未标准化系数 标准化系数 $ t $ 显著性 β 标准错误 β 常量 3.246 0.029 113.648 0.000 $ WF $ −0.012 0.000 −0.028 −28.883 0.001 $ EF $ −0.762 0.043 −0.017 −17.528 0.001 $ SCF $ 0.499 0.020 0.024 24.415 0.001 $ {K}' $ 0.152 0.018 0.008 8.527 0.001 $ C $ 0.094 0.018 0.005 5.120 0.001 -
[1] 杨珍珍,倪万魁,李兰,等. 基于GIS的多因子土壤冻融侵蚀强度分级评价——以长江上游为例[J]. 水利与建筑工程学报,2022,20(6):89 − 95. [YANG Zhenzhen,NI Wankui,LI Lan,et al. Grading Evaluation of Multi Factor Soil Freeze-thaw Erosion Intensity Based on GIS:A case study of the upper reache of the Yangtze River[J]. Journal of Water Resources and Architectural Engineering,2022,20(6):89 − 95. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1672-1144.2022.06.014 YANG Zhenzhen, NI Wankui, LI Lan, et al. Grading Evaluation of Multi Factor Soil Freeze-thaw Erosion Intensity Based on GIS: A case study of the upper reache of the Yangtze River[J]. Journal of Water Resources and Architectural Engineering, 2022, 20(6): 89 − 95. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-1144.2022.06.014
[2] 魏霞,丁永建,李勋贵. 冻融侵蚀研究的回顾与展望[J]. 水土保持研究,2012,19(2):271 − 275. [WEI Xia,DING Yongjian,LI Xungui. Review and prospect of freeze-thaw-induced erosion research[J]. Research of Soil and Water Conservation,2012,19(2):271 − 275. (in Chinese with English abstract)] WEI Xia, DING Yongjian, LI Xungui. Review and prospect of freeze-thaw-induced erosion research[J]. Research of Soil and Water Conservation, 2012, 19(2): 271 − 275. (in Chinese with English abstract)
[3] 景国臣. 冻融侵蚀的类型及其特征研究[J]. 中国水土保持,2003(10):17 − 18. [JING Guochen. Study on types of freeze-thaw erosion and its characteristics[J]. Soil and Water Conservation in China,2003(10):17 − 18. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0941.2003.10.010 JING Guochen. Study on types of freeze-thaw erosion and its characteristics[J]. Soil and Water Conservation in China, 2003(10): 17 − 18. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0941.2003.10.010
[4] 谢胜波,屈建军,韩庆杰. 青藏高原冻融风蚀形成机理的实验研究[J]. 水土保持通报,2012,32(2):64 − 68. [XIE Shengbo,QU Jianjun,HAN Qingjie. Mechanisms of freezing-thawing induced wind erosion in Qinghai-Tibet Plateau[J]. Bulletin of Soil and Water Conservation,2012,32(2):64 − 68. (in Chinese with English abstract)] XIE Shengbo, QU Jianjun, HAN Qingjie. Mechanisms of freezing-thawing induced wind erosion in Qinghai-Tibet Plateau[J]. Bulletin of Soil and Water Conservation, 2012, 32(2): 64 − 68. (in Chinese with English abstract)
[5] BAGNOLD R A. The Physics of Blown Sand and Desert Dunes[M]. DordrechtSpringer Netherlands,1971.
[6] CHEPIL W S,Milne R A. Comparative study of soil drifting in the field and in a wind tunnel[J]. Scientific Agriculture,1939,19(5):249 − 257.
[7] CHEPIL W S. Measurement of wind erosiveness of soils by dry sieving procedure[J]. Scientific Agriculture,1942,23(3):154 − 160.
[8] CHEPIL W S. Factors that influence clod structure and erodibility of soil by wind[J]. Soil Science,1953,75(6):473 − 484.
[9] CHEPIL W S. Factors that influence clod structure and erodibility of soil by wind[J]. Soil Science,1954,77(6):473 − 480.
[10] CHEPIL W S. Influence of moisture on erodibility of soil by wind[J]. Soil Science Society of America Journal,1956,20(2):288 − 292.
[11] 江凌,肖燚,欧阳志云,等. 基于RWEQ模型的青海省土壤风蚀模数估算[J]. 水土保持研究,2015,22(1):21 − 25. [JIANG Ling,XIAO Yi,OUYANG Zhiyun,et al. Estimate of the wind erosion modules in Qinghai Province based on RWEQ model[J]. Research of Soil and Water Conservation,2015,22(1):21 − 25. (in Chinese with English abstract)] JIANG Ling, XIAO Yi, OUYANG Zhiyun, et al. Estimate of the wind erosion modules in Qinghai Province based on RWEQ model[J]. Research of Soil and Water Conservation, 2015, 22(1): 21 − 25. (in Chinese with English abstract)
[12] 殷海军. RWEQ模型的改进及其在风沙区的应用研究[D]. 北京:中国农业大学,2007. [YIN Haijun. Research on improvement and application of revised wind erosion model in the windy and sandy regions [D]. Beijing:China Agricultural University,2007. (in Chinese with English abstract)] YIN Haijun. Research on improvement and application of revised wind erosion model in the windy and sandy regions [D]. Beijing: China Agricultural University, 2007. (in Chinese with English abstract)
[13] GREGORY J M,BORRELLI J,FEDLER C B. TEAM:Texas erosion analysis model[J]. American Society of Agricultural Engineers (Microfiche collection)(USA),1988.
[14] SHAO Y P,RAUPACH M R,LEYS J F. A model for predicting aeolian sand drift and dust entrainment on scales from paddock to region[J]. Soil Research,1996,34(3):309.
[15] 董治宝. 建立小流域风蚀量统计模型初探[J]. 水土保持通报,1998,18(5):55 − 62. [DONG Zhibao. Establishing statistic model of wind erosion on small watershed basis[J]. Bulletin of Soil and Water Conservation,1998,18(5):55 − 62. (in Chinese)] DOI: 10.3969/j.issn.1000-288X.1998.05.013 DONG Zhibao. Establishing statistic model of wind erosion on small watershed basis[J]. Bulletin of Soil and Water Conservation, 1998, 18(5): 55 − 62. (in Chinese) DOI: 10.3969/j.issn.1000-288X.1998.05.013
[16] 严平,董光荣,张信宝等. 137Cs 法测定青藏高原土壤风 蚀 的 初 步 结 果[J]. 科 学 通 报,2000(2):199 − 204. (in Chinese). [17] 张国平. 基于遥感和 GIS 的中国土壤风力侵蚀研究[D]. 中国科学院研究生院(遥感应用研究所),2002. [ZHANG Remote sensing and GIS based study on the soil wind erosion in China[D]. Graduate University of Chinese Academy of Sciences (Institute of Remote Sensing Digital Earth),2002. (in Chinese with English abstract)] ZHANG Remote sensing and GIS based study on the soil wind erosion in China[D]. Graduate University of Chinese Academy of Sciences (Institute of Remote Sensing Digital Earth), 2002. (in Chinese with English abstract)
[18] 程江浩. 1990-2020年青藏高原生态系统调节服务时空变化及其驱动力研究[D]. 大理大学,2023. [Cheng Jianghao. Spatial and temporal changes in typical ecosystem services and the driving forces,Tibetan Plateau,1990-2020[D]. Dali University,2023. (in Chinese with English abstract)] Cheng Jianghao. Spatial and temporal changes in typical ecosystem services and the driving forces, Tibetan Plateau, 1990-2020[D]. Dali University, 2023. (in Chinese with English abstract)
[19] 赖锋,乔占明连. 青海省风蚀量及防风固沙量时空特征分析[J]. 测绘学,2023,48(1):148 − 156. [LAI Feng,QIAO Zhanming,XIONG Zenglian. Spatiotemporal characteristics of wind erosion and wind prevention and sand fixation in Qinghai Province[J]. Science of Surveying and Mapping,2023,48(1):148 − 156. (in Chinese with English abstract)] LAI Feng, QIAO Zhanming, XIONG Zenglian. Spatiotemporal characteristics of wind erosion and wind prevention and sand fixation in Qinghai Province[J]. Science of Surveying and Mapping, 2023, 48(1): 148 − 156. (in Chinese with English abstract)
[20] 巩俐,王发科,李积芳,等. 五道梁地区土壤风蚀变化特征及气象影响因子分析[J]. 青海草业,2020,29(3):59 − 63. [GONG Li,WANG Fake,LI Jifang,et al. Characteristics of soil wind erosion and analysis of meteorological influencing factors in Wudaoliang area[J]. Qinghai Prataculture,2020,29(3):59 − 63. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1008-1445.2020.03.015 GONG Li, WANG Fake, LI Jifang, et al. Characteristics of soil wind erosion and analysis of meteorological influencing factors in Wudaoliang area[J]. Qinghai Prataculture, 2020, 29(3): 59 − 63. (in Chinese with English abstract) DOI: 10.3969/j.issn.1008-1445.2020.03.015
[21] 杨栋,王全成,姜昭群. 季节性冻土区滑坡防治工程的冻融效应分析[J]. 中国地质灾害与防治学报,2021,32(6):82 − 89. [YANG Dong,WANG Quancheng,JIANG Zhaoqun. Analysis on the effect of freeze-thaw on landslide prevention projects in seasonal frozen soil area[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):82 − 89. (in Chinese with English abstract)] YANG Dong, WANG Quancheng, JIANG Zhaoqun. Analysis on the effect of freeze-thaw on landslide prevention projects in seasonal frozen soil area[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 82 − 89. (in Chinese with English abstract)
[22] 沈凌铠,周保,魏刚,等. 气温变化对多年冻土斜坡稳定性的影响——以青海省浅层冻土滑坡为例[J]. 中国地质灾害与防治学报,2023,34(1):8 − 16. [SHEN Lingkai,ZHOU Bao,WEI Gang,et al. Influence of air temperature change on stability of permafrost slope:A case study of shallow permafrost landslide in Qinghai Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1):8 − 16. (in Chinese with English abstract)] SHEN Lingkai, ZHOU Bao, WEI Gang, et al. Influence of air temperature change on stability of permafrost slope: A case study of shallow permafrost landslide in Qinghai Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 8 − 16. (in Chinese with English abstract)
[23] ZHAO Dongsheng,WU Shaohong. Projected changes in permafrost active layer thickness over the Qinghai-Tibet Plateau under climate change[J]. Water Resources Research,2019,55(9):7860 − 7875.
[24] PANG Qiangqiang,ZHAO Lin,LI Shuxun,et al. Active layer thickness variations on the Qinghai–Tibet Plateau under the scenarios of climate change[J]. Environmental Earth Sciences,2012,66(3):849 − 857.
[25] 庞强强,李述训,吴通华,等. 青藏高原冻土区活动层厚度分布模拟[J]. 冰川冻土,2006,28(3):390 − 395. [PANG Qiangqiang,LI Shuxun,WU Tonghua,et al. Simulated distribution of active layer depths in the frozen ground regions of Tibetan Plateau[J]. Journal of Glaciology and Geocryology,2006,28(3):390 − 395. (in Chinese with English abstract)] PANG Qiangqiang, LI Shuxun, WU Tonghua, et al. Simulated distribution of active layer depths in the frozen ground regions of Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2006, 28(3): 390 − 395. (in Chinese with English abstract)
[26] 徐晓明,吴青柏,张中琼. 青藏高原多年冻土活动层厚度对气候变化的响应[J]. 冰川冻土,2017,39(1):1 − 8. [XU Xiaoming,WU Qingbai,ZHANG Zhongqiong. Responses of active layer thickness on the Qinghai-Tibet Plateau to climate change[J]. Journal of Glaciology and Geocryology,2017,39(1):1 − 8. (in Chinese with English abstract)] XU Xiaoming, WU Qingbai, ZHANG Zhongqiong. Responses of active layer thickness on the Qinghai-Tibet Plateau to climate change[J]. Journal of Glaciology and Geocryology, 2017, 39(1): 1 − 8. (in Chinese with English abstract)
[27] 徐晓明,吴青柏. 三江源多年冻土活动层厚度变化特征研究[J/OL]. 冰川冻土:1 − 15. [XU Xiaoming,WU Qingbai. Research on the variation characteristics of active layer thickness of permafrost in the Three River Source Region[J/OL]. Glacial permafrost:1 − 15. (in Chinese with English abstract)] XU Xiaoming, WU Qingbai. Research on the variation characteristics of active layer thickness of permafrost in the Three River Source Region[J/OL]. Glacial permafrost: 1 − 15. (in Chinese with English abstract)
[28] 张中琼,吴青柏. 气候变化情景下青藏高原多年冻土活动层厚度变化预测[J]. 冰川冻土,2012,34(3):505 − 511. [ZHANG Zhongqiong,WU Qingbai. Predicting changes of active layer thickness on the Qinghai-Tibet Plateau as climate warming[J]. Journal of Glaciology and Geocryology,2012,34(3):505 − 511. (in Chinese with English abstract)] ZHANG Zhongqiong, WU Qingbai. Predicting changes of active layer thickness on the Qinghai-Tibet Plateau as climate warming[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 505 − 511. (in Chinese with English abstract)
[29] 刘文惠,谢昌卫,刘海瑞,等. Stefan方程在土壤冻融过程模拟中的应用[J]. 冰川冻土,2022,44(1):327 − 339. [LIU Wenhui,XIE Changwei,LIU Hairui,et al. Application of Stefan equation on simulating freezing-thawing process of permafrost[J]. Journal of Glaciology and Geocryology,2022,44(1):327 − 339. (in Chinese with English abstract)] LIU Wenhui, XIE Changwei, LIU Hairui, et al. Application of Stefan equation on simulating freezing-thawing process of permafrost[J]. Journal of Glaciology and Geocryology, 2022, 44(1): 327 − 339. (in Chinese with English abstract)
[30] 张云霞. 2000-2020年青藏高原生态质量时空变化及其影响因素[D]. 兰州:兰州大学,2023. [ZHANG Yunxia. Spatiotemporal changes of ecological quality and itsinfluencing factors of the Qinghai-Tibetan Plateaufrom 2000 to 2020 [D]. Lanzhou:Lanzhou University,2023. (in Chinese with English abstract)] ZHANG Yunxia. Spatiotemporal changes of ecological quality and itsinfluencing factors of the Qinghai-Tibetan Plateaufrom 2000 to 2020 [D]. Lanzhou: Lanzhou University, 2023. (in Chinese with English abstract)
[31] NI Jie,WU Tonghua,ZHU Xiaofan,et al. Simulation of the present and future projection of permafrost on the Qinghai-Tibet Plateau with statistical and machine learning models[J]. Journal of Geophysical Research:Atmospheres,2021,126(2):e2020jd033402.
[32] 高荣,韦志刚,董文杰. 青藏高原土壤冻结始日和终日的年际变化[J]. 冰川冻土,2003,25(1):49 − 54. [GAO Rong,WEI Zhigang,DONG Wenjie. Interannual variation of the beginning date and the ending date of soil freezing in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology,2003,25(1):49 − 54. (in Chinese with English abstract)] GAO Rong, WEI Zhigang, DONG Wenjie. Interannual variation of the beginning date and the ending date of soil freezing in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2003, 25(1): 49 − 54. (in Chinese with English abstract)
[33] 王一菲,郑粉莉,张加琼,等. 冻融作用对典型黑土土壤风蚀的影响[J]. 水土保持学报,2020,34(5):34 − 41. [WANG Yifei,ZHENG Fenli,ZHANG Jiaqiong,et al. Effects of freeze-thaw on wind erosion in the typical mollisol region[J]. Journal of Soil and Water Conservation,2020,34(5):34 − 41. (in Chinese with English abstract)] WANG Yifei, ZHENG Fenli, ZHANG Jiaqiong, et al. Effects of freeze-thaw on wind erosion in the typical mollisol region[J]. Journal of Soil and Water Conservation, 2020, 34(5): 34 − 41. (in Chinese with English abstract)
[34] 董瑞琨,许兆义,杨成永. 青藏高原冻融侵蚀动力特征研究[J]. 水土保持学报,2000,14(4):12 − 16. [DONG Ruikun,XU Zhaoyi,YANG Chengyong. Dynamic and characteristic of freezing thawing erosion on Qinghai Tibet Plateau[J]. Journal of Soil Water Conservation,2000,14(4):12 − 16. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1009-2242.2000.04.003 DONG Ruikun, XU Zhaoyi, YANG Chengyong. Dynamic and characteristic of freezing thawing erosion on Qinghai Tibet Plateau[J]. Journal of Soil Water Conservation, 2000, 14(4): 12 − 16. (in Chinese with English abstract) DOI: 10.3321/j.issn:1009-2242.2000.04.003
[35] 吴雅琼,刘国华,傅伯杰,等. 青藏高原土壤有机碳密度垂直分布研究[J]. 环境科学学报,2008,28(2):362 − 367. [WU Yaqiong,LIU Guohua,FU Bojie,et al. Study on the vertical distribution of soil organic carbon density in the Tibetan Plateau[J]. Acta Scientiae Circumstantiae,2008,28(2):362 − 367. (in Chinese with English abstract)] WU Yaqiong, LIU Guohua, FU Bojie, et al. Study on the vertical distribution of soil organic carbon density in the Tibetan Plateau[J]. Acta Scientiae Circumstantiae, 2008, 28(2): 362 − 367. (in Chinese with English abstract)
[36] 刘勇,魏良帅,黄安邦,等. 气候变化下长江源土壤水时空演化及其环境响应[J]. 水文地质工程地质,2023,50(5):39 − 52. [LIU Yong,WEI Liangshuai,HUANG Anbang,et al. Spatial and temporal evolution of soil water and its response to the environment in the Yangtze River source area under climate change[J]. Hydrogeology & Engineering Geology,2023,50(5):39 − 52. (in Chinese with English abstract)] LIU Yong, WEI Liangshuai, HUANG Anbang, et al. Spatial and temporal evolution of soil water and its response to the environment in the Yangtze River source area under climate change[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 39 − 52. (in Chinese with English abstract)
[37] 张永双,郭长宝,李向全,等. 川藏铁路廊道关键水工环地质问题:现状与发展方向[J]. 水文地质工程地质,2021,48(5):1 − 12. [ZHANG Yongshuang,GUO Changbao,LI Xiangquan,et al. Key problems on hydro-engineering-environmental geology along the Sichuan-Tibet Railway corridor:Current status and development direction[J]. Hydrogeology & Engineering Geology,2021,48(5):1 − 12. (in Chinese with English abstract)] ZHANG Yongshuang, GUO Changbao, LI Xiangquan, et al. Key problems on hydro-engineering-environmental geology along the Sichuan-Tibet Railway corridor: Current status and development direction[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 1 − 12. (in Chinese with English abstract)
[38] 支泽民,刘峰贵,周强,等. 基于流域单元的地质灾害易发性评价——以西藏昌都市为例[J]. 中国地质灾害与防治学报,2023,34(1):139 − 150. [ZHI Zemin,LIU Fenggui,ZHOU Qiang,et al. Evaluation of geological hazards susceptibility based on watershed units:A case study of the Changdu City,Tibet[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1):139 − 150. (in Chinese with English abstract)] ZHI Zemin, LIU Fenggui, ZHOU Qiang, et al. Evaluation of geological hazards susceptibility based on watershed units: A case study of the Changdu City, Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 139 − 150. (in Chinese with English abstract)