Study on dynamic response characteristics of ground fissure sites in Songzhuang, Beijing
-
摘要:
地裂缝灾害对北京局部地区人居安全和城乡规划建设造成了较大威胁。为分析北京地裂缝活动对发育场地动力响应的影响特征、规律和范围,本文选取发育较典型的通州区宋庄地裂缝为研究对象,基于野外调查,得到了地裂缝现场发育特征和影响范围,并通过地脉动测试手段,获取了场地卓越频率等重要参数;利用3种动力分析方法,对地裂缝场地的动力响应特性和规律进行了研究。结果表明:北京宋庄地裂缝场地的卓越频率和卓越周期与测点选取的位置无明显关系;地裂缝场地有着显著的“上盘效应”,位于地裂缝上盘的傅里叶卓越频率、反应谱卓越周期和Arias烈度峰值总大于下盘,且在距离地裂缝较近的区域,地脉动测试幅值存在着较为突出的“放大效应”;地裂缝对场地动力响应的影响范围宽度为距地裂缝上下盘各12 m。研究结果可对北京宋庄地裂缝发育场地的规划建设和工程结构抗震设防提供一定的参考。
Abstract:Abstracts: Ground fissure disasters pose significant threats to the safety of residential areas and urban-rural planning in localized areas of Beijing. To analyze the impact of ground fissure activity on the dynamic response characteristics, patterns, and scope of affected sites, this study focuses on the Songzhuang ground fissure in Tongzhou district , a typical development area. Based on the field investigations, the study captured the development characteristics and influence scope of ground fissures and obtain key parameters such as the predominant frequency of the site through microtremor testing. Three dynamic analysis methods were applied to investigate the dynamic response characteristics and patterns of the ground fissure site. The results show that there is no obvious relationship between the excellence frequency and excellence period of the ground fissure site in Songzhuang, Beijing and the location of the measurement points. The ground fissure site exhibits a pronounced "hanging wall effect", with the Fourier Superior Frequency, the excellent cycle of the response spectra, and the peak intensity of Arias located in the hanging wall of the ground fissure generally exceeding those on the footwall. Additionally, the amplitude of the ground pulsation test is greater than that of the footwall in the area nearer to the ground fissure. The results of this study can provide valuable references for planning, construction, and seismic fortification of structures in the Songzhuang ground fissure development area.
-
Keywords:
- ground fissure /
- microtremor /
- dynamic response /
- amplification effect /
- extent of impact
-
0. 引言
滑坡监测预警是有效减少人员伤亡和财产损失的重要防灾措施之一。近年来随着滑坡监测技术的不断发展,InSAR[1 − 2]、三维激光[3 − 4]、无人机摄影测量[5 − 6]等非接触型边坡监测技术应运而生,可以获取滑坡任意区域的变形数据,但受制于无法进行实时数据分析,一般用于滑坡隐患识别,而对于有实时监测预警需求的滑坡灾害,则主要依靠直接接触的变形监测技术,如裂缝计[7 − 8]、GNSS[9 − 10]等,通过直观可靠的地表变形监测,分析滑坡变形发展趋势进行预警[11 − 12],如近年来广泛应用的切线角预警模型构建的滑坡变形预警技术,成为了实现滑坡实时预警的可靠手段[13]。这类监测技术应用过程中,GNSS设备因其良好的全天候、多方向监测能力得到了广泛的应用,成为滑坡变形监测最主要的设备之一[14]。
GNSS设备应用于滑坡变形监测时,监测精度可达毫米级,常见误差在±5 mm左右[15],但在受天气或设备本身定位解算异常影响时GNSS变形数据也可能出现异常波动,导致根据变形量计算的滑坡变形速率产生明显震荡,引起边坡变形监测的误报。因此,针对监测数据误差问题,一些学者提出了各种方法对变形量监测数据进行过滤,以还原滑坡实际变形速率,包括采用Kalman滤波及其改进[16 − 18]、神经网络法[19 − 22]、小波降噪法及其改进[23 − 25]等,这些方法都能在事后较好地平滑变形数据,并且过滤后的数据趋势也与滑坡实际变形趋势基本相符,但这类方法需要大量的前期数据进行分析,无法真正应用到滑坡的实时预警中。由此,部分学者开始应用具有一定实时数据处理能力的解析式过滤方法,如各类最小二乘和回归拟合[26 − 27]、移动平均法[28]等,以实现变形数据的实时过滤。其中,最小二乘法由于同时考虑了时间序列的影响,相对于移动平均能更真实地还原出滑坡变形发展趋势,得到了更好的应用。
在基于GNSS监测的滑坡变形数据实时过滤过程中,由于GNSS偶然误差的影响,会导致常规最小二乘法过滤时无法有效剔除异常值,导致预警误报的发生,而目前单一的过滤方法都无法实现较好的过滤,因此,解决变形数据的实时过滤问题,并实现异常误差值的实时剔除,是还原真实滑坡变形数据的重要支撑,也是实现滑坡变形真正实时有效预警的关键。
1. GNSS变形数据误差特点
GNSS获取的滑坡变形量误差一般可分为两类,分别是精度误差和偶然误差(图1)。其中,由于设备定位精度影响导致获得的变形量在一定范围内反复波动的误差为精度误差,具有一定的规律和波动幅度;而偶然误差则是由于各类原因导致GNSS设备定位准确度产生的较大偏差,使变形量监测中出现偶发的异常大跳点。在这两类误差影响下,GNSS设备获得的滑坡变形量数据呈现明显的波动,而根据变形量直接计算的滑坡变形速率也呈显著的规律波动和异常抖动,难以进行可靠的变形预警。
2. 变形数据误差过滤方法
2.1 变形数据过滤尺度的确定
对于GNSS设备的变形误差过滤,都是选取一定数量的最新数据,采用各种过滤方法对获得的变形量数据进行实时过滤。而在滑坡变形监测过程中,影响数据过滤效果的最重要因素是数据的选取数量。不同的过滤方法在过滤数据数量不同时,过滤效果也不同。数据选取量越少,平滑后的偏差波动越大;数据选取量越多,平滑效果越好,但对于真正加速后产生的变形量增大则不容易及时识别。目前对于变形量数据的选取数量并没有统一的标准,主要根据经验选取一定数量的变形数据进行平滑,但两者之间应当有一个最佳平衡点,即在确保较好的数据偏差过滤效果的前提下,选取的数据数量最少以减小延迟。同时,还应当考虑不同GNSS设备或区域的差异,构建具有一定普适性的变形数据选取数量,以实现针对这类设备的通用变形数据量选用。
2.2 精度误差的过滤
对于GNSS的变形量精度误差的过滤,目前有很多方法都可以较好地实现数据过滤,如移动平均法、最小二乘法等,其中最小二乘过滤方法简单,拟合后直线斜率为滑坡变形速率,且拟合数据同时考虑了变形量时间序列,在监测频率变化时不会出现局部大幅度波动[29]。因此,本文以常见的最小二乘法过滤为基础,通过搜集国内不同区域、不同型号的GNSS设备获取的边坡不同监测频率的变形量数据进行分析(图2)。通过选取相同长度时间内边坡未产生明显变形的GNSS合位移监测数据,并比较不同数据量选用下的变形量过滤偏差大小的规律,具体方法为:采用不同数量的数据进行最小二乘拟合,获得拟合后的直线位移,并计算其与实际位移量之间的最大偏差值,然后按时间依次向前推进,继续进行最小二乘拟合,并不断计算拟合位移量与实际位移量之间的最大偏差值,最终获得整个时间段上的最大偏移量值。最小二乘拟合的数据量需大于3组,因此分别采用3组~80组数据作为数据选择总量各自进行拟合,最终建立不同数据总量与拟合后最大数据偏差量之间的关系(图3)。
通过对比了甘肃省黑方台陈家3#滑坡(监测频率30 min)、江西省弋阳县三县岭滑坡(监测频率1 h)、四川省理县薛城镇滑坡(监测频率1 h)和云南省丽江市华丽高速边坡(监测频率5 min)4个区域不同监测频率的GNSS监测数据过滤效果的偏差关系发现(图4),整体上GNSS监测数据随着拟合采用的数据总数量增多,拟合后的最大偏差值呈逐渐减小的趋势。不同类型的GNSS监测数据都具有大体相同的减小规律,即整体上随着拟合采用的数据总数量增多,GNSS的最大偏差降低程度可以分为三个阶段:快速降低(数据量3~15)、震荡降低(数据量16~40)、缓慢降低(数据量>40)。在快速降低阶段,随着拟合数据量的不断增多,拟合后的GNSS变形数据最大偏差值呈大幅度下降的特征,数据量越多,偏差降低越明显;在震荡降低阶段,拟合后的GNSS变形数据最大偏差值呈波动下降的特征,整体上随着数据量的增多偏差呈较大幅度降低,同时中间也出现明显的震荡区域,即随着数据量的增多,最大偏差值可能出现小幅度的增大,随后再继续降低;在缓慢降低阶段,随着拟合数据量的继续增多,拟合后的GNSS变形数据最大偏差值呈缓慢下降的特征,如拟合数据总数量增加一倍,从40组数据增加至80组数据时,所有GNSS的最大偏移量降低幅度仅约20%,偏差值的过滤效果并不好。
由此可见,对于常见的GNSS监测数据的过滤,可以以快速降低和震荡降低两阶段过滤效果为参考,选用缓慢降低阶段起点的40个数据量进行数据过滤。为了进一步明确该选取值是否有较好的适用性,通过现有甘肃省黑方台陈家3#滑坡和云南省丽江市华丽高速边坡的监测数据按照每小时1组提取进行修正,采用相同过滤方法对比不同监测频率下相同边坡的数据过滤规律(图5)。通过对比发现,GNSS变形监测数据表现出的过滤阶段与频率无显著关系,不同监测频率下仍然可以采用相同的三阶段进行划分,在大约40个数据量时也处于缓慢降低阶段的起点。而不同频率对GNSS变形监测数据的过滤效果差异主要在于偏差的降低幅度,这是由于监测频率过高使得数据量过于集中,在局部时段内GNSS误差呈整体偏大或偏小时,导致整个数据的偏差过滤都出现一定的偏差。而当监测频率大幅降低时,数据量间的持续时间变长,会克服局部时间段区域内数据整体偏大或偏小的问题,因此总体偏差降低幅度会增加,如图5中云南省丽江市华丽高速边坡GNSS监测频率从5 min降低至1 h时,同样的80组数据对应的时间段也从400 min变成80 h,对应了偏差降低幅度也从60%增加至85%。
根据分析发现,对于GNSS变形监测数据的过滤,可以以缓慢降低阶段起点对应的40个数据量作为过滤数据量尺度,对应变形数据的偏差降低幅度均超过50%,能达到在尽量少的数据量前提下取得较好的过滤效果。
2.3 偶然误差的过滤
由于GNSS变形监测数据通过卫星获取并解算定位信息,在极端恶劣环境或偶然故障情况下,可能出现变形量监测值的大幅度偏差,即偶然误差(图1)。这类误差呈偶发性,通过多个省份多个类型的GNSS数据进行统计分析发现,GNSS均有一定的偶然异常值,且异常数据总量均小于全部数据总量的10%,呈普遍性规律,这部分数据偏移量极大,可能是正偏移值(即出现极大的数据值),也可能是负偏移值(即出现极小的数据值),属于错误数据,本身没有意义。由于偶然误差的出现会导致计算出的变形速率出现显著的震荡,使基于变形速率的预警产生误报,同时常规的过滤方法难以直接过滤这类误差,因此,最好的处理方式是及时剔除偶然误差,但这一过程需要实时条件下进行才能保证滑坡监测预警的实时性。
为了实现监测数据的实时过滤,同时及时判识并剔除偶然误差,可以采用设置一定缓冲过滤区的误差剔除方法(图6)。考虑到GNSS变形监测数据过滤量在40个时,可以较好地实现常见精度误差的过滤,对应缓冲过滤区的数据量也设置为40个,具体过滤方法为:当GNSS变形监测数据获取到最新的变形量数据后,取最新的40组变形量监测数据作为数据缓冲区,由时间正序去掉10%的最大变形量(即从过去到最新时间顺序选取4组最大值),由时间倒序去掉10%的最小变形量数据(即从最新时间到过去顺序选取4组最小值)。采用该方法处理后,数据中的偶然误差极大值和极小值都被剔除,还原出仅有精度波动的有效数据;而剩余32组数据作为有效变形量数据,再采用最小二乘过滤方法进行过滤以获得滑坡变形速率信息。随着GNSS不断获取新的变形量数据,对应更新缓冲过滤区实现偶然误差的实时剔除和精度误差的实时过滤。
该方法的应用中,缓冲过滤区需要40个监测数据作为基数,按照常规GNSS变形监测数据1 h/次的监测频率,对应缓冲过滤区的判断需要连续40个小时的监测数据。需要说明的是,对于具有突发性特点的滑坡该方法难以及时判断其变形发展趋势。对此可以引入具有监测频率动态调节的自适应GNSS监测设备,在滑坡加速变形时通过自适应变频实现监测频率的自动增加。具体为:通过设置GNSS变形监测设备阈值为S(S大于设备监测精度),采用5 min/次的动态监测对比方式进行判断,当实际监测数据和最新记录的GNSS数据之差大于阈值S时,认为变形可能存在加速情况,此时记录最新的监测数据;当实际监测数据和最新记录的GNSS数据之差小于阈值S时,认为变形尚不明显,仍然采用1 h/次的常规监测频率获取数据。以此不断进行比对和记录,实现滑坡变形在进入加速变形期间能自动将监测频率调整到最高5 min/次,对应40组变形监测数据的最小时间间隔仅为不足4小时,对于不具有强烈突发性的滑坡,可以及时有效地识别出加速且不会导致误报。
3. 过滤方法应用效果探讨
四村滑坡位于四川省茂县黑虎乡,为降雨诱发的堆积体变形滑坡,该区域近年来已实施了自动化监测,并布设了1套GNSS监测站。通过前几年的监测获取了一段时间的GNSS变形监测数据(图7a),该滑坡整体处于基本稳定状态。但在2018年4月12日到13日出现了一次较明显的加速过程(图7b),GNSS监测站全程获取了该次加速变形的位移变化数据。通过提取该加速变形区间的GNSS合位移,并分别采用最小二乘法和剔除误差后的最小二乘法拟合该区域的变形速率进行对比发现(图7c),变形速率的变化特征在剔除误差前后基本一致,能有效反应出GNSS合位移先增大后减缓时表现出的滑坡变形速率增大和减小,两者之间一致性较好,并未出现明显的延迟或显著差异。
同时,以最新的彭州市某矿山边坡GNSS变形监测数据为例,进一步验证该方法的过滤效果。该矿山边坡为矿山开采后形成的人工边坡,目前较为稳定,未产生明显变形。GNSS监测站获取了边坡2024年1月份的变形数据(图8a),可见虽然边坡无明显变形,但获取的GNSS原始累计合位移数据有明显的异常跳跃点(图8b),导致了根据累计位移计算的变形速率呈上下波动状态(图8c),最大变形速率达到283.81 mm/d,显然不符合实际情况。采用数据过滤方法处理,剔除10%最大数据和10%最小数据后采用最小二乘拟合,得到的变形速率较稳定地在0附近(图8c),实时反映出了边坡的真实变化状态。
可见,结合了数据过滤和偶然误差剔除的GNSS变形数据过滤方法,可以在实时监测的情况下去掉大偏差数据,且不影响监测数据的实际发展趋势判定,两者的结合为滑坡变形的及时预警提供可靠的数据过滤算法。
4. 结论
针对滑坡地表变形常用的GNSS监测技术在预警过程中出现的精度误差和偶然误差,本文分析了常见的GNSS设备监测获得的滑坡变形数据误差特征,提出了对应的数据过滤方法,以实现滑坡变形数据的实时过滤,为有效的提前预警提供了科学数据过滤方法。本文主要得到以下结论:
(1)滑坡GNSS变形数据存在精度误差和偶然误差,其中精度误差可以通过数据解析式过滤的方法实时过滤,偶然误差则应通过剔除的方式进行过滤。
(2)以最小二乘法进行解析式过滤时发现,随着参与过滤的数据总量增多,GNSS过滤后的变形量数据偏差大小呈快速降低、震荡降低、缓慢降低三个阶段,可以选取缓慢降低阶段起点对应的数据量值40组数据确定为过滤尺度,在确保过滤效果的前提下减少数据延迟。
(3)通过构建数据缓冲区剔除GNSS变形数据可能出现的偶然误差,同时采用自适应变频技术的方式,使构建数据缓冲区导致的数据分析滞后时间减小到最短不足4小时,为滑坡的实时预警预报提供及时可靠的数据支持,满足非突发性滑坡基于变形速率的预警需求。
(4)通过对典型滑坡GNSS变形数据的应用验证,该方法可以实现变形速率误差波动的有效过滤,同时偶然误差的剔除也对滑坡实际变形速率不产生明显延迟,可以较好地还原滑坡实际变形发展趋势,具有一定的普适性和适用性。
-
表 1 选取地震仪的主要技术参数
Table 1 Main technical parameters of the Seismic Monitor
仪器型号 CV-374AV 动态范围 136 db 灵敏度 1000 mv/(cm/s)通频带 0.1~100 Hz 测量范围 ±0.02 m/s 线性 0.03% 采样频率 100 Hz AD分辨频率 24 bit -
[1] 何红前. 渭河盆地地裂缝成因机理研究[D]. 西安:长安大学,2011. [HE Hongqian. Study on genetic mechanism of ground fissures in Weihe Basin[D]. Xi’an:Changan University,2011. (in Chinese with English abstract)] HE Hongqian. Study on genetic mechanism of ground fissures in Weihe Basin[D]. Xi’an: Changan University, 2011. (in Chinese with English abstract)
[2] 王景明,地裂缝及其灾害的理论与应用. 地裂缝及其灾害的理论与应用[M]. 西安:陕西科学技术出版社,2000. [WANG Jingming. Theory of ground fissures hazards and its application[M]. Xi’an:Shaanxi Science & Technology Press,2000. (in Chinese)] WANG Jingming. Theory of ground fissures hazards and its application[M]. Xi’an: Shaanxi Science & Technology Press, 2000. (in Chinese)
[3] 赵忠海. 北京地区地裂缝灾害的分布特征及其成因探讨[J]. 地质灾害与环境保护,2006,17(3):75 − 78. [ZHAO Zhonghai. Discussion on the distribution characteristics and genetic type of the land crack in Beijing[J]. Journal of Geological Hazards and Environment Preservation,2006,17(3):75 − 78. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1006-4362.2006.03.018 ZHAO Zhonghai. Discussion on the distribution characteristics and genetic type of the land crack in Beijing[J]. Journal of Geological Hazards and Environment Preservation, 2006, 17(3): 75 − 78. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-4362.2006.03.018
[4] 耿大玉,李忠生. 中美两国的地裂缝灾害[J]. 地震学报,2000,22(4):433 − 441. [GENG Dayu,LI Zhongsheng. Ground fissure hazards in the United States and China[J]. Acta Seismologica Sinica,2000,22(4):433 − 441. (in Chinese with English abstract)] GENG Dayu, LI Zhongsheng. Ground fissure hazards in the United States and China[J]. Acta Seismologica Sinica, 2000, 22(4): 433 − 441. (in Chinese with English abstract)
[5] Michael C. Carpenter. Earth fissures and subsidence complicate development of desert water resources [J]. U. S. Geological Survey,Tucson,Arizona,1999,pp. 65 − 78.
[6] AYRES J E. Two Clovis fluteld points from southern Arizona[J]. Kiva,1970,35(3):121 − 124. DOI: 10.1080/00231940.1970.11760562
[7] Heidke,James M. The Earliest Tucson Basin Pottery[J]. Archaeology in Tucson,1997,11(3):9 − 10.
[8] Heilen,Michael P. An Archaeological Theory of Landscapes [D]. Ph. D. dissertation,Department of Anthropology,University of Arizona,Tucson,2005.
[9] HUCKELL B B. The paleo-Indian and archaic occupation of the Tucson Basin:an overview[J]. Kiva,1984,49(3/4):133 − 145.
[10] KREITLER C W. Fault control of subsidence,Houston,texasa[J]. Groundwater,1977,15(3):203 − 214. DOI: 10.1111/j.1745-6584.1977.tb03165.x
[11] 赵龙,北京市平原区高精度(1∶5万)地面沉降和地裂缝调查[R],北京市,北京市地质工程勘察院,2018-12-01. [Zhao L,A high-precision (1∶50,000) survey of ground settlement and ground fissures in the plain area of Beijing. [R],Beijing,Beijing Geological Engineering Survey Institute,2018-12-01 (in Chinese)] Zhao L, A high-precision (1∶50, 000) survey of ground settlement and ground fissures in the plain area of Beijing. [R], Beijing, Beijing Geological Engineering Survey Institute, 2018-12-01 (in Chinese)
[12] 贾三满,郭萌. 从高丽营探槽分析黄庄—高丽营断裂与地裂缝的关系[J]. 城市地质,2007,2(4):24 − 28. [JIA Sanman,GUO Meng. The relation between huangzhung-gaoliying fault and by gaoliying trench and earth fissure[J]. City Geology,2007,2(4):24 − 28. (in Chinese with English abstract)] JIA Sanman, GUO Meng. The relation between huangzhung-gaoliying fault and by gaoliying trench and earth fissure[J]. City Geology, 2007, 2(4): 24 − 28. (in Chinese with English abstract)
[13] 彭建兵,卢全中,邓亚虹,等. 国网智能电网研究院工程场地地裂缝勘察评价报告[R]. 西安:长安大学工程设计研究院,2010. [Peng J,Lu Q,Deng Y,et al,Report on the Investigation and Evaluation of Ground Fissures at the State Grid Smart Grid Research Institute Project Site [R],Xi’an,Chang'an University Engineering Design Institute,2010 (in Chinese)] Peng J, Lu Q, Deng Y, et al, Report on the Investigation and Evaluation of Ground Fissures at the State Grid Smart Grid Research Institute Project Site [R], Xi’an, Chang'an University Engineering Design Institute, 2010 (in Chinese)
[14] 刘德成,靳小平,周自梁. 灰色关联度分析法在北京通州区地裂缝灾害危险性评价中的应用[J]. 中国地质灾害与防治学报,2010,21(3):73 − 76. [LIU Decheng,JIN Xiaoping,ZHOU Ziliang. Application of grey degree of association evaluation method in ground fissures in Tongzhou District of Beijing[J]. The Chinese Journal of Geological Hazard and Control,2010,21(3):73 − 76. (in Chinese with English abstract)] LIU Decheng, JIN Xiaoping, ZHOU Ziliang. Application of grey degree of association evaluation method in ground fissures in Tongzhou District of Beijing[J]. The Chinese Journal of Geological Hazard and Control, 2010, 21(3): 73 − 76. (in Chinese with English abstract)
[15] 姜媛,王荣,田芳,等. 北京地区地面沉降与地裂缝关系研究[J]. 城市地质,2014,9(4):6 − 10. [JIANG Yuan,WANG Rong,TIAN Fang,et al. Study on the relationship between land subsidence and ground fissures in Beijing[J]. Urban Geology,2014,9(4):6 − 10. (in Chinese with English abstract)] JIANG Yuan, WANG Rong, TIAN Fang, et al. Study on the relationship between land subsidence and ground fissures in Beijing[J]. Urban Geology, 2014, 9(4): 6 − 10. (in Chinese with English abstract)
[16] 卢全中,彭建兵,邓亚虹,等. 北京北七家—高丽营地裂缝破坏特征及影响带宽度[J]. 工程勘察,2014,42(6):5 − 11. [LU Quanzhong,PENG Jianbing,DENG Yahong,et al. Failure characteristics and influence width of Beiqijia-Gaoliying ground fissure in Beijing[J]. Geotechnical Investigation & Surveying,2014,42(6):5 − 11. (in Chinese with English abstract)] LU Quanzhong, PENG Jianbing, DENG Yahong, et al. Failure characteristics and influence width of Beiqijia-Gaoliying ground fissure in Beijing[J]. Geotechnical Investigation & Surveying, 2014, 42(6): 5 − 11. (in Chinese with English abstract)
[17] 刘方翠,祁生文,彭建兵,等. 北京市地裂缝分布与发育规律[J]. 工程地质学报,2016,24(6):1269 − 1277. [LIU Fangcui,QI Shengwen,PENG Jianbing,et al. Characters of the ground fissures developing in Beijing[J]. Journal of Engineering Geology,2016,24(6):1269 − 1277. (in Chinese with English abstract)] LIU Fangcui, QI Shengwen, PENG Jianbing, et al. Characters of the ground fissures developing in Beijing[J]. Journal of Engineering Geology, 2016, 24(6): 1269 − 1277. (in Chinese with English abstract)
[18] 周永恒,杨肖肖,丰成君,等. 北京平原区黄庄—高丽营断裂(房山—涞水段)第四纪活动特征的浅层综合探测证据[J]. 地球学报,2021,42(5):677 − 689. [ZHOU Yongheng,YANG Xiaoxiao,FENG Chengjun,et al. Evidence of shallow synthetic exploration of quaternary activity characteristics along Fangshan–Laishui section of Huangzhuang–gaoliying fault in Beijing Plain[J]. Acta Geoscientica Sinica,2021,42(5):677 − 689. (in Chinese with English abstract)] DOI: 10.3975/cagsb.2020.012502 ZHOU Yongheng, YANG Xiaoxiao, FENG Chengjun, et al. Evidence of shallow synthetic exploration of quaternary activity characteristics along Fangshan–Laishui section of Huangzhuang–gaoliying fault in Beijing Plain[J]. Acta Geoscientica Sinica, 2021, 42(5): 677 − 689. (in Chinese with English abstract) DOI: 10.3975/cagsb.2020.012502
[19] 关金环,高明亮,宫辉力. 首都国际机场区域差异性沉降原因探讨[J]. 测绘科学,2021,46(9):67 − 75. [GUAN Jinhuan,GAO Mingliang,GONG Huili. Discussion on the causes of regional differential settlement of Beijing-capital international airport[J]. Science of Surveying and Mapping,2021,46(9):67 − 75. (in Chinese with English abstract)] GUAN Jinhuan, GAO Mingliang, GONG Huili. Discussion on the causes of regional differential settlement of Beijing-capital international airport[J]. Science of Surveying and Mapping, 2021, 46(9): 67 − 75. (in Chinese with English abstract)
[20] 孟振江,彭建兵,李超,等. 耦合型地裂缝活动特征与成因机制模拟研究——以北京宋庄地裂缝为例[J]. 水文地质工程地质,2023,50(3):138 − 148. [MENG Zhenjiang,PENG Jianbing,LI Chao,et al. A simulation study of the activity characteristics and genetic mechanism of coupled ground fissures:exemplified by the songzhuang ground fissure in Beijing[J]. Hydrogeology & Engineering Geology,2023,50(3):138 − 148. (in Chinese with English abstract)] MENG Zhenjiang, PENG Jianbing, LI Chao, et al. A simulation study of the activity characteristics and genetic mechanism of coupled ground fissures: exemplified by the songzhuang ground fissure in Beijing[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 138 − 148. (in Chinese with English abstract)
[21] 任雅哲,丰成君,戚帮申,等. 北京顺义断裂活动对首都机场地裂缝影响定量研究[J]. 地质力学学报,2023,29(5):685 − 703. [REN Yazhe,FENG Chengjun,QI Bangshen,et al. Quantitative research of the impact of Shunyi fault activity on the ground fissures in the Beijing Capital International Airport,China[J]. Journal of Geomechanics,2023,29(5):685 − 703. (in Chinese with English abstract)] DOI: 10.12090/j.issn.1006-6616.2023063 REN Yazhe, FENG Chengjun, QI Bangshen, et al. Quantitative research of the impact of Shunyi fault activity on the ground fissures in the Beijing Capital International Airport, China[J]. Journal of Geomechanics, 2023, 29(5): 685 − 703. (in Chinese with English abstract) DOI: 10.12090/j.issn.1006-6616.2023063
[22] 林通. 地层结构和场地特征对地脉动测试的影响[D]. 上海:同济大学,2008. [LIN Tong. Influence of stratum structure and site characteristics on ground pulsation test[D]. Shanghai:Tongji University,2008. (in Chinese with English abstract)] LIN Tong. Influence of stratum structure and site characteristics on ground pulsation test[D]. Shanghai: Tongji University, 2008. (in Chinese with English abstract)
[23] 吴志坚,王兰民,孙军杰,等. 青藏高原典型多年冻土场地地面脉动特征[J]. 岩石力学与工程学报,2008,27(11):2316 − 2323. [WU Zhijian,WANG Lanmin,SUN Junjie,et al. Characteristics of microseism at typical permafrost sites in Qinghai—Tibet Plateau[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(11):2316 − 2323. (in Chinese with English abstract)] WU Zhijian, WANG Lanmin, SUN Junjie, et al. Characteristics of microseism at typical permafrost sites in Qinghai—Tibet Plateau[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(11): 2316 − 2323. (in Chinese with English abstract)
[24] 薛捷,王郑睿,王蕾. 用地脉动测试的方法对地裂缝场地的评价[J]. 国土资源导刊,2014,11(10):70 − 73. [XUE Jie,WANG Zhengrui,WANG Lei. Evaluation of ground fissure site by the method of ground pulsation test[J]. Land & Resources Herald,2014,11(10):70 − 73. (in Chinese)] XUE Jie, WANG Zhengrui, WANG Lei. Evaluation of ground fissure site by the method of ground pulsation test[J]. Land & Resources Herald, 2014, 11(10): 70 − 73. (in Chinese)
[25] 慕焕东. 地裂缝场地地震放大效应研究[D]. 西安:长安大学,2014. [MU Huandong. Study on seismic amplification effect of ground fissure site[D]. Xi’an:Changan University,2014. (in Chinese with English abstract)] MU Huandong. Study on seismic amplification effect of ground fissure site[D]. Xi’an: Changan University, 2014. (in Chinese with English abstract)
[26] 张磊刚,邓亚虹,薛捷,等. 地裂缝场地地脉动响应特征初探——以西安F6地裂缝为例[J]. 工程地质学报,2017,25(3):784 − 793. [ZHANG Leigang,DENG Yahong,XUE Jie,et al. Preliminary research on dynamic response characteristics of microtremor at ground fissure sites:Illustrated with F6 ground fissure in Xi’an[J]. Journal of Engineering Geology,2017,25(3):784 − 793. (in Chinese with English abstract)] ZHANG Leigang, DENG Yahong, XUE Jie, et al. Preliminary research on dynamic response characteristics of microtremor at ground fissure sites: Illustrated with F6 ground fissure in Xi’an[J]. Journal of Engineering Geology, 2017, 25(3): 784 − 793. (in Chinese with English abstract)
[27] 王晗,邓亚虹,慕焕东,等. 西安典型地裂缝场地地脉动测试及地震响应特征分析[J]. 中国地质灾害与防治学报,2022,33(4):55 − 64. [WANG Han,DENG Yahong,MU Huandong,et al. Ground pulsation tests and analysis on seismic response of typical ground fissure sites in Xi’an[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):55 − 64. (in Chinese with English abstract)] WANG Han, DENG Yahong, MU Huandong, et al. Ground pulsation tests and analysis on seismic response of typical ground fissure sites in Xi’an[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 55 − 64. (in Chinese with English abstract)
[28] 崔思颖,邓亚虹,曹歌,等. 河北平原典型地裂缝场地动力响应特征研究[J]. 煤田地质与勘探,2022,50(6):81 − 93. [CUI Siying,DENG Yahong,CAO Ge,et al. Research on dynamic response characteristics of typical ground fissure sites in Hebei Plain[J]. Coal Geology & Exploration,2022,50(6):81 − 93. (in Chinese with English abstract)] CUI Siying, DENG Yahong, CAO Ge, et al. Research on dynamic response characteristics of typical ground fissure sites in Hebei Plain[J]. Coal Geology & Exploration, 2022, 50(6): 81 − 93. (in Chinese with English abstract)
[29] CHANG J,DENG Y H,XUAN Y,et al. The dynamic response of sites with earth fissures as revealed by microtremor analysis:A case study in the Linfen Basin,China[J]. Soil Dynamics and Earthquake Engineering,2020,132:106076. DOI: 10.1016/j.soildyn.2020.106076
[30] CHANG J,DENG Y H,MU H D,et al. A microtremor study to reveal the dynamic response of earth fissure site:the case study in Fenwei Basins,China[J]. Environmental Earth Sciences,2022,81(3):80. DOI: 10.1007/s12665-022-10217-y
[31] XUAN Y,DENG Y H,HE J,et al. Microtremor-based analysis of the dynamic response characteristics of earth-fissured sites in the Datong basin,China[J]. Earthquake Engineering and Engineering Vibration,2021,20(3):567 − 582. DOI: 10.1007/s11803-021-2039-2
[32] XUAN Y,DENG Y H,CHANG J,et al. Dynamic characteristics of fault-controlled earth fissure sites in Jingyang County,Weihe Basin,China[J]. Acta Geophysica,2022,70(4):1687 − 1700. DOI: 10.1007/s11600-022-00833-4
[33] 杨涛,宫辉力,赵文吉,等. 北京顺义区地裂缝分布特征及成因分析[J]. 自然灾害学报,2010,19(6):100 − 106. [YANG Tao,GONG Huili,ZHAO Wenji,et al. Distribution characteristics and cause analysis of ground fissures in Shunyi District of Beijing[J]. Journal of Natural Disasters,2010,19(6):100 − 106. (in Chinese with English abstract)] YANG Tao, GONG Huili, ZHAO Wenji, et al. Distribution characteristics and cause analysis of ground fissures in Shunyi District of Beijing[J]. Journal of Natural Disasters, 2010, 19(6): 100 − 106. (in Chinese with English abstract)
[34] 赵龙,罗勇,李玉梅,等. 北京平原区地裂缝受灾体形态特征及影响因素[J]. 水文地质工程地质,2019,46(6):156 − 164. [ZHAO Long,LUO Yong,LI Yumei,et al. Characteristics of disaster-affected bodies and influence factors for earth fissure in Beijing Plain[J]. Hydrogeology & Engineering Geology,2019,46(6):156 − 164. (in Chinese with English abstract)] ZHAO Long, LUO Yong, LI Yumei, et al. Characteristics of disaster-affected bodies and influence factors for earth fissure in Beijing Plain[J]. Hydrogeology & Engineering Geology, 2019, 46(6): 156 − 164. (in Chinese with English abstract)
[35] 赵龙,李玉梅,崔文君,等. 北京宋庄地裂缝灾害特征及影响因素分析[J]. 工程地质学报,2018,26(6):1600 − 1610. [ZHAO Long,LI Yumei,CUI Wenjun,et al. Disaster characteristics and influence factors for ground fissures at songzhuang village in Beijing[J]. Journal of Engineering Geology,2018,26(6):1600 − 1610. (in Chinese with English abstract)] ZHAO Long, LI Yumei, CUI Wenjun, et al. Disaster characteristics and influence factors for ground fissures at songzhuang village in Beijing[J]. Journal of Engineering Geology, 2018, 26(6): 1600 − 1610. (in Chinese with English abstract)
[36] 赵晨曦,陈柘舟,刘建凯,等. 基于野外实地调查的北京宋庄地裂缝经济损失评估[J]. 上海国土资源,2023,44(2):113 − 118. [ZHAO Chenxi,CHEN Zhezhou,LIU Jiankai,et al. Economic loss assessment of ground fissures in Songzhuang,Beijing based on field investigation[J]. Shanghai Land & Resources,2023,44(2):113 − 118. (in Chinese with English abstract)] ZHAO Chenxi, CHEN Zhezhou, LIU Jiankai, et al. Economic loss assessment of ground fissures in Songzhuang, Beijing based on field investigation[J]. Shanghai Land & Resources, 2023, 44(2): 113 − 118. (in Chinese with English abstract)