ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

北京宋庄地裂缝场地动力响应特征研究

孟振江, 张森, 邓亚虹, 乔建伟, 赵俊彦, 李超, 孙科, 李勇, 强菲, 蒋继山

孟振江,张森,邓亚虹,等. 北京宋庄地裂缝场地动力响应特征研究[J]. 中国地质灾害与防治学报,2024,35(0): 1-16. DOI: 10.16031/j.cnki.issn.1003-8035.202402024
引用本文: 孟振江,张森,邓亚虹,等. 北京宋庄地裂缝场地动力响应特征研究[J]. 中国地质灾害与防治学报,2024,35(0): 1-16. DOI: 10.16031/j.cnki.issn.1003-8035.202402024
MENG Zhenjiang,ZHANG Sen,DENG Yahong,et al. Study on dynamic response characteristics of ground fissure sites in Songzhuang, Beijing[J]. The Chinese Journal of Geological Hazard and Control,2024,35(0): 1-16. DOI: 10.16031/j.cnki.issn.1003-8035.202402024
Citation: MENG Zhenjiang,ZHANG Sen,DENG Yahong,et al. Study on dynamic response characteristics of ground fissure sites in Songzhuang, Beijing[J]. The Chinese Journal of Geological Hazard and Control,2024,35(0): 1-16. DOI: 10.16031/j.cnki.issn.1003-8035.202402024

北京宋庄地裂缝场地动力响应特征研究

基金项目: 长安大学中央高校基本科研业务费专项资金项目(300102264908);自然资源部陕西西安地裂缝与地面沉降野外科学观测研究站开放课题基金(GKF2024-04);国家自然科学基金 (42207202);长江水利委员会长江科学院开放研究项目(CKWV2021873/KY);
详细信息
    作者简介:

    孟振江(1984-) ,男,河南濮阳人,工学博士,正高级工程师,硕士生导师,主要从事工程地质与地质灾害方面的研究。E-mail: mengzj@chd.edu.cn

  • 中图分类号: P642.2

Study on dynamic response characteristics of ground fissure sites in Songzhuang, Beijing

  • 摘要:

    地裂缝灾害对北京局部地区人居安全和城乡规划建设造成了较大威胁。为分析北京地裂缝活动对发育场地动力响应的影响特征、规律和范围,本文选取发育较典型的通州区宋庄地裂缝为研究对象,基于野外调查,得到了地裂缝现场发育特征和影响范围,并通过地脉动测试手段,获取了场地卓越频率等重要参数;利用3种动力分析方法,对地裂缝场地的动力响应特性和规律进行了研究。结果表明:北京宋庄地裂缝场地的卓越频率和卓越周期与测点选取的位置无明显关系;地裂缝场地有着显著的“上盘效应”,位于地裂缝上盘的傅里叶卓越频率、反应谱卓越周期和Arias烈度峰值总大于下盘,且在距离地裂缝较近的区域,地脉动测试幅值存在着较为突出的“放大效应”;地裂缝对场地动力响应的影响范围宽度为距地裂缝上下盘各12 m。研究结果可对北京宋庄地裂缝发育场地的规划建设和工程结构抗震设防提供一定的参考。

    Abstract:

    Abstracts: Ground fissure disasters pose significant threats to the safety of residential areas and urban-rural planning in localized areas of Beijing. To analyze the impact of ground fissure activity on the dynamic response characteristics, patterns, and scope of affected sites, this study focuses on the Songzhuang ground fissure in Tongzhou district , a typical development area. Based on the field investigations, the study captured the development characteristics and influence scope of ground fissures and obtain key parameters such as the predominant frequency of the site through microtremor testing. Three dynamic analysis methods were applied to investigate the dynamic response characteristics and patterns of the ground fissure site. The results show that there is no obvious relationship between the excellence frequency and excellence period of the ground fissure site in Songzhuang, Beijing and the location of the measurement points. The ground fissure site exhibits a pronounced "hanging wall effect", with the Fourier Superior Frequency, the excellent cycle of the response spectra, and the peak intensity of Arias located in the hanging wall of the ground fissure generally exceeding those on the footwall. Additionally, the amplitude of the ground pulsation test is greater than that of the footwall in the area nearer to the ground fissure. The results of this study can provide valuable references for planning, construction, and seismic fortification of structures in the Songzhuang ground fissure development area.

  • 地裂缝为常见的地质灾害之一,一般指在内外应力协同作用下,岩土体的连续性被破坏,并发生变形破裂,进而在浅表层形成的具一定规模的变形带或裂缝的灾害现象,其变形破坏常呈现为水平剪切、垂直剪切与拉张破坏[13]。地裂缝在许多国家都有广泛发育,在美国、中国、墨西哥、澳大利亚以及埃塞俄比亚、肯尼亚等地均出现了大规模的地裂缝灾害,对当地居民生产生活造成严重影响,产生了难以计量的破坏和损失[410]

    调查发现,自上世纪60年代起,北京平原区勘察到地裂缝超过40条,至今已发育有7个地裂缝带,其中以高丽营、顺义和通州地区所发育的地裂缝最为典型,对周围建筑和公共设施造成了严重破坏,引起了人们的高度关注[11]。在北京地裂缝的发育特征和成因机理研究方面:贾三满等认为高丽营地裂缝主要受断裂的控制,为基底断裂活动延伸至地表导致的,是断裂构造和地面沉降共同作用的结果[12];彭建兵等通过对顺义区土沟村地裂缝进行研究,认为该地裂缝与下伏断裂相连,并呈现出同沉积断层的活动特征[13];刘德成等认为通州地裂缝是非构造性地裂缝,主要受地貌形态所控制,并分布于河流两岸,顺河堤方向展布[14];姜媛等在对大量资料分析的基础上,得到了高丽营地裂缝和当地地面沉降在时间、空间和活动方式上的关联,认为二者在加剧活动时间上具有同步性,在活动特征上具有相似性,并指出地面沉降在断裂两侧引起的不均匀沉降是高丽营地裂缝形成的主要因素[15];卢全中等对北七家至高丽营段的地裂缝进行研究,确定其上、下盘影响带总宽度为43 m,地裂缝对房屋与道路的破坏形式有3种[16];刘方翠等认为是区域构造活动及差异沉降变形机制的共同作用导致了北京平原区顺义地裂缝、高丽营地裂缝、羊房地裂缝和北小营地裂缝的快速形成发育[17];周永恒等通过地球物理探测技术与联合钻孔剖面方法揭示了黄庄-高丽营断裂(房山-涞水段)具典型的正断活动特征[18];关金环等发现北京首都国际机场发生的差异性沉降主要是由顺义-良乡断裂所发育的顺义地裂缝造成的[19];孟振江等以北京地裂缝为原型研究了耦合型地裂缝的发育活动特征和成因机制,揭示了不同位错量和水位下降量引发的地层位移场和应力场的变化特征[20];任雅哲等依据断层位错理论定量分析了顺义断裂蠕滑活动对机场地裂缝形成的影响,认为顺义断裂上盘中、深层地下水抽采引起的地面差异沉降是导致机场地裂缝加剧的主要因素[21]。以上研究在一定程度上揭示了北京地裂缝的成因与影响因素,为后续的深入研究提供了重要的研究基础和理论参考。

    作为特殊的工程场地,地裂缝场地对动力的响应明显且产生的影响较大。相关研究表明,傅里叶频率与场地条件、土层结构完整性及力学性质等紧密相关,而地脉动频率及卓越周期都可以反映出试验场地土体结构的变化[2223]。在利用地脉动测试方法研究方面:薛捷等通过地脉动测试的方法对西安地裂缝场地进行了研究,从而为西安市抗震设防工作提供理论依据[24];慕焕东等使用FLAC3D数值分析软件对西安地裂缝场地开展研究,发现地裂缝场地具有明显的放大效应,且上盘效应显著[25];张磊刚等应用地脉动测试手段对西安F6地裂缝场地进行研究,探明了场地因地裂缝而产生的放大效应和峰值变化规律[26];王晗等通过地脉动现场测试方法,得到了西安地区典型地裂缝的场地放大效应和变化规律[27];崔思颖等选取河北平原具有代表性的地裂缝进行地脉动测试揭示了动力响应特征[28];Chang J和Xuan Y等利用地脉动测试技术获得了山西临汾和大同两处盆地的典型地裂缝场地的数据并开展研究,研究结果表明可以通过地脉动信号来分析地裂缝场地的动力响应特征,并揭示了其变化规律与放大效应[2932]

    在对北京地区的地裂缝研究方面,前人所做研究大多集中于对地裂缝破坏现象的描述和产状勘察,以及从发育场地地貌和地质构造角度对其成因机理进行研究,在利用地脉动测试北京地裂缝发育场地的动力响应研究方面还属于空白,因该方法的应用还未被普及,加上北京多个地裂缝段现场的干扰较大,故尚未开展专门的地脉动现场测试[33]。鉴于此,本文的研究对象选取为北京通州区宋庄地裂缝场地,采用现场踏勘、地脉动测试和动力分析等方法,开展针对性的宋庄地裂缝场地的动力响应研究,以探究地裂缝的存在对场地动力响应的“峰值”及其“卓越频率”所造成的影响,并在此基础上揭示地裂缝发育场地的动力响应规律,以期为宋庄地区场地工程建设和防震减灾工程的设计和规划提供理论依据,同时为其他地裂缝发育区开展此类研究提供借鉴与参考。

    北京平原区地处太行山隆起与燕山隆起和华北断陷盆地相交汇的地带,自新生代以来,该地区主要处于伸展变形的构造环境,地质构造复杂且独特,断裂构造发育。近年来,随着人类工程活动的日益加剧,引发了多起地裂缝灾害[33]

    通州区地裂缝于上世纪60年代开始零星出现,唐山大地震发生后,郎府、西集、宋庄等地都出现了大量的地裂缝,其中以宋庄地裂缝最为典型。宋庄镇地处北京迭断陷与大兴迭隆起相交界的区域,其下伏具有活动迹象的早、中更新世南苑-通县断裂,该断裂带长约110 km,走向NE35~50°,倾向NW,倾角60°~75°,NW盘下降,SE盘上升,为正断层(图1)。断层西北侧震旦亚界埋深400~1000余米,上覆有巨厚的新近系、第四系沉积,而东南侧寒武系及中上元古界埋深仅60~300米,上覆有第四系及少量新近系沉积;对断层附近钻孔岩芯观察,具有明显挤压现象,应属压型断层。宋庄地裂缝于2010年后活动尤为剧烈[34]。经野外调查发现,宋庄地裂缝沿南苑-通县断裂展布,南起小中河在地表呈近直线延伸,经双埠头村、沟渠村、大庞村至平家疃村后向北东方向延伸,长度约8.7 km,整体走向NE31°,倾向NW。该地裂缝以水平拉张破坏为主,地表水平拉张量在2.15~56.7 cm之间,垂直位错量较小,地裂缝影响变形带最宽处达到400 m(图2)。

    图  1  宋庄地裂缝与周边断裂分布图
    Figure  1.  Distribution map of mainly fractures and location of Songzhuang ground fissures
    图  2  宋庄地裂缝致灾示意图
    Figure  2.  Schematic diagram of disaster caused by songzhuang ground fissures

    宋庄地裂缝的地层剖面如图3示,地表以下由粉砂、细砂、粉土、粉质黏土互层组成[35]。在浅表层,地裂缝近直立,地裂缝以偏拉张开裂为主,张开量为1~15 cm;在地下埋深50 m以下的地层开始逐渐出现位错现象,埋深53.2 m处的钻孔岩芯显示,在浅黑灰色砂质粘土层中,发育不连续构造面,构造面倾角64°,且两侧地层颜色不同。总体上分析发现地层上下盘位错量随埋深逐渐增大,地裂缝NW盘地层相对下降,西北侧第四系地层沉积厚度大于东南侧。在宋庄地裂缝影响范围内,致灾最为严重的是双埠头村至大庞村段,据统计,2016年、2018年和2022年地裂缝造成的直接经济损失总值分别为4623.24万元、7033.49万元和10751.14万元,可见地裂缝的影响和破坏在不断加剧[36]

    图  3  宋庄地裂缝浅表部地层剖面图(据赵龙,2018修改)
    Figure  3.  Stratigraphic section of the shallow strata of Songzhuang ground fissure (modified from Zhao Long, 2018)

    地脉动通常是指地表面振动周期在0.05~10s、振幅在千分之几至几微米的微幅振动,是由环境振动在地球表面所产生的复杂随机振动,包括地球内部应力、地震等自然因素及交通等人类活动所引起的振动,并经过不同传波介质和不同场地环境后综合作用于地球表面的结果。目前地脉动研究大致分为两类:一类是常时微动,一般是指周期小于1s的微动,侧重其振幅、周期性与观测点场地分类和振动特性研究;另一类是长波微动,一般是指周期大于1s的微动,研究的重点是由微动提取面波,进而解释推断观测点地下横波波速1s的常时微动,可用以研究地裂缝场地动力响应特性。

    地脉动测试要求的频段范围在0.1~15Hz之间,本次进行地脉动测试所使用的设备是高灵敏度伺服型速度网络地震仪,可满足测试精度要求,主要规格参数见表1

    表  1  选取地震仪的主要技术参数
    Table  1.  Main technical parameters of the Seismic Monitor
    仪器型号 CV-374AV
    动态范围 136 db
    灵敏度 1000 mv/(cm/s)
    通频带 0.1~100 Hz
    测量范围 ±0.02 m/s
    线性 0.03%
    采样频率 100 Hz
    AD分辨频率 24 bit
    下载: 导出CSV 
    | 显示表格

    高灵敏度伺服型速度网络地震仪尺寸为180*120*100 mm,灵敏度较高,在进行地脉动测试时,严格按照操作规程测试,确保测试数据的精确性。为避开不利环境因素和人类活动对地脉动监测结果的影响,选择天气条件良好情况下进行地脉动测试,测试工作选择在凌晨1点至5点期间。

    选择在北京通州区宋庄镇发育较为典型的双埠头村地裂缝段进行地脉动测试,现场布设测点具体原则为:在与主裂缝走向垂直的方向布设2条测线,结合地裂缝的影响带宽度范围,布设长度为60 m的测线,其中,上、下盘长度各设30 m。将地裂缝作为测线的中点,向远离地裂缝的方向进行测点的布设。以上盘为例,首先,在距地裂缝1.5 m处布设第一个测点,再沿测线以3 m为间距布设测点,共布设5个;接着按每隔5 m布设一个测点,共布设3个。因此,所布设测点与地裂缝间的水平距离由近到远设成1.5、3、6、9、12、15、20、25和30 m。下盘测点与上盘对称布设。

    针对地脉动观测各个测点的数据,在稳定波段内以10秒为单位进行波段的截取并通过Pwave32软件将其转换导出为加速度时程曲线,之后应用SeismoSignal软件对数据进行预处理,以得到反应谱曲线、傅里叶谱曲线以及Arias烈度曲线,通过频谱特征分析,进而获得地裂缝场地地脉动响应的加速度幅值、卓越频率、影响范围等场地动力响应特征;通过利用3种从不同角度出发的动力分析方法,对采集并经处理的地脉动数据进行分析,进一步提炼地脉动产生的场地动力特性。

    通过傅里叶谱分析,可以将地脉动加速度时程曲线转换成傅里叶谱曲线,从而得到场地卓越频率和傅里叶谱峰值,通过对不同测点卓越频率和峰值的对比,可得到场地不同区域地脉动响应的分布特征,从而获得地裂缝场地动力响应特征。

    图4图5为双埠头村地裂缝测线上盘和下盘在三个方向上的傅里叶谱图(其中X、Y、Z分别为垂直地裂缝走向方向、平行地裂缝走向方向及和垂直地面方向,下文同),图中各测点的傅里叶谱峰值显著,呈现出多峰的特点。主频带宽度较大,而各测点的卓越频率相对集中,因此其波速的变化没有明显的规律。傅里叶谱图反映出的多峰、谱面积大以及谐波丰富等特征,这与双埠头村地裂缝发育场地中较为松软的粘性土层结构特征相一致。通过对双埠头村地裂缝上下盘的傅里叶谱统计分析,得到该区域地裂缝场地的卓越频率在2.10~4.30 Hz之间浮动。而场地卓越频率的大小和测点距地裂缝的水平距离间的关系并不显著,均值约为3.30 Hz。

    图  4  双埠头村地裂缝上盘不同测点XYZ方向上傅里叶谱
    Figure  4.  Fourier spectra in the XYZ direction at different measurement points on the hanging wall of the ground fissures in Shuangbutou village
    图  5  双埠头村地裂缝下盘不同测点XYZ方向上傅里叶谱
    Figure  5.  Fourier spectra in the XYZ direction at different measurement points on the footwall of the ground fissures in Shuangbutou village

    图6图7为双埠头村地裂缝各测点的傅里叶卓越峰值图。从图中可以看出,在距离地裂缝区域较近的位置,地脉动响应由于地裂缝的存在而出现了显著的放大效应,傅里叶谱峰值与该距离呈负相关关系,距地裂缝的距离越大,峰值越低,在距离较远处曲线趋于平缓,其临界值约在距地裂缝12 m处,傅里叶谱峰值大致保持稳定不变。在距离地裂缝12 m以内的区域,振动的幅值和能量密度相对较高,而在距离地裂缝12米以外的区域,地表振动的幅值和能量密度则相对较低,这种现象表明靠近地裂缝的区域地表振动会比远离地裂缝的区域更强烈。

    图  6  双埠头村地裂缝上盘XYZ方向上傅里叶卓越峰值
    Figure  6.  The peak value of Fourier spectrum of the hanging wall in XYZ directions in Shuangbutou village
    图  7  双埠头村地裂缝下盘XYZ方向上傅里叶卓越峰值
    Figure  7.  The peak value of Fourier spectrum of the footwall in XYZ directions in Shuangbutou village

    图8图9分别为沟渠村地裂缝各测点X、Y、Z三个方向上傅里叶谱峰值与距地裂缝的距离变化关系的散点及曲线图,发现距离地裂缝越远的位置则傅里叶谱峰值越小,直至在较远的位置,曲线逐渐接近平缓;最终在距地裂缝约12 m处,曲线基本保持不变,傅里叶谱峰值趋于一致。通过统计分析,得出沟渠村地裂缝的场地卓越频率在2.30~4.30 Hz范围内变化,卓越频率的高低与测点所在的位置之间没有明显关系,其均值约为3.40 Hz。

    图  8  沟渠村地裂缝上盘XYZ方向上傅里叶卓越峰值
    Figure  8.  The peak value of Fourier spectrum of the hanging wall in XYZ directions in Gouqu village
    图  9  沟渠村地裂缝下盘XYZ方向上傅里叶卓越峰值
    Figure  9.  The peak value of Fourier spectrum of the footwall in XYZ directions in Gouqu village

    通过反应谱分析,可以得到特征周期和相应的反应谱峰值,通过对不同测点特征周期和反应谱峰值的对比,可以得到场地不同区域地脉动响应的分布特征,从而获得地裂缝场地动力响应特征。

    经数据分析得到,双埠头村地裂缝各测点在同一方向上的反应谱谱型均为“单峰型”,且具有主峰突出、频带窄和谱面积小的特点;反应谱卓越周期集中在0.1 s~0.2 s之间,部分卓越周期可达0.3s,此外卓越周期值与地裂缝和测点间的水平距离无明显关系(图1011)。

    图  10  双埠头村地裂缝上盘不同测点XYZ方向上反应谱
    Figure  10.  Response spectrum in the XYZ direction at different measurement points on the hanging wall of the ground fissures in Shuangbutou Village
    图  11  双埠头村地裂缝下盘不同测点XYZ方向上反应谱
    Figure  11.  Response spectrum in the XYZ direction at different measurement points on the footwall of the ground fissures in Shuangbutou Village

    图12图13可得,在距离地裂缝较近处,因地裂缝的存在地脉动响应表现出显著的放大效应,随着与地裂缝距离的增大,地脉动的响应加速度基本不变,在距地裂缝12m处趋于平稳,反应谱峰值基本一致。

    图  12  双埠头村地裂缝上盘XYZ方向上反应谱加速度峰值变化曲线
    Figure  12.  Response spectrum acceleration peak value variation curves in XYZ direction on the hanging wall of the ground fissures in Shuangboutou village
    图  13  双埠头村地裂缝下盘XYZ方向上反应谱加速度峰值变化曲线
    Figure  13.  Variation curves of peak values of reaction spectral acceleration in XYZ direction on the footwall of the ground fissures in Shuangbutou Village

    图14图15可以看出,沟渠村地裂缝各测点在X、Y、Z三个方向的上反应谱加速峰值随与地裂缝间的垂直距离变化,距地裂缝较近的区域的地脉动响应表现出显著的放大效应,且距离地裂缝越远,反应谱峰值越小,直至曲线接近稳定不变,反应谱峰值基本一致。

    图  14  沟渠村地裂缝上盘XYZ方向上反应谱加速度峰值变化曲线
    Figure  14.  Variation Curve of Peak Acceleration in the XYZ Directions of the Response Spectrum on the Hanging Wall of the Ground Fissure in Gouqu Village
    图  15  沟渠村地裂缝下盘XYZ方向上反应谱加速度峰值变化曲线
    Figure  15.  Variation Curve of Peak Acceleration in the XYZ Directions of the Response Spectrum on the Footwall of the Ground Fissure in Gouqu Village

    通过对比双埠头村地裂缝和沟渠村地裂缝反应谱曲线,发现布设在宋庄地裂缝上下盘的测点,在与地裂缝同等距离时,上盘反应谱的峰值均大于下盘,这表明地裂缝的存在使得地裂缝两侧场地的地脉动响应发生了差异变化,存在显著“上盘效应”,且上盘峰值大于下盘。

    Arias烈度是一种目前较为成熟的评判场地地震动响应强弱、反映场地抗震能力和设防标准的方法,通过分析Arias烈度曲线的变化特征进而了解地裂缝场地不同位置的抗震特性,可从场地抗震烈度方面揭示地裂缝对场地的放大效应。

    图16图17分别为双埠头村地裂缝上盘与下盘不同测点的Arias烈度曲线图,图中注释栏“MP”表示监测点。结果表明,Arias烈度呈现出随时间逐渐增长的趋势,但各个测点的增长幅度有所不同,且有着不同的最大值。

    图  16  双埠头村地裂缝上盘不同测点XYZ方向上Arias烈度曲线
    Figure  16.  Arias intensity profiles in the XYZ direction at different measurement points on the hanging wall of the ground fissure in Shuangbutou village
    图  17  双埠头村地裂缝下盘不同测点XYZ方向上Arias烈度曲线
    Figure  17.  Arias intensity profiles in the XYZ direction at different measurement points on the footwall of the ground fissure in Shuangbutou village

    为反映地裂缝对场地不同位置烈度值产生的影响,将双埠头村地裂缝各测点Arias烈度的峰值沿垂直地裂缝走向方向展开,得到上下盘各测点在X、Y、Z三个方向上的Arias烈度峰值随与地裂缝距离变化的散点数据曲线图(图1819)。可见,场地不同位置的烈度值受地裂缝的影响程度也不同。Arias烈度在距离地裂缝较近的区域,其峰值较大,且该烈度值随测点与地裂缝间的距离增大而减小并逐渐趋于稳定,其临界距离为12 m,而临界区域以外的范围受放大效应的影响较小。

    图  18  双埠头村地裂缝上盘XYZ方向上Arias烈度峰值随距离变化曲线
    Figure  18.  Variation curves of peak Arias intensity with distance in the XYZ direction on the hanging wall of the ground fissures in Shuangbutou village
    图  19  双埠头村地裂缝下盘XYZ方向上Arias烈度峰值随距离变化曲线
    Figure  19.  Variation curves of peak Arias intensity with distance in the XYZ direction on the footwall of the ground fissures in Shuangbutou village

    (1)宋庄地裂缝延伸8.7 km,地表破坏以拉张开裂为主,水平拉张量在2.15~56.7 cm之间;其中双埠头村地裂缝的傅里叶卓越频率主要集中在2.10~4.30 Hz之间,反应谱的卓越周期集中在0.1~0.2 s之间;沟渠村地裂缝的傅里叶卓越频率集中在2.30~4.30 Hz之间,反映了地裂缝不同区段活动性的变化。

    (2)通过反应谱分析法、傅里叶谱分析法分析得到,测点的卓越频率无明显的规律性变化;Arias烈度峰值在靠近地裂缝处较大,且随着距离的增大而逐渐减小,在距地裂缝较远的区域趋于平缓。

    (3)宋庄地裂缝场地动力响应在反应谱、傅里叶谱和Arias烈度上都存在明显的“放大效应”,即靠近地裂缝的区域大于远离地裂缝的区域,且该临界距离为距地裂缝12 m。

    (4)宋庄地裂缝场地有着较为显著的“上盘效应”,即距地裂缝相同距离情况下,位于上盘的傅里叶卓越频率、反应谱卓越周期和Arias烈度峰值总大于下盘。

  • 图  1   宋庄地裂缝与周边断裂分布图

    Figure  1.   Distribution map of mainly fractures and location of Songzhuang ground fissures

    图  2   宋庄地裂缝致灾示意图

    Figure  2.   Schematic diagram of disaster caused by songzhuang ground fissures

    图  3   宋庄地裂缝浅表部地层剖面图(据赵龙,2018修改)

    Figure  3.   Stratigraphic section of the shallow strata of Songzhuang ground fissure (modified from Zhao Long, 2018)

    图  4   双埠头村地裂缝上盘不同测点XYZ方向上傅里叶谱

    Figure  4.   Fourier spectra in the XYZ direction at different measurement points on the hanging wall of the ground fissures in Shuangbutou village

    图  5   双埠头村地裂缝下盘不同测点XYZ方向上傅里叶谱

    Figure  5.   Fourier spectra in the XYZ direction at different measurement points on the footwall of the ground fissures in Shuangbutou village

    图  6   双埠头村地裂缝上盘XYZ方向上傅里叶卓越峰值

    Figure  6.   The peak value of Fourier spectrum of the hanging wall in XYZ directions in Shuangbutou village

    图  7   双埠头村地裂缝下盘XYZ方向上傅里叶卓越峰值

    Figure  7.   The peak value of Fourier spectrum of the footwall in XYZ directions in Shuangbutou village

    图  8   沟渠村地裂缝上盘XYZ方向上傅里叶卓越峰值

    Figure  8.   The peak value of Fourier spectrum of the hanging wall in XYZ directions in Gouqu village

    图  9   沟渠村地裂缝下盘XYZ方向上傅里叶卓越峰值

    Figure  9.   The peak value of Fourier spectrum of the footwall in XYZ directions in Gouqu village

    图  10   双埠头村地裂缝上盘不同测点XYZ方向上反应谱

    Figure  10.   Response spectrum in the XYZ direction at different measurement points on the hanging wall of the ground fissures in Shuangbutou Village

    图  11   双埠头村地裂缝下盘不同测点XYZ方向上反应谱

    Figure  11.   Response spectrum in the XYZ direction at different measurement points on the footwall of the ground fissures in Shuangbutou Village

    图  12   双埠头村地裂缝上盘XYZ方向上反应谱加速度峰值变化曲线

    Figure  12.   Response spectrum acceleration peak value variation curves in XYZ direction on the hanging wall of the ground fissures in Shuangboutou village

    图  13   双埠头村地裂缝下盘XYZ方向上反应谱加速度峰值变化曲线

    Figure  13.   Variation curves of peak values of reaction spectral acceleration in XYZ direction on the footwall of the ground fissures in Shuangbutou Village

    图  14   沟渠村地裂缝上盘XYZ方向上反应谱加速度峰值变化曲线

    Figure  14.   Variation Curve of Peak Acceleration in the XYZ Directions of the Response Spectrum on the Hanging Wall of the Ground Fissure in Gouqu Village

    图  15   沟渠村地裂缝下盘XYZ方向上反应谱加速度峰值变化曲线

    Figure  15.   Variation Curve of Peak Acceleration in the XYZ Directions of the Response Spectrum on the Footwall of the Ground Fissure in Gouqu Village

    图  16   双埠头村地裂缝上盘不同测点XYZ方向上Arias烈度曲线

    Figure  16.   Arias intensity profiles in the XYZ direction at different measurement points on the hanging wall of the ground fissure in Shuangbutou village

    图  17   双埠头村地裂缝下盘不同测点XYZ方向上Arias烈度曲线

    Figure  17.   Arias intensity profiles in the XYZ direction at different measurement points on the footwall of the ground fissure in Shuangbutou village

    图  18   双埠头村地裂缝上盘XYZ方向上Arias烈度峰值随距离变化曲线

    Figure  18.   Variation curves of peak Arias intensity with distance in the XYZ direction on the hanging wall of the ground fissures in Shuangbutou village

    图  19   双埠头村地裂缝下盘XYZ方向上Arias烈度峰值随距离变化曲线

    Figure  19.   Variation curves of peak Arias intensity with distance in the XYZ direction on the footwall of the ground fissures in Shuangbutou village

    表  1   选取地震仪的主要技术参数

    Table  1   Main technical parameters of the Seismic Monitor

    仪器型号 CV-374AV
    动态范围 136 db
    灵敏度 1000 mv/(cm/s)
    通频带 0.1~100 Hz
    测量范围 ±0.02 m/s
    线性 0.03%
    采样频率 100 Hz
    AD分辨频率 24 bit
    下载: 导出CSV
  • [1] 何红前. 渭河盆地地裂缝成因机理研究[D]. 西安:长安大学,2011. [HE Hongqian. Study on genetic mechanism of ground fissures in Weihe Basin[D]. Xi’an:Changan University,2011. (in Chinese with English abstract)]

    HE Hongqian. Study on genetic mechanism of ground fissures in Weihe Basin[D]. Xi’an: Changan University, 2011. (in Chinese with English abstract)

    [2] 王景明,地裂缝及其灾害的理论与应用. 地裂缝及其灾害的理论与应用[M]. 西安:陕西科学技术出版社,2000. [WANG Jingming. Theory of ground fissures hazards and its application[M]. Xi’an:Shaanxi Science & Technology Press,2000. (in Chinese)]

    WANG Jingming. Theory of ground fissures hazards and its application[M]. Xi’an: Shaanxi Science & Technology Press, 2000. (in Chinese)

    [3] 赵忠海. 北京地区地裂缝灾害的分布特征及其成因探讨[J]. 地质灾害与环境保护,2006,17(3):75 − 78. [ZHAO Zhonghai. Discussion on the distribution characteristics and genetic type of the land crack in Beijing[J]. Journal of Geological Hazards and Environment Preservation,2006,17(3):75 − 78. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1006-4362.2006.03.018

    ZHAO Zhonghai. Discussion on the distribution characteristics and genetic type of the land crack in Beijing[J]. Journal of Geological Hazards and Environment Preservation, 2006, 17(3): 75 − 78. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-4362.2006.03.018

    [4] 耿大玉,李忠生. 中美两国的地裂缝灾害[J]. 地震学报,2000,22(4):433 − 441. [GENG Dayu,LI Zhongsheng. Ground fissure hazards in the United States and China[J]. Acta Seismologica Sinica,2000,22(4):433 − 441. (in Chinese with English abstract)]

    GENG Dayu, LI Zhongsheng. Ground fissure hazards in the United States and China[J]. Acta Seismologica Sinica, 2000, 22(4): 433 − 441. (in Chinese with English abstract)

    [5]

    Michael C. Carpenter. Earth fissures and subsidence complicate development of desert water resources [J]. U. S. Geological Survey,Tucson,Arizona,1999,pp. 65 − 78.

    [6]

    AYRES J E. Two Clovis fluteld points from southern Arizona[J]. Kiva,1970,35(3):121 − 124. DOI: 10.1080/00231940.1970.11760562

    [7]

    Heidke,James M. The Earliest Tucson Basin Pottery[J]. Archaeology in Tucson,1997,11(3):9 − 10.

    [8]

    Heilen,Michael P. An Archaeological Theory of Landscapes [D]. Ph. D. dissertation,Department of Anthropology,University of Arizona,Tucson,2005.

    [9]

    HUCKELL B B. The paleo-Indian and archaic occupation of the Tucson Basin:an overview[J]. Kiva,1984,49(3/4):133 − 145.

    [10]

    KREITLER C W. Fault control of subsidence,Houston,texasa[J]. Groundwater,1977,15(3):203 − 214. DOI: 10.1111/j.1745-6584.1977.tb03165.x

    [11] 赵龙,北京市平原区高精度(1∶5万)地面沉降和地裂缝调查[R],北京市,北京市地质工程勘察院,2018-12-01. [Zhao L,A high-precision (1∶50,000) survey of ground settlement and ground fissures in the plain area of Beijing. [R],Beijing,Beijing Geological Engineering Survey Institute,2018-12-01 (in Chinese)]

    Zhao L, A high-precision (1∶50, 000) survey of ground settlement and ground fissures in the plain area of Beijing. [R], Beijing, Beijing Geological Engineering Survey Institute, 2018-12-01 (in Chinese)

    [12] 贾三满,郭萌. 从高丽营探槽分析黄庄—高丽营断裂与地裂缝的关系[J]. 城市地质,2007,2(4):24 − 28. [JIA Sanman,GUO Meng. The relation between huangzhung-gaoliying fault and by gaoliying trench and earth fissure[J]. City Geology,2007,2(4):24 − 28. (in Chinese with English abstract)]

    JIA Sanman, GUO Meng. The relation between huangzhung-gaoliying fault and by gaoliying trench and earth fissure[J]. City Geology, 2007, 2(4): 24 − 28. (in Chinese with English abstract)

    [13] 彭建兵,卢全中,邓亚虹,等. 国网智能电网研究院工程场地地裂缝勘察评价报告[R]. 西安:长安大学工程设计研究院,2010. [Peng J,Lu Q,Deng Y,et al,Report on the Investigation and Evaluation of Ground Fissures at the State Grid Smart Grid Research Institute Project Site [R],Xi’an,Chang'an University Engineering Design Institute,2010 (in Chinese)]

    Peng J, Lu Q, Deng Y, et al, Report on the Investigation and Evaluation of Ground Fissures at the State Grid Smart Grid Research Institute Project Site [R], Xi’an, Chang'an University Engineering Design Institute, 2010 (in Chinese)

    [14] 刘德成,靳小平,周自梁. 灰色关联度分析法在北京通州区地裂缝灾害危险性评价中的应用[J]. 中国地质灾害与防治学报,2010,21(3):73 − 76. [LIU Decheng,JIN Xiaoping,ZHOU Ziliang. Application of grey degree of association evaluation method in ground fissures in Tongzhou District of Beijing[J]. The Chinese Journal of Geological Hazard and Control,2010,21(3):73 − 76. (in Chinese with English abstract)]

    LIU Decheng, JIN Xiaoping, ZHOU Ziliang. Application of grey degree of association evaluation method in ground fissures in Tongzhou District of Beijing[J]. The Chinese Journal of Geological Hazard and Control, 2010, 21(3): 73 − 76. (in Chinese with English abstract)

    [15] 姜媛,王荣,田芳,等. 北京地区地面沉降与地裂缝关系研究[J]. 城市地质,2014,9(4):6 − 10. [JIANG Yuan,WANG Rong,TIAN Fang,et al. Study on the relationship between land subsidence and ground fissures in Beijing[J]. Urban Geology,2014,9(4):6 − 10. (in Chinese with English abstract)]

    JIANG Yuan, WANG Rong, TIAN Fang, et al. Study on the relationship between land subsidence and ground fissures in Beijing[J]. Urban Geology, 2014, 9(4): 6 − 10. (in Chinese with English abstract)

    [16] 卢全中,彭建兵,邓亚虹,等. 北京北七家—高丽营地裂缝破坏特征及影响带宽度[J]. 工程勘察,2014,42(6):5 − 11. [LU Quanzhong,PENG Jianbing,DENG Yahong,et al. Failure characteristics and influence width of Beiqijia-Gaoliying ground fissure in Beijing[J]. Geotechnical Investigation & Surveying,2014,42(6):5 − 11. (in Chinese with English abstract)]

    LU Quanzhong, PENG Jianbing, DENG Yahong, et al. Failure characteristics and influence width of Beiqijia-Gaoliying ground fissure in Beijing[J]. Geotechnical Investigation & Surveying, 2014, 42(6): 5 − 11. (in Chinese with English abstract)

    [17] 刘方翠,祁生文,彭建兵,等. 北京市地裂缝分布与发育规律[J]. 工程地质学报,2016,24(6):1269 − 1277. [LIU Fangcui,QI Shengwen,PENG Jianbing,et al. Characters of the ground fissures developing in Beijing[J]. Journal of Engineering Geology,2016,24(6):1269 − 1277. (in Chinese with English abstract)]

    LIU Fangcui, QI Shengwen, PENG Jianbing, et al. Characters of the ground fissures developing in Beijing[J]. Journal of Engineering Geology, 2016, 24(6): 1269 − 1277. (in Chinese with English abstract)

    [18] 周永恒,杨肖肖,丰成君,等. 北京平原区黄庄—高丽营断裂(房山—涞水段)第四纪活动特征的浅层综合探测证据[J]. 地球学报,2021,42(5):677 − 689. [ZHOU Yongheng,YANG Xiaoxiao,FENG Chengjun,et al. Evidence of shallow synthetic exploration of quaternary activity characteristics along Fangshan–Laishui section of Huangzhuang–gaoliying fault in Beijing Plain[J]. Acta Geoscientica Sinica,2021,42(5):677 − 689. (in Chinese with English abstract)] DOI: 10.3975/cagsb.2020.012502

    ZHOU Yongheng, YANG Xiaoxiao, FENG Chengjun, et al. Evidence of shallow synthetic exploration of quaternary activity characteristics along Fangshan–Laishui section of Huangzhuang–gaoliying fault in Beijing Plain[J]. Acta Geoscientica Sinica, 2021, 42(5): 677 − 689. (in Chinese with English abstract) DOI: 10.3975/cagsb.2020.012502

    [19] 关金环,高明亮,宫辉力. 首都国际机场区域差异性沉降原因探讨[J]. 测绘科学,2021,46(9):67 − 75. [GUAN Jinhuan,GAO Mingliang,GONG Huili. Discussion on the causes of regional differential settlement of Beijing-capital international airport[J]. Science of Surveying and Mapping,2021,46(9):67 − 75. (in Chinese with English abstract)]

    GUAN Jinhuan, GAO Mingliang, GONG Huili. Discussion on the causes of regional differential settlement of Beijing-capital international airport[J]. Science of Surveying and Mapping, 2021, 46(9): 67 − 75. (in Chinese with English abstract)

    [20] 孟振江,彭建兵,李超,等. 耦合型地裂缝活动特征与成因机制模拟研究——以北京宋庄地裂缝为例[J]. 水文地质工程地质,2023,50(3):138 − 148. [MENG Zhenjiang,PENG Jianbing,LI Chao,et al. A simulation study of the activity characteristics and genetic mechanism of coupled ground fissures:exemplified by the songzhuang ground fissure in Beijing[J]. Hydrogeology & Engineering Geology,2023,50(3):138 − 148. (in Chinese with English abstract)]

    MENG Zhenjiang, PENG Jianbing, LI Chao, et al. A simulation study of the activity characteristics and genetic mechanism of coupled ground fissures: exemplified by the songzhuang ground fissure in Beijing[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 138 − 148. (in Chinese with English abstract)

    [21] 任雅哲,丰成君,戚帮申,等. 北京顺义断裂活动对首都机场地裂缝影响定量研究[J]. 地质力学学报,2023,29(5):685 − 703. [REN Yazhe,FENG Chengjun,QI Bangshen,et al. Quantitative research of the impact of Shunyi fault activity on the ground fissures in the Beijing Capital International Airport,China[J]. Journal of Geomechanics,2023,29(5):685 − 703. (in Chinese with English abstract)] DOI: 10.12090/j.issn.1006-6616.2023063

    REN Yazhe, FENG Chengjun, QI Bangshen, et al. Quantitative research of the impact of Shunyi fault activity on the ground fissures in the Beijing Capital International Airport, China[J]. Journal of Geomechanics, 2023, 29(5): 685 − 703. (in Chinese with English abstract) DOI: 10.12090/j.issn.1006-6616.2023063

    [22] 林通. 地层结构和场地特征对地脉动测试的影响[D]. 上海:同济大学,2008. [LIN Tong. Influence of stratum structure and site characteristics on ground pulsation test[D]. Shanghai:Tongji University,2008. (in Chinese with English abstract)]

    LIN Tong. Influence of stratum structure and site characteristics on ground pulsation test[D]. Shanghai: Tongji University, 2008. (in Chinese with English abstract)

    [23] 吴志坚,王兰民,孙军杰,等. 青藏高原典型多年冻土场地地面脉动特征[J]. 岩石力学与工程学报,2008,27(11):2316 − 2323. [WU Zhijian,WANG Lanmin,SUN Junjie,et al. Characteristics of microseism at typical permafrost sites in Qinghai—Tibet Plateau[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(11):2316 − 2323. (in Chinese with English abstract)]

    WU Zhijian, WANG Lanmin, SUN Junjie, et al. Characteristics of microseism at typical permafrost sites in Qinghai—Tibet Plateau[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(11): 2316 − 2323. (in Chinese with English abstract)

    [24] 薛捷,王郑睿,王蕾. 用地脉动测试的方法对地裂缝场地的评价[J]. 国土资源导刊,2014,11(10):70 − 73. [XUE Jie,WANG Zhengrui,WANG Lei. Evaluation of ground fissure site by the method of ground pulsation test[J]. Land & Resources Herald,2014,11(10):70 − 73. (in Chinese)]

    XUE Jie, WANG Zhengrui, WANG Lei. Evaluation of ground fissure site by the method of ground pulsation test[J]. Land & Resources Herald, 2014, 11(10): 70 − 73. (in Chinese)

    [25] 慕焕东. 地裂缝场地地震放大效应研究[D]. 西安:长安大学,2014. [MU Huandong. Study on seismic amplification effect of ground fissure site[D]. Xi’an:Changan University,2014. (in Chinese with English abstract)]

    MU Huandong. Study on seismic amplification effect of ground fissure site[D]. Xi’an: Changan University, 2014. (in Chinese with English abstract)

    [26] 张磊刚,邓亚虹,薛捷,等. 地裂缝场地地脉动响应特征初探——以西安F6地裂缝为例[J]. 工程地质学报,2017,25(3):784 − 793. [ZHANG Leigang,DENG Yahong,XUE Jie,et al. Preliminary research on dynamic response characteristics of microtremor at ground fissure sites:Illustrated with F6 ground fissure in Xi’an[J]. Journal of Engineering Geology,2017,25(3):784 − 793. (in Chinese with English abstract)]

    ZHANG Leigang, DENG Yahong, XUE Jie, et al. Preliminary research on dynamic response characteristics of microtremor at ground fissure sites: Illustrated with F6 ground fissure in Xi’an[J]. Journal of Engineering Geology, 2017, 25(3): 784 − 793. (in Chinese with English abstract)

    [27] 王晗,邓亚虹,慕焕东,等. 西安典型地裂缝场地地脉动测试及地震响应特征分析[J]. 中国地质灾害与防治学报,2022,33(4):55 − 64. [WANG Han,DENG Yahong,MU Huandong,et al. Ground pulsation tests and analysis on seismic response of typical ground fissure sites in Xi’an[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):55 − 64. (in Chinese with English abstract)]

    WANG Han, DENG Yahong, MU Huandong, et al. Ground pulsation tests and analysis on seismic response of typical ground fissure sites in Xi’an[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 55 − 64. (in Chinese with English abstract)

    [28] 崔思颖,邓亚虹,曹歌,等. 河北平原典型地裂缝场地动力响应特征研究[J]. 煤田地质与勘探,2022,50(6):81 − 93. [CUI Siying,DENG Yahong,CAO Ge,et al. Research on dynamic response characteristics of typical ground fissure sites in Hebei Plain[J]. Coal Geology & Exploration,2022,50(6):81 − 93. (in Chinese with English abstract)]

    CUI Siying, DENG Yahong, CAO Ge, et al. Research on dynamic response characteristics of typical ground fissure sites in Hebei Plain[J]. Coal Geology & Exploration, 2022, 50(6): 81 − 93. (in Chinese with English abstract)

    [29]

    CHANG J,DENG Y H,XUAN Y,et al. The dynamic response of sites with earth fissures as revealed by microtremor analysis:A case study in the Linfen Basin,China[J]. Soil Dynamics and Earthquake Engineering,2020,132:106076. DOI: 10.1016/j.soildyn.2020.106076

    [30]

    CHANG J,DENG Y H,MU H D,et al. A microtremor study to reveal the dynamic response of earth fissure site:the case study in Fenwei Basins,China[J]. Environmental Earth Sciences,2022,81(3):80. DOI: 10.1007/s12665-022-10217-y

    [31]

    XUAN Y,DENG Y H,HE J,et al. Microtremor-based analysis of the dynamic response characteristics of earth-fissured sites in the Datong basin,China[J]. Earthquake Engineering and Engineering Vibration,2021,20(3):567 − 582. DOI: 10.1007/s11803-021-2039-2

    [32]

    XUAN Y,DENG Y H,CHANG J,et al. Dynamic characteristics of fault-controlled earth fissure sites in Jingyang County,Weihe Basin,China[J]. Acta Geophysica,2022,70(4):1687 − 1700. DOI: 10.1007/s11600-022-00833-4

    [33] 杨涛,宫辉力,赵文吉,等. 北京顺义区地裂缝分布特征及成因分析[J]. 自然灾害学报,2010,19(6):100 − 106. [YANG Tao,GONG Huili,ZHAO Wenji,et al. Distribution characteristics and cause analysis of ground fissures in Shunyi District of Beijing[J]. Journal of Natural Disasters,2010,19(6):100 − 106. (in Chinese with English abstract)]

    YANG Tao, GONG Huili, ZHAO Wenji, et al. Distribution characteristics and cause analysis of ground fissures in Shunyi District of Beijing[J]. Journal of Natural Disasters, 2010, 19(6): 100 − 106. (in Chinese with English abstract)

    [34] 赵龙,罗勇,李玉梅,等. 北京平原区地裂缝受灾体形态特征及影响因素[J]. 水文地质工程地质,2019,46(6):156 − 164. [ZHAO Long,LUO Yong,LI Yumei,et al. Characteristics of disaster-affected bodies and influence factors for earth fissure in Beijing Plain[J]. Hydrogeology & Engineering Geology,2019,46(6):156 − 164. (in Chinese with English abstract)]

    ZHAO Long, LUO Yong, LI Yumei, et al. Characteristics of disaster-affected bodies and influence factors for earth fissure in Beijing Plain[J]. Hydrogeology & Engineering Geology, 2019, 46(6): 156 − 164. (in Chinese with English abstract)

    [35] 赵龙,李玉梅,崔文君,等. 北京宋庄地裂缝灾害特征及影响因素分析[J]. 工程地质学报,2018,26(6):1600 − 1610. [ZHAO Long,LI Yumei,CUI Wenjun,et al. Disaster characteristics and influence factors for ground fissures at songzhuang village in Beijing[J]. Journal of Engineering Geology,2018,26(6):1600 − 1610. (in Chinese with English abstract)]

    ZHAO Long, LI Yumei, CUI Wenjun, et al. Disaster characteristics and influence factors for ground fissures at songzhuang village in Beijing[J]. Journal of Engineering Geology, 2018, 26(6): 1600 − 1610. (in Chinese with English abstract)

    [36] 赵晨曦,陈柘舟,刘建凯,等. 基于野外实地调查的北京宋庄地裂缝经济损失评估[J]. 上海国土资源,2023,44(2):113 − 118. [ZHAO Chenxi,CHEN Zhezhou,LIU Jiankai,et al. Economic loss assessment of ground fissures in Songzhuang,Beijing based on field investigation[J]. Shanghai Land & Resources,2023,44(2):113 − 118. (in Chinese with English abstract)]

    ZHAO Chenxi, CHEN Zhezhou, LIU Jiankai, et al. Economic loss assessment of ground fissures in Songzhuang, Beijing based on field investigation[J]. Shanghai Land & Resources, 2023, 44(2): 113 − 118. (in Chinese with English abstract)

图(19)  /  表(1)
计量
  • 文章访问数:  31
  • HTML全文浏览量:  7
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-28
  • 修回日期:  2024-06-23
  • 录用日期:  2024-10-27
  • 网络出版日期:  2024-10-31

目录

/

返回文章
返回