ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

降雨作用下古滑坡复活机理物理模拟试验研究

王立朝, 任三绍, 李金秋

王立朝,任三绍,李金秋. 降雨作用下古滑坡复活机理物理模拟试验研究[J]. 中国地质灾害与防治学报,2024,35(5): 21-31. DOI: 10.16031/j.cnki.issn.1003-8035.202403048
引用本文: 王立朝,任三绍,李金秋. 降雨作用下古滑坡复活机理物理模拟试验研究[J]. 中国地质灾害与防治学报,2024,35(5): 21-31. DOI: 10.16031/j.cnki.issn.1003-8035.202403048
WANG Lichao,REN Sanshao,LI Jinqiu. Experimental study on physical simulation of reactivation mechanism of ancient landslides under rainfall condition[J]. The Chinese Journal of Geological Hazard and Control,2024,35(5): 21-31. DOI: 10.16031/j.cnki.issn.1003-8035.202403048
Citation: WANG Lichao,REN Sanshao,LI Jinqiu. Experimental study on physical simulation of reactivation mechanism of ancient landslides under rainfall condition[J]. The Chinese Journal of Geological Hazard and Control,2024,35(5): 21-31. DOI: 10.16031/j.cnki.issn.1003-8035.202403048

降雨作用下古滑坡复活机理物理模拟试验研究

基金项目: 国家自然科学基金项目(41731287;41941017;42307229);中国地质调查局地质调查项目(DD20221748)
详细信息
    作者简介:

    王立朝(1972—),男,岩土工程专业,博士,正高级工程师,主要从事地质灾害调查评价工作。E-mail:wanglc@mail.cigem.gov.cn

  • 中图分类号: P642.22

Experimental study on physical simulation of reactivation mechanism of ancient landslides under rainfall condition

  • 摘要:

    水是导致古滑坡复活的重要因素,而经历长久固结的土石混杂滑坡体通常渗透性较低,降雨形成的地表水如何入渗并诱发古滑坡复活的机理尚未明晰。文章在古滑坡复活案例调查和分析的基础上,采用滑坡物理模拟试验研究了降雨与裂缝共同作用下古滑坡复活机理。结果表明:(1)裂缝影响降雨渗透速率和渗透深度,当坡体表面无裂缝时,滑体渗透系数较小,降雨只能引起浅表层滑动;当坡体表面发育裂缝时,雨水沿裂缝快速渗入至深部滑带位置,诱发古滑坡复活。(2)裂缝的位置影响古滑坡的复活模式,无裂缝时,古滑坡表现为渐进式的溯源侵蚀复活;有裂缝时,首先出现溯源侵蚀复活变形,并沿前缘预设裂缝处逐渐扩张滑动,然后沿后缘预设裂缝发生拉张变形并出现向前推挤现象,最终在前部牵引和后缘推挤作用下发生整体复活滑动。(3)滑坡在临滑前,深部孔隙水压力和土压力均急速上升,而在滑动后快速释放,故可将孔隙水压力和土压力值的骤变作为古滑坡复活失稳的临界判据。

    Abstract:

    Water is a crucial factor leading to the reactivation of ancient landslides. However, soil‒rock mixed landslides that have undergone long-term consolidation typically exhibit low permeability. The mechanism by which surface water generated by rainfall infiltrates and triggers landslide reactivation remains unclear. Based on the investigation of reactivation cases, this study explores the reactivation mechanism under the coupling effect of rainfall and cracks using landslide physical model tests. The results show the following: (1) Cracks can affect the seepage rate and depth of the landslide body. Without surface cracks, the landslide body has a low permeability coefficient, and rainfall can only cause shallow landslide. When surface cracks develop, rainwater can quickly infiltrate along the cracks to the deep sliding zone, triggering the reactivation of ancient landslides. (2) The location of the cracks can affect the reactivation mode of ancient landslides. Without cracks, ancient landslides exhibit a gradual retrogressive erosion reactivation. With cracks, reactivation deformation initially appears as retrogressive erosion, and gradually expanding to sliding along the preset cracks at the front edge, followed by tensile deformation and forward pushing at the rear edge, ultimately leading to overall reactivation sliding due to the combined effects of front traction and rear pushing. (3) Before sliding, both deep pore water pressure and soil pressure rapidly increased and then quickly release after sliding. Therefore, abrupt change in pore water pressure and soil pressure can be taken as the critical criterion for the reactivation of ancient landslides.

  • 大量研究表明,滑坡体内地下水赋存与运移是引起滑坡体失稳破坏的主要因素之一[14]。目前滑坡治理措施中,截排水技术分地表截排水和地下疏排水两大类。地表截排水工程主要为截水沟、排水沟等。地下疏排水结构主要有盲沟、钻孔排水、截水隧洞、集水井、虹吸排水等[57]

    目前,研究滑坡地下水疏排对滑坡稳定性的研究大多集中于截排水隧道、虹吸排水、仰斜孔排水等。孙红月等[8]研究了地下排水洞在浙江上三公路6#滑坡中的作用与控制,研究表明地下排水洞能有效控制地下水位的上升,特别是有效防止前期降水在坡体中的积累。赵杰[9]通过研究截水隧道在箭丰尾滑坡中应用,阐述了排水隧洞的设计理念,通过现场的监测资料对比分析修建截水隧洞前后降水量与地下水位埋深的关系,客观评价了截水隧洞的工程效果。近年来,一些研究者[1013]在虹吸排水在滑坡地下水排出中的研究做了大量有意义的探索。

    井-孔联合排水是指当地下水埋深较大或有多层地下水需要排出时,使用仰斜排水孔效果不佳时,采用仰斜孔结合集水井联合排出滑坡地下水的一种技术。目前国内采用此技术在滑坡治理中的应用鲜见报道。本文依托攀枝花机场13#滑坡治理工程,探讨井-孔联合排水技术在高含水填方滑坡治理中的应用,值得同类工程借鉴。

    研究区为中山丘陵、山区峡谷地貌, 见图1。受区域地质构造及机场建设等因素影响,地形起伏变化较大,高差悬殊大。机场建设前整体为一走向N—S向条形山脊。机场建设后东侧填筑形成高填方区,高达八级,最大高度 66 m[14]

    图  1  地形地貌
    Figure  1.  The topography and landform

    钻探揭露研究区地层自上至下为第四系人工填土层(${\mathrm{Qh}}^{ml} $),母岩以强风化砂岩、炭质泥岩角砾、碎石为主,黏土充填,最大厚度达33 m。第四系全新统残坡积层(${\mathrm{Qh}}^{el+dl} $),主要为角砾土、碎石土,黄褐—灰褐色,黏土充填,含水量较高,呈可塑—坚硬状,层厚度变化较大,最大可达12 m。下伏侏罗系下统益门组(J1y)炭质泥岩、砂岩,缓倾互层状产出,岩层倾向与坡体倾向相近,倾角18°~21°。典型工程地质断面图见图2

    图  2  典型工程地质断面
    Figure  2.  The typical engineering geology cross-section

    研究区内存在一鱼塘向斜,向斜轴走向NNW,向SSE倾伏,其轴部通过跑道中心点附近,滑坡所在区在该向斜东北翼,地层产状106°~112°∠18°~21°,见图3。岩层中发育有两组张节理,J1节理:65°~87°∠85°~87°,间距3~5 m,闭合—微张开;J2节理:264°~280°∠82°~86°,间距5~15 m,闭合—微张,两组节理均黏土或硅质充填。

    图  3  坡脚基岩露头
    Figure  3.  Outcrop of bedrock at the slope toe

    该滑坡平面形态呈 “簸箕”状,见图4。且前缘不对称。滑坡纵向长约162 m,横向宽约246 m,后缘至剪出口高差最大68 m,钻孔揭露滑体最大厚度32.3 m,滑体总体积约50.42×104 m3,为一大型填筑体滑坡。

    图  4  滑坡全貌[14]
    Figure  4.  Overall view of the landslide[14]

    该滑坡周界清晰,后缘位于土面区张拉下错裂缝处,裂缝走向NE24°—NE33°,与巡场路(坡口线)走向基本一致。左侧界依附于巡场路至一级马道处剪切裂缝,走向SW21°—SE33°滑坡右侧以巡场路张开裂缝北端至五级马道截水沟沟壁外倾变形段为界。滑坡剪出口在坡体南侧沿坡脚便道、截水沟沟底展布,至五级马道截水沟倾倒损毁处沿该平台向北延伸。

    该滑坡发育有一层滑带(面),主滑段滑动带(面)依附于全风化残、坡积层。滑带土以残坡积层中灰白色黏土夹层为主,含水量高,呈软塑状,泥膜呈灰白色,滑面泥膜处可见明显粗粒土擦痕,见图5。揉皱严重,倾角随滑面位置的不同而略有变化,主滑段滑面倾角12°~17°滑面埋深最大达32.3 m,横向呈中间深、两侧浅,在南、北两侧受老地面控制。

    图  5  钻孔(a)、桩坑(b)中揭露滑面
    Figure  5.  Exposed sliding surfaces in boreholes (a) and pile pits (b)

    根据机场气象台2007年至2019年年平均降水量图(图6)可知,研究区年平均降水量为792 mm,年最大降水量发生于2017年,为1025.2 mm。年最小降水量发生于2012年,为496 mm。年平均降水天数97 d。由图7可知,研究区雨季为5—10月,平均降水量为737.16 mm,占全年降水量的95%。前汛期(5—7月)多年平均降水量为385.13 mm,占雨季降水量的52%。后汛期(8—10月)多年平均降水量为352.03 mm,占雨季降水量的48%。旱季6个月,年平均降水量仅为54.84 mm,仅占全年降水量的5%。以上数据充分说明滑坡区雨季降雨集中,降雨强度大。

    图  6  2007—2019年年降水量分布图
    Figure  6.  Distribution map of annual average rainfall from 2007 to 2019
    图  7  2007—2019年月平均降水量分布图
    Figure  7.  Distribution map of monthly average rainfall from 2007 to 2019

    大量研究表明[1517],大量滑坡发生于中雨—暴雨、持续降雨之后。攀枝花机场每年均出现大量中—暴雨及持续降雨,对机场降雨数据的详细统计分析后,得到了2010—2019年每年中雨及以上出现次数及每年连续3 d出现降雨次数,具体见图8。由图8分析可知,按日均降水量标准计算,中雨(10~25 mm)、大雨(25~50 mm)及暴雨(≥50 mm)出现次数,年平均为24.5次,每年平均连续3 d及以上出现降雨天数为14次。中—大暴雨、3 d及以上出现降雨天数出现次数集中于雨季7—9月,占总数的95%以上。充分说明滑坡区降雨具有雨季降水量强度大且集中的特点。

    图  8  2010—2019年中雨及以上次数、连续3 d降雨次数分布图
    Figure  8.  Distribution map of the frequency of moderate rain or more for consecutive 3-days rainfall events from 2010 to 2019

    研究区内存在两种类型的地下水,分别为赋存于松散堆积层的孔隙水和基岩中的裂隙水。根据物探及钻孔揭示,区内松散堆积层孔隙水包含上层滞水及孔隙潜水。松散堆积层孔隙水主要赋存于人工填筑土及第四系残坡积层、滑坡堆积层中,其分布受填料类型及填料密实度的影响,以上层滞水的类型赋存,上层滞水位于地下水位线以上填土中,由于填料及压实度差异导致该层水分布不均,无统一水面,且各水体间地下水连通性较差。

    物探成果(图9)表明,二级马道以上至场坪土面区地段电阻率明显偏低,说明该处为滑坡体主要富水区域,具有“窝”状不连续分布特征,具有明显的成层性。通过钻孔中含水层段岩芯分析表明,含水层具有黏土含量高、赋水性较好、孔隙连通性差、径流不畅,坡内水难以快速消散等特点。孔隙潜水分布于基岩顶面原始地层中。现场调查,填筑体4级、5级马道平台截水沟及坡脚挡墙损坏段可见地下水渗出,见图10。坡脚鱼池处可见基岩与覆盖层界限处亦有地下水渗出。主要受上游降雨入渗、浅层基岩裂隙水沿层面运移及上层滞水沿隔水底板边缘下渗补给,沿基岩顶面向下游径流至鱼塘排泄。

    图  9  典型剖面物探成果
    Figure  9.  Typical section geophysical survey results
    图  10  坡脚、平台水沟地下水出露
    Figure  10.  The underground water emergence from slope foot, platform ditch

    (1)滑坡的变形具有启动突然,启动后变形加速发展的特点,是一高风险滑坡,治理工程属应急抢险工程。

    该滑坡自发现地表宏观变形迹象,立即采取地表变形监测。典型位移/沉降—时间曲线见图11。由图11分析表明,坡体处于等速变形阶段,且变形发展迅速。因此,该滑坡的勘察设计及施工不能按常规的一般滑坡进行,应按应急抢险治理工程对待,对勘察设计及施工提出了挑战。

    图  11  一级马道监测点累计位移/沉降-时间曲线
    Figure  11.  Cumulative displacement/settlement - time curve of level 1 monitoring point

    (2)滑坡具有有利于地表水下渗但不易排出的结构特征。

    该滑坡发育在斜坡上填筑的超高(最高达68 m)填筑体边坡上。填筑体下伏基岩为缓倾顺层侏罗系炭质泥岩、砂岩。研究区地层结构示意见图12。由图12分析可知,受特殊的上软下硬单斜顺倾坡体结构影响,使地下水向同一个方向的汇集具有了沿层面渗流的条件,基岩中发育的两组张性节理,形成了基岩中的裂隙水渗流通道,使得基岩裂隙水从机场西侧甚至机场山梁西侧直接进入滑体有了地下通道。机场填筑边坡时,由于底部及填筑体内设置的排水措施偏少,地下水不能及时排除。

    图  12  滑坡区地层结构示意
    Figure  12.  Schematic diagram of strata structure in the landslide area

    (3)降水量大、降雨集中,坡体地下水丰富,如何疏排地下水是滑坡治理成败关键。

    由前述水文地质条件分析可知,滑坡区降雨充沛,且主要集中在5—10月,雨季降水量平均占年降水量的95%左右,降雨具有“集中”“量大”“暴雨多”等特点。坡体地下水位高。该段填筑体高边坡在13年后产生滑坡,突出原因是滑坡地下水丰富且排水不畅,并且地下水位逐年增高,导致滑体自重的增加,滑带土长期浸泡后,强度衰减,产生了滑动变形。因此,如何设置地下排水措施是该滑坡治理成功的关键。

    由于该滑坡地下水丰富且难以排出,地下水的来源主要有两个方面,一是滑坡区及后侧宽阔机场场坪汇集的降水。除少部分经地表排水系统排走,大部分降水下渗至坡体内,再向水位较低的临空方向渗流。而研究区钻探揭露滑体填土层具有的黏土含量高、赋水性较好、孔隙连通性差、径流不畅的性质,导致由场坪下渗的地下水在坡体内难以得到及时的消散。二是研究区地层为一典型的砂泥岩互层单斜地层结构,滑坡西侧机场以外的部分地下水沿砂岩层面、裂隙及泥岩顶面向填方区坡体渗流,地层中有张开的节理裂隙较发育,为地下水的补给提供了途径,是该段地层中的地下水通道,顺层面、节理裂隙方向从西向东流动,向滑坡体不断补给。因此考虑在滑体内设置排水工程措施。工程设计应充分考虑如何疏排地下水,应采取支挡与疏排地下水并重的治理理念。

    基于该滑坡的特点与难点,治理工程采用应急工程与永久工程相结合、支挡与疏排地下水相结合的方式进行。

    应急治理主要为滑坡后缘减载和疏排滑坡地下水,具体采用仰斜排水孔排水。

    永久工程治理方案采用支挡工程与排水工程相结合的方式进行。支挡结构根据滑坡推力大小,采用普通抗滑桩、预应力锚索抗滑桩强支挡。地下排水结构措施采用集水井联合井内仰斜排水孔疏排地下水。具体工程平面布置图见图13,工程断面布置图见图14

    图  13  滑坡治理平面布置简图
    Figure  13.  Schematic diagram of landslide control layout

    具体集水井设置在一级马道围栏外坡面,设置6个集水井,直径4m,采用C30钢筋砼浇筑。为加大集水井疏排地下水的范围及能力,在井壁设置1~4排放射状集水斜孔以疏排滑体中的地下水,将地下水引至集水井内,然后通过井间导流管将水引至下一个集水井,最终将坡体中地下水排至滑坡体以外。具体集水井设置见图15

    图  14  典型工程治理断面图
    Figure  14.  The cross-section of typical engineering governance
    图  15  集水井横断面布置图
    Figure  15.  The cross section layout of water collection wells

    该滑坡应急治理及永久治理工程实施后,对其稳定性进行了综合评估与长期位移监测,综合评估结果见表1,长期位移监测见图16。由表1可知,该滑坡体采用支挡与排水并重的方式治理后,坡体处于稳定状态。排水工程的实施,使得坡体中地下水及时疏排与水位降低且雨季不再 ,保证了岩土体抗剪强度不衰减,有利于坡体的长期稳定。由图16可知,治理工程实施后,坡体位移无增大趋势,水平位移及沉降曲线均呈水平状,坡体处于稳定状态。

    表  1  治理前后稳定性评估结果
    Table  1.  Stability assessment results before and after treatment
    序号 断面
    编号
    治理前稳定系数 应急刷
    体积/m3
    设支挡结构后增加
    抗滑力/(kN·m−1
    设集水井后地下水
    降低高度/m
    治理后稳定系数
    自然工况 暴雨工况 地震工况 自然工况 暴雨工况 地震工况
    1 1-1' 1.03 1.00 0.86 23516 1740 5.8 1.35 1.31 1.25
    2 2-2' 1.03 1.00 0.85 2730 6.5 1.34 1.33 1.26
    3 3-3' 1.02 0.99 0.82 2609 7.2 1.35 1.32 1.26
    下载: 导出CSV 
    | 显示表格
    图  16  累计位移(沉降)—时间曲线
    Figure  16.  Accumulated displacement (settlement) - date curve

    为评价集水井联合仰斜排水孔排水效果,在两个排水口(图17)进行了出水量监测。图1819为两个排水口流量-日降水量-时间曲线图。

    图  17  集水井出水口(左:出水口1;右:出水口2)
    Figure  17.  The collection well outlet (left: water outlet 1; right: water outlet 2)
    图  18  排水量—降水量—时间曲线(出口1)
    Figure  18.  Water inflow − rainfall − time curve (outlet 1)
    图  19  排水量—降水量—日期曲线(出口2)
    Figure  19.  Water inflow − rainfall − time curve (outlet 2)

    图18为出水口1涌水量—降水量—时间曲线。分析表明,排水初期,由于为雨季,降水量较大,涌水量较大,在250~500 mL/s。2017年10月后随着降水量的锐减,涌水量也呈迅速下降趋势,涌水量基本小于50 mL/s。2018年进入雨季后,降水量增多,但出水口1涌水量没有明显的增加,基本稳定在10 mL/s。图19为出水口2涌水量—降水量—时间曲线。分析表明,出水口2涌水量基本随降水量变化而变化。表现为,降水量大,涌水量大,降水量小,涌水量小。但排水口2总体涌水量没有排水口1大。综合比较可以得出,排水初期,坡体内长期蓄存的地下水,基本通过排水 口1在近两个月的时间排出,2018年1月后,两个排水口基本响应了大气降雨,及时排走了坡体内下渗的地下水。

    以攀枝花机场13#滑坡治理工程为例,在简述滑坡基本概况的基础上,着重论述了研究区水文地质条件,基于该滑坡治理难点及特性,探讨了滑坡治理方案,提出了基于支挡与疏排地下水并重的治理方案,并评估了井孔联合疏排地下水措施的排水效果,得到了以下几条结论。

    (1)研究区雨季降水量占全年降水量的95%,中—大暴雨、3d及以上出现降雨天数出现次数集中于雨季7~9月,占总数的95%以上。充分说明研究区降雨具有雨季降水量强度大且集中的特点。

    (2)物探及钻探揭示,滑坡后缘场坪填方区地下水丰富,具有“窝”状不连续分布特征,明显的成层性;含水层具有黏土含量高、赋水性较好、孔隙连通性差、径流不畅,坡内地下水难以快速消散等特点。

    (3)采用支挡与疏排滑坡地下水整治理念治理滑坡。采用集水井联合孔内仰斜排水孔疏排地下水,竣工后通过测试其排水量,效果良好,滑坡体长期处于稳定状态。

  • 图  1   典型古滑坡复活案例

    注:a为江顶崖滑坡;b为周场坪滑坡;c为甲居滑坡;d为茶树山滑坡;e为55道班滑坡。

    Figure  1.   Typical case of ancient landslide reactivation

    图  2   滑坡物理模型试验设计图

    注:上部为正视图,下部为俯视图。

    Figure  2.   Design of landslide physical model test

    图  3   模型试验材料

    注:a为黏土;b为粉土;c为砂土;d为砾石。

    Figure  3.   Materials for model test

    图  4   模型试验中的电极布设方案

    Figure  4.   Electrode layout scheme in model test

    图  5   滑坡物理模型试验现场模型图

    注:a为无裂缝模型正视图;b为有裂缝模型正视图;c为模型中的滑带;d为无裂缝模型俯视图;e为有裂缝模型俯视图。

    Figure  5.   Photos of landslide physical model test

    图  6   无裂缝工况下的滑坡复活演化过程

    注:a为降雨50 min;b为降雨100 min;c为降雨150 min;d为降雨200 min;e为降雨250 min;f为降雨300 min。

    Figure  6.   Reactivation and evolution process of landslide under the working condition with no cracks

    图  7   有裂缝工况下的滑坡复活演化过程

    注:a为降雨40 min;b为降雨80 min;c为降雨120 min;d为降雨160 min;e为降雨200 min;f为降雨240 min。

    Figure  7.   Reactivation and evolution process of landslide under the working condition with cracks

    图  8   物理模拟试验传感器监测曲线

    Figure  8.   Monitoring data from sensors in physical simulation test

    图  9   无裂缝工况下不同降雨持时的土壤电阻率相对变化云图

    Figure  9.   Contour map of relative variation of soil resistivity under different rainfall durations under the condition with no cracks

    图  10   有裂缝工况下不同降雨持时的土壤电阻率相对变化云图

    Figure  10.   Contour map of relative variation of soil resistivity under different rainfall durations under the condition with cracks

    图  11   无裂缝和有裂缝工况下的古滑坡复活模式

    Figure  11.   Reactivation mode of ancient landslide under the working conditions with no cracks and with cracks

    图  12   古滑坡复活作用力的综合示意图(据Lacroix et al, 2020修改)[16]

    Figure  12.   Comprehensive schematic demonstrating the forcing of the ancient landslide reactivation (modified from Lacroix et al, 2020)[16]

  • [1]

    YIN Yueping,ZHENG Wamo,LIU Yuping,et al. Integration of GPS with InSAR to monitoring of the Jiaju landslide in Sichuan,China[J]. Landslides,2010,7(3):359 − 365. DOI: 10.1007/s10346-010-0225-9

    [2] 张永双,吴瑞安,郭长宝,等. 古滑坡复活问题研究进展与展望[J]. 地球科学进展,2018,33(7):728 − 740. [ZHANG Yongshuang,WU Ruian,GUO Changbao,et al. Research progress and prospect on reactivation of ancient landslides[J]. Advances in Earth Science,2018,33(7):728 − 740. (in Chinese with English abstract)]

    ZHANG Yongshuang, WU Ruian, GUO Changbao, et al. Research progress and prospect on reactivation of ancient landslides[J]. Advances in Earth Science, 2018, 33(7): 728 − 740. (in Chinese with English abstract)

    [3]

    GARCÍA-DELGADO H. The San Eduardo Landslide (Eastern Cordillera of Colombia):Reactivation of a deep-seated gravitational slope deformation[J]. Landslides,2020,17(8):1951 − 1964. DOI: 10.1007/s10346-020-01403-9

    [4]

    TU Guoxiang,HUANG Da,DENG Hui. Reactivation of a huge ancient landslide by surface water infiltration[J]. Journal of Mountain Science,2019,16(4):806 − 820. DOI: 10.1007/s11629-018-5315-5

    [5]

    GUO Changbao,ZHANG Yongshuang,LI Xue,et al. Reactivation of giant Jiangdingya ancient landslide in Zhouqu County,Gansu Province,China[J]. Landslides,2020,17(1):179 − 190. DOI: 10.1007/s10346-019-01266-9

    [6]

    MA Shuyue,QIU Haijun,HU Sheng,et al. Characteristics and geomorphology change detection analysis of the Jiangdingya landslide on July 12,2018,China[J]. Landslides,2021,18(1):383 − 396. DOI: 10.1007/s10346-020-01530-3

    [7]

    HE Kun,MA Guotao,HU Xiewen. Formation mechanisms and evolution model of the tectonic-related ancient giant basalt landslide in Yanyuan County,China[J]. Natural Hazards,2021,106(3):2575 − 2597. DOI: 10.1007/s11069-021-04555-6

    [8]

    BOOTH A M,MCCARLEY J,HINKLE J,et al. Transient reactivation of a deep-seated landslide by undrained loading captured with repeat airborne and terrestrial lidar[J]. Geophysical Research Letters,2018,45(10):4841 − 4850. DOI: 10.1029/2018GL077812

    [9]

    IVERSON R M,GEORGE D L,ALLSTADT K,et al. Landslide mobility and hazards:Implications of the 2014 Oso disaster[J]. Earth and Planetary Science Letters,2015,412:197 − 208. DOI: 10.1016/j.jpgl.2014.12.020

    [10]

    NOTTI D,WRZESNIAK A,DEMATTEIS N,et al. A multidisciplinary investigation of deep-seated landslide reactivation triggered by an extreme rainfall event:A case study of the Monesi di Mendatica landslide,Ligurian Alps[J]. Landslides,2021,18(7):2341 − 2365. DOI: 10.1007/s10346-021-01651-3

    [11]

    MACCIOTTA R,HENDRY M,MARTIN C D. Developing an early warning system for a very slow landslide based on displacement monitoring[J]. Natural Hazards,2016,81(2):887 − 907. DOI: 10.1007/s11069-015-2110-2

    [12] 杨校辉,朱鹏,窦晓东,等. 甘肃舟曲江顶崖古滑坡复活变形特征与稳定性分析[J]. 地质通报,2024,43(6):947 − 957. [YANG Xiaohui,ZHU Peng,DOU Xiaodong,et al. Resurrection deformation characteristics and stability of Jiangdingya ancient landslide in Zhouqu,Gansu Province[J]. Geological Bulletin of China,2024,43(6):947 − 957. (in Chinese with English abstract)]

    YANG Xiaohui, ZHU Peng, DOU Xiaodong, et al. Resurrection deformation characteristics and stability of Jiangdingya ancient landslide in Zhouqu, Gansu Province[J]. Geological Bulletin of China, 2024, 43(6): 947 − 957. (in Chinese with English abstract)

    [13] 齐畅,吴瑞安,马海善,等. 西藏庞村古滑坡发育特征与危险性评价[J/OL]. 地质通报,(2023-11-27)[2024-06-08]. [QI Chang,WU Ruian,MA Haishan,et al. Development characteristics and hazard assessment of the Pangcun landslide,Xizang[J/OL]. Geological Bulletin of China,(2023-11-27)[2024-06-08]. http://kns.cnki.net/kcms/detail/11.4648.P.20231124.1820.002.html. (in Chinese with English abstract)]

    QI Chang, WU Ruian, MA Haishan, et al. Development characteristics and hazard assessment of the Pangcun landslide, Xizang[J/OL]. Geological Bulletin of China, (2023-11-27)[2024-06-08]. http://kns.cnki.net/kcms/detail/11.4648.P.20231124.1820.002.html. (in Chinese with English abstract)

    [14] 杨志华,吴瑞安,郭长宝,等. 融合斜坡形变特征的复杂山区区域滑坡评价研究现状与展望[J/OL]. 中国地质,(2023-10-10)[2024-06-08]. [YANG Zhihua,WU Rui’an,GUO Changbao,WU Yuming,et al. Research status and prospect of regional landslide assessment integrating slope deformation characteristics in the complex mountainous area[J/OL]. Geology in China,(2023-10-10)[2024-06-08]. http://kns.cnki.net/kcms/detail/11.1167.P.20231009.1724.016.html. (in Chinese with English abstract)]

    YANG Zhihua, WU Rui’an, GUO Changbao, WU Yuming, et al. Research status and prospect of regional landslide assessment integrating slope deformation characteristics in the complex mountainous area[J/OL]. Geology in China, (2023-10-10)[2024-06-08]. http://kns.cnki.net/kcms/detail/11.1167.P.20231009.1724.016.html. (in Chinese with English abstract)

    [15] 胡瑞林,李晓,王宇,等. 土石混合体工程地质力学特性及其结构效应研究[J]. 工程地质学报,2020,28(2):255 − 281. [HU Ruilin,LI Xiao,WANG Yu,et al. Research on engineering geomechanics and structural effect of soil-rock mixture[J]. Journal of Engineering Geology,2020,28(2):255 − 281. (in Chinese with English abstract)]

    HU Ruilin, LI Xiao, WANG Yu, et al. Research on engineering geomechanics and structural effect of soil-rock mixture[J]. Journal of Engineering Geology, 2020, 28(2): 255 − 281. (in Chinese with English abstract)

    [16]

    LACROIX P,HANDWERGER A L,BIÈVRE G. Life and death of slow-moving landslides[J]. Nature Reviews Earth & Environment,2020,1:404 − 419.

    [17]

    KRZEMINSKA D M,BOGAARD T A,MALET J P,et al. A model of hydrological and mechanical feedbacks of preferential fissure flow in a slow-moving landslide[J]. Hydrology and Earth System Sciences,2013,17(3):947 − 959. DOI: 10.5194/hess-17-947-2013

    [18] 李同录,习羽,侯晓坤. 水致黄土深层滑坡灾变机理[J]. 工程地质学报,2018,26(5):1113 − 1120. [LI Tonglu,XI Yu,HOU Xiaokun. Mechanism of surface water infiltration induced deep loess landslide[J]. Journal of Engineering Geology,2018,26(5):1113 − 1120. (in Chinese with English abstract)]

    LI Tonglu, XI Yu, HOU Xiaokun. Mechanism of surface water infiltration induced deep loess landslide[J]. Journal of Engineering Geology, 2018, 26(5): 1113 − 1120. (in Chinese with English abstract)

    [19] 张永双,郭长宝,李向全,等. 川藏铁路廊道关键水工环地质问题:现状与发展方向[J]. 水文地质工程地质,2021,48(5):1 − 12. [ZHANG Yongshuang,GUO Changbao,LI Xiangquan,et al. Key problems on hydro-engineering-environmental geology along the Sichuan-Tibet Railway corridor:Krent status and development direction[J]. Hydrogeology & Engineering Geology,2021,48(5):1 − 12. (in Chinese with English abstract)]

    ZHANG Yongshuang, GUO Changbao, LI Xiangquan, et al. Key problems on hydro-engineering-environmental geology along the Sichuan-Tibet Railway corridor: Krent status and development direction[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 1 − 12. (in Chinese with English abstract)

    [20]

    ZHOU Zhou,SHEN Junhui,LI Ying,et al. Mechanism of colluvial landslide induction by rainfall and slope construction:A case study[J]. Journal of Mountain Science,2021,18(4):1013 − 1033. DOI: 10.1007/s11629-020-6048-9

    [21] 许强,汤明高,徐开祥,等. 滑坡时空演化规律及预警预报研究[J]. 岩石力学与工程学报,2008,27(6):1104 − 1112. [XU Qiang,TANG Minggao,XU Kaixiang,et al. Research on space-time evolution laws and early warning-prediction of landslides[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(6):1104 − 1112. (in Chinese with English abstract)]

    XU Qiang, TANG Minggao, XU Kaixiang, et al. Research on space-time evolution laws and early warning-prediction of landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6): 1104 − 1112. (in Chinese with English abstract)

    [22] 杜飞,任光明,夏敏,等. 地震作用诱发老滑坡复活机制的数值模拟[J]. 山地学报,2015,33(2):233 − 239. [DU Fei,REN Guangming,XIA Min,et al. Numerical simulation of ecurrence mechanism of old landslide under earthquake loading[J]. Mountain Research,2015,33(2):233 − 239. (in Chinese with English abstract)]

    DU Fei, REN Guangming, XIA Min, et al. Numerical simulation of ecurrence mechanism of old landslide under earthquake loading[J]. Mountain Research, 2015, 33(2): 233 − 239. (in Chinese with English abstract)

    [23] 吴瑞安,张永双,郭长宝,等. 川西松潘上窑沟古滑坡复活特征及危险性预测研究[J]. 岩土工程学报,2018,40(9):1659 − 1667. [WU Ruian,ZHANG Yongshuang,GUO Changbao,et al. Reactivation characteristics and hazard prediction of Shangyaogou ancient landslide in Songpan County of Sichuan Province[J]. Chinese Journal of Geotechnical Engineering,2018,40(9):1659 − 1667. (in Chinese with English abstract)]

    WU Ruian, ZHANG Yongshuang, GUO Changbao, et al. Reactivation characteristics and hazard prediction of Shangyaogou ancient landslide in Songpan County of Sichuan Province[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1659 − 1667. (in Chinese with English abstract)

    [24] 任三绍,张永双,徐能雄,等. 含砾滑带土复活启动强度研究[J]. 岩土力学,2021,42(3):863 − 873. [REN Sanshao,ZHANG Yongshuang,XU Nengxiong,et al. Mobilized strength of sliding zone soils with gravels in reactivated landslides[J]. Rock and Soil Mechanics,2021,42(3):863 − 873. (in Chinese with English abstract)]

    REN Sanshao, ZHANG Yongshuang, XU Nengxiong, et al. Mobilized strength of sliding zone soils with gravels in reactivated landslides[J]. Rock and Soil Mechanics, 2021, 42(3): 863 − 873. (in Chinese with English abstract)

    [25] 任三绍,郭长宝,张永双,等. 川西巴塘茶树山滑坡发育特征及形成机理[J]. 现代地质,2017,31(5):978 − 989. [REN Sanshao,GUO Changbao,ZHANG Yongshuang,et al. Development characteristics and formation mechanism of Chashushan landslide in Batang,western Sichuan[J]. Geoscience,2017,31(5):978 − 989. (in Chinese with English abstract)]

    REN Sanshao, GUO Changbao, ZHANG Yongshuang, et al. Development characteristics and formation mechanism of Chashushan landslide in Batang, western Sichuan[J]. Geoscience, 2017, 31(5): 978 − 989. (in Chinese with English abstract)

    [26]

    ZHANG Yongshuang,REN Sanshao,LIU Xiaoyi,et al. Reactivation mechanism of old landslide triggered by coupling of fault creep and water infiltration:A case study from the East Tibetan Plateau[J]. Bulletin of Engineering Geology and the Environment,2023,82(8):291. DOI: 10.1007/s10064-023-03290-5

    [27] 闫亚景,闫永帅,赵贵章,等. 基于高密度电法的天然边坡水分运移规律研究[J]. 岩土力学,2019,40(7):2807 − 2814. [YAN Yajing,YAN Yongshuai,ZHAO Guizhang,et al. Study on moisture migration in natural slope using high-density electrical resistivity tomography method[J]. Rock and Soil Mechanics,2019,40(7):2807 − 2814. (in Chinese with English abstract)]

    YAN Yajing, YAN Yongshuai, ZHAO Guizhang, et al. Study on moisture migration in natural slope using high-density electrical resistivity tomography method[J]. Rock and Soil Mechanics, 2019, 40(7): 2807 − 2814. (in Chinese with English abstract)

    [28] 赵宽耀,许强,刘方洲,等. 黄土中优势通道渗流特征研究[J]. 岩土工程学报,2020,42(5):941 − 950. [ZHAO Kuanyao,XU Qiang,LIU Fangzhou,et al. Seepage characteristics of preferential flow in loess[J]. Chinese Journal of Geotechnical Engineering,2020,42(5):941 − 950. (in Chinese with English abstract)]

    ZHAO Kuanyao, XU Qiang, LIU Fangzhou, et al. Seepage characteristics of preferential flow in loess[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 941 − 950. (in Chinese with English abstract)

    [29]

    IVANOV V,AROSIO D,TRESOLDI G,et al. Investigation on the role of water for the stability of shallow landslides—insights from experimental tests[J]. Water,2020,12(4):1203. DOI: 10.3390/w12041203

    [30] 肖捷夫,李云安,蔡浚明. 水位涨落作用下藕塘滑坡响应特征模型试验研究[J]. 工程地质学报,2020,28(5):1049 − 1056. [XIAO Jiefu,LI Yun’an,CAI Junming. Model test research on response characteristics of outang landslide under water level fluctuation[J]. Journal of Engineering Geology,2020,28(5):1049 − 1056. (in Chinese with English abstract)]

    XIAO Jiefu, LI Yun’an, CAI Junming. Model test research on response characteristics of outang landslide under water level fluctuation[J]. Journal of Engineering Geology, 2020, 28(5): 1049 − 1056. (in Chinese with English abstract)

    [31]

    SHUZUI Haruo. Process of slip-surface development and formation of slip-surface clay in landslides in Tertiary volcanic rocks,Japan[J]. Engineering Geology,2001,61(4):199 − 220. DOI: 10.1016/S0013-7952(01)00025-4

    [32]

    NERESON A L,DAVILA OLIVERA S,FINNEGAN N J. Field and remote-sensing evidence for hydro-mechanical isolation of a long-lived earthflow in central California[J]. Geophysical Research Letters,2018,45(18):9672 − 9680. DOI: 10.1029/2018GL079430

    [33] 党杰,杨亮,段方情,等. 贵州晴隆红寨大型古滑坡复活变形特征及成因分析[J]. 中国地质灾害与防治学报,2024,35(4):25 − 35. [DANG Jie,YANG Liang,DUAN Fangqing,et al. Reactivation characteristics and genesis analysis of the large ancient landslide in Hongzhai, Qinglong County, Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control,2024,35(4):25 − 35. (in Chinese with English abstract)]

    DANG Jie, YANG Liang, DUAN Fangqing, et al. Reactivation characteristics and genesis analysis of the large ancient landslide in Hongzhai, Qinglong County, Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(4): 25 − 35. (in Chinese with English abstract)

    [34] 胡卸文,黄润秋,朱海勇,等. 唐家山堰塞湖库区马铃岩滑坡地震复活效应及其稳定性研究[J]. 岩石力学与工程学报,2009,28(6):1270 − 1278. [HU Xiewen,HUANG Runqiu,ZHU Haiyong,et al. Earthquake reactivation effects and stability study of malingyan landslide in Tangjiashan dammed lake[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(6):1270 − 1278. (in Chinese with English abstract)]

    HU Xiewen, HUANG Runqiu, ZHU Haiyong, et al. Earthquake reactivation effects and stability study of malingyan landslide in Tangjiashan dammed lake[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(6): 1270 − 1278. (in Chinese with English abstract)

    [35]

    BONTEMPS N,LACROIX P,LAROSE E,et al. Rain and small earthquakes maintain a slow-moving landslide in a persistent critical state[J]. Nature Communications,2020,11(1):780. DOI: 10.1038/s41467-020-14445-3

    [36] 张永双,吴瑞安,任三绍. 降雨优势入渗通道对古滑坡复活的影响[J]. 岩石力学与工程学报,2021,40(4):777 − 789. [ZHANG Yongshuang,WU Ruian,REN Sanshao. Influence of rainfall preponderance infiltration path on reactivation of ancient landslides[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(4):777 − 789. (in Chinese with English abstract)]

    ZHANG Yongshuang, WU Ruian, REN Sanshao. Influence of rainfall preponderance infiltration path on reactivation of ancient landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 777 − 789. (in Chinese with English abstract)

    [37]

    REN Sanshao,ZHANG Yongshuang,LI Jinqiu,et al. Deformation behavior and reactivation mechanism of the dandu ancient landslide triggered by seasonal rainfall:A case study from the East Tibetan Plateau,China[J]. Remote Sensing,2023,15(23):5538. DOI: 10.3390/rs15235538

    [38] 王立朝,侯圣山,董英,等. 甘肃积石山Ms 6.2级地震的同震地质灾害基本特征及风险防控建议[J]. 中国地质灾害与防治学报,2024,35(3):108 − 118. [WANG Lichao,HOU Shengshan,DONG Ying,et al. Basic characteristics of co-seismic geological hazards induced by Jishishan Ms 6.2 earthquake and[J]. The Chinese Journal of Geological Hazard and Control,2024,35(3):108 − 118. (in Chinese with English abstract)]

    WANG Lichao, HOU Shengshan, DONG Ying, et al. Basic characteristics of co-seismic geological hazards induced by Jishishan Ms 6.2 earthquake and[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 108 − 118. (in Chinese with English abstract)

    [39] 黄达,高溢康,黄文波. 基于CT扫描的渗流作用下碎石土孔隙结构变化规律研究[J]. 水文地质工程地质,2024,51(2):123 − 131. [HUANG Da,GAO Yikang,HUANG Wenbo. Research on pore structural change of gravel soil under seepage erosion based on CT scanning[J]. Hydrogeology & Engineering Geology,2024,51(2):123 − 131. (in Chinese with English abstract)]

    HUANG Da, GAO Yikang, HUANG Wenbo. Research on pore structural change of gravel soil under seepage erosion based on CT scanning[J]. Hydrogeology & Engineering Geology, 2024, 51(2): 123 − 131. (in Chinese with English abstract)

  • 期刊类型引用(3)

    1. 陈家乐,倪万魁,王海曼,荣誉. 原状黄土土-水特征曲线与湿陷性的相关性. 中国地质灾害与防治学报. 2024(02): 107-114 . 本站查看
    2. 贾静,宿星,张军,路常亮,张满银,李霞,董耀刚,任皓晨. 1985—2020年甘肃省通渭县滑坡区土地利用变化及驱动力. 应用生态学报. 2024(10): 2833-2841 . 百度学术
    3. 王韵,王红雨,李其星,亢文涛. 探地雷达在湿陷性黄土挖填方高边坡土体性状探测中的应用. 中国地质灾害与防治学报. 2023(02): 102-110 . 本站查看

    其他类型引用(1)

图(12)
计量
  • 文章访问数:  272
  • HTML全文浏览量:  19
  • PDF下载量:  92
  • 被引次数: 4
出版历程
  • 收稿日期:  2024-03-30
  • 修回日期:  2024-06-07
  • 录用日期:  2024-07-15
  • 网络出版日期:  2024-07-28
  • 刊出日期:  2024-10-24

目录

/

返回文章
返回