A review of earthquake-induced loess landslides research and future prospects
-
摘要:
黄土地区地貌形态复杂,地震频发,地震滑坡灾害严重。黄土地震滑坡受多种因素影响,包括黄土边坡地形地貌、地层岩性、动力响应,黄土强度和动力特性,水文地质条件等。目前,黄土地震滑坡研究主要采用室内试验、物理与数值模型试验、野外调研、遥感与监测等手段,研究内容包括黄土地震滑坡成因机理、发育特征与分布、滑坡动力响应和稳定性等方面。文章阐述了黄土地震滑坡国内外研究现状,介绍了一种考虑地震波动特性的拟动力评价方法,并对基于拟动力法开展黄土地震滑坡研究进行了展望。通过分析黄土地震滑坡力学成因机制、研究黄土滑坡地震液化现象、讨论黄土地震滑坡失稳特征,提出能够精确评价黄土地震滑坡稳定性的计算方法,可以为黄土地区防震减灾提供理论依据,也是今后研究的重点。
Abstract:The loess region is characterized by complex geomorphological patterns. This region is prone to frequent earthquakes with serious seismic landslide disasters. Loess seismic landslides are affected by a variety of factors, including the topography and geomorphology of loess slopes, stratigraphic lithology, dynamic responses, strength and dynamic characteristics of loess, and hydrogeological conditions. Current research on loess seismic landslides primarily involves laboratory experiments, physical and numerical simulations, field investigations, and remote sensing and monitoring techniques. The research focuses on the mechanisms, development characteristics, distribution, dynamic responses, and stability of loess seismic landslides. This paper reviews the current state of both domestic and international research on loess seismic landslides, introduces the pseudo-dynamic method that considers seismic wave propagation characteristics, and outlines future research prospects based on this method. By analyzing the mechanics mechanisms of loess seismic landslide, investigating the seismic liquefaction phenomena of loess landslides, and discussing the instability characteristics of these landslides, this study proposes a calculation method to accurately evaluate the stability of loess seismic landslides. This research can provide a theoretical basis for earthquake disaster prevention and mitigation in loess areas, and it represents a key focus for future studies.
-
Keywords:
- pseudo-dynamic method /
- loess /
- earthquake /
- landslide /
- slope
-
0. 引言
膨胀土边坡的稳定性一直是岩土界广泛关注的问题。目前,边坡稳定性分析的常用方法主要包括了极限平衡法、极限分析法等,都建立在极限平衡理论基础之上,并不适用于膨胀土边坡的稳定性分析[1]。另一种常用的方法是有限元强度折减法,早在1975年该方法就被Zienkiewice等[2]用来求解边坡稳定问题,随着计算机硬件技术和有限元软件技术的飞速发展,运用有限元强度折减法分析边坡稳定已经成为新的趋势[3-10]。国内很多学者将强度折减法运用到膨胀土边坡稳定分析中,取得了一系列成果。
周健等[11]利用强度折减法研究膨胀土边坡的稳定性,发现干湿循环会导致膨胀土抗剪强度衰减,且随着干湿循环次数的增加,边坡稳定性降低,安全系数减小。刘明维等[12]研究了强度折减法在膨胀土斜坡地基路堤稳定性分析中的应用,发现强度折减法所得结果与实际情况相符。张硕等[3]基于有限元强度折减法研究了雨季土体增重、强度降低和膨胀作用对膨胀土边坡稳定性的影响,发现强度降低是导致边坡失稳的主要原因,膨胀作用次之,土体增重较小。程灿宇等[13]利用MIDAS/GTS、FLAC和ANSYS三种软件采用强度折减法分别对不同工况进行了稳定性分析,发现弱膨胀土边坡无论采用M-C屈服准则,还是D-P屈服准则所得结果差异不大。谭波等[14]采用强度折减法对不同条件下的膨胀土边坡的安全系数进行了计算,发现次生裂隙面发育是导致膨胀土边坡失稳的主要原因之一。杨才等[15]根据强度折减有限元法对不同条件失稳边坡稳定性分析结果,提出以最大塑性应变以及最小塑性应变的量级指标来判定塑性区贯通时刻。
然而,干湿循环、降雨入渗等因素会引起浅层膨胀土干密度降低、吸力衰减,从而使抗剪强度大幅度下降。目前,在采用强度折减法分析膨胀土边坡稳定性的同时系统考虑抗剪强度衰减影响的研究尚不多见。为此,本文采用试验与数值模拟相结合的方式,系统地考虑了抗剪强度衰减特性的膨胀土边坡稳定性分析。首先对广西宁明膨胀土开展了室内直剪试验,分析了含水量、干密度对膨胀土抗剪强度衰减的影响;再以此为依据,利用Midas有限元分析软件研究考虑抗剪强度衰减特性对膨胀土边坡稳定性安全系数的影响,获取了边坡安全系数随抗剪强度折减的动态变化规律,以期为工程实践提供参考。
1. 抗剪强度衰减特性试验设计
1.1 试验用土
土样取自广西崇左-夏石镇某高速公路膨胀土边坡路段,其天然含水量、最优含水量和天然干密度分别为32.5%,24%和1.40 g/cm3,其他土性指标,比重(Gs),液限(WL),塑限(WP),塑性指数(IP),自由膨胀率(σf)见表1。自由膨胀率为42.8%,按照《膨胀土地区建筑技术规范》[16]的分类,该膨胀土为弱膨胀性膨胀土。
表 1 宁明膨胀土基本土体参数Table 1. Basic soil parameters of Ningming expansive soil参数 Gs/(g.cm−3) wL/% wP/% IP σf/% 取值 2.80 59.11 24.68 34.43 42.8 1.2 试样制备及试验方法
1.2.1 试样制备
首先,将现场取回的扰动土试样碾散过2 mm筛,过筛后放入105℃的烘箱中烘24h,使试样具有相同的初始结构,并将烘干土用收纳箱密封保存备用。接着,按目标含水量(控制干密度为1.6 g/cm3)和目标干密度(控制含水量18%)要求配制成湿土,并装入保鲜袋,经闷料24 h后测得土样的最终含水量与目标含水量之间误差不超过1%;最后,为保证环刀试样均匀一致,采用自制的模具(图1)进行制样,并利用液压千斤顶脱模推出,控制试样的直径为61.8 mm,高度为15 mm,目的是使试样在竖直方向上能够充分膨胀,每组平行土样密度差不超过±0.02 g/cm3,否则废弃重做。试样配制过程如图2,最终制成的每个环刀试样表面均平整无破损,且长度误差不超过0.2 mm,则为满足要求的试样。
1.2.2 试验方法
以初始干密度为1.6 g/cm3,含水量分别为9%、12%、15%、18%、21%、24%和27%制取环刀试样7组,每组4个;并以初始含水量为18%,干密度分别为1.4、1.5、1.6和1.7 g/cm3制取环刀试样4组,每组4个,然后进行常规直剪试验(图3),试验施加的竖向压力分别为100 kPa、200 kPa、300 kPa、400 kPa,剪切速率为0.02 mm/min,初始剪切位移均保持在3.850 mm左右,剪切位移量程13.000 mm。
2. 抗剪强度衰减特性试验结果与分析
2.1 含水量对抗剪强度衰减的影响分析
为研究广西宁明膨胀土的抗剪强度随含水量变化的规律,对不同含水量的土样进行直剪试验,试验结果如表2所示。
表 2 宁明膨胀土抗剪强度试验结果表Table 2. Results of shear strength of Ningming expensive soils试验参数 w/% φ/(°) c/kPa 试验结果 8.80 27.3 100.36 11.7 24.56 93.28 14.6 21.80 67.34 17.5 19.82 54.64 20.8 17.92 41.22 23.3 15.20 30.86 26.1 12.38 9.90 根据表2可绘制出宁明膨胀土黏聚力和内摩擦角与含水量的关系如图4和图5所示,拟合后可得到黏聚力和内摩擦角与含水量的关系式:
$$ c = { - 5.192}w + 147.9 $$ (1) $$ \varphi = - 0.827w + 34.36 $$ (2) 由式(1)和(2)可知,c和φ与w都存在近似线性的关系,这与文献[17-18]结果一致,含水量每增大5%,其黏聚力约减小26 kPa,内摩擦角减小4.2°左右;为更好的表示c随w的衰减规律,参考吕海波等[19]的研究,可计算出c的衰减率为:
$$ \eta = \frac{{\left| {{c_0} - {c_1}} \right|}}{{{c_0}}} \times 100\% $$ (3) 式中:η——黏聚力衰减率;
c0——初始黏聚力;
c1——随含水量变化后的黏聚力。
根据表3可知,随着宁明膨胀土含水量的逐渐增大黏聚力不断衰减,在最低目标含水量9%以3%递增至目标含水量27%的过程中,黏聚力的衰减率变化趋势为增大-减小-增大,说明膨胀土在低含水量和接近饱和含水量时,黏聚力对含水量的变化显得十分敏感。
表 3 宁明膨胀土黏聚力衰减率计算结果表Table 3. Results of cohesion decay rate of Ningming expansive soil试验参数 w/% c/kPa η/% 试验结果 8.8 100.36 − 11.7 93.28 7.05 14.6 67.34 27.81 17.5 54.64 18.86 20.8 41.22 24.56 23.3 30.86 25.13 26.1 9.9 67.92 在试样ρd保持一致的情况下(1.6 g/cm3),可从图6及图7中看出在相同垂直应力作用下,抗剪强度随着w的增大呈现减小的趋势。
上述试验结果表明,宁明膨胀土的抗剪强度随着含水量的改变发生显著变化;主要表现为在含水量增大时黏聚力和内摩擦角发生衰减,其中黏聚力的衰减较内摩擦角更为明显。
2.2 干密度对抗剪强度衰减的影响分析
根据表4数据可拟合出试样黏聚力和内摩擦角随干密度的变化规律,如图8、图9所示。
表 4 不同干密度下试样试验结果记录表Table 4. Record table of test results under different dry densities试验参数 ρd/(g·cm−3) c/(kPa) φ/(°) 试验结果 1.7 97.26 26.5 1.6 54.64 19.82 1.5 40.34 17.82 1.4 37.57 16.87 由图8和图9可观察出宁明膨胀土的黏聚力和内摩擦角随干密度的变化曲线符合乘幂函数的拟合结果,其中:
$$ c = 0.126{{\rm{e}}^{3.884{\rho _{\rm{d}}}}} $$ (4) $$ \varphi = 1.631{{\rm{e}}^{1.614{\rho _{\rm{d}}}}} $$ (5) 分析式(4)可知试样c随着ρd的减小而减小,且随着ρd的减小,c的衰减速率由快到慢,并最终趋于稳定;而在接近最大干密度(1.78 g/cm3)时变化较为显著,在干密度由1.4 g/cm3增大至1.6 g/cm3时,c增加了17.07 kPa;在干密度由1.6 g/cm3增大至1.7 g/cm3时,c增加了42.62 kPa。而由式(5)能看出φ亦随着ρd的减小而减小,但其整体的变化幅度并不大,干密度1.4 g/cm3与1.7 g/cm3的试样φ相差约9.6°;图10中各级载荷下的抗剪强度都随着试样ρd的减小而降低,且其变化幅度在高垂直应力条件下更为显著。
干密度对宁明膨胀土抗剪强度的影响主要体现在黏聚力上,试样干密度越小,单位体积土体的土颗粒越少,土粒间水膜越薄,其抗剪强度越小;此外,膨胀土干密度越小,其吸力越大,试样的抗剪强度越低;而干密度对于内摩擦角的整体影响并不显著,其变化在10°以内。
3. 考虑抗剪强度衰减特性的边坡稳定性分析
3.1 几何模型
根据广西崇左-夏石镇某高速公路膨胀土边坡为研究对象,并参考该公路的地质勘察报告,该边坡土质主要由填土(①1和①2)、黏土②、强风化泥岩③和中风化泥岩④组成。同时根据地质调查及钻探、探槽揭示,该边坡滑动带基本位于黏土层,且下部强风化泥岩等土体不透水,大气影响深度为7 m,刚好大致为填土厚度和黏土厚度之和,影响急剧层深度为2.5 m。相关土层天然状态下基本参数指标见表5。
表 5 土层相关参数Table 5. Soil layer related parameters地层岩性 厚度
/m重度
/(kN·m−3)内摩擦角
/(°)黏聚力
/kPa其它 填土①1 0.2~1 18.0 5 24 成分黏土 填土①2 2.5~3.3 18.8 30 7 上层砾砂,
下层碎石黏土② 0.3~4 18.4 8.4 35.6 中等膨胀土 强风化泥岩③ 0.6~1 19.3 25 45 质量等级Ⅴ级 中风化泥岩④ 未钻穿 19.6 35 65 质量等级Ⅴ级 结合上述实际工程地质勘察报告,将膨胀土边坡考虑为非匀质边坡,同时为提高模型求解时间,取黏土弹性模量12000 kPa,容重18.4 N/m3,泊松比0.3,边坡高20 m,坡比1∶1.5。为避免尺寸效应带来的误差和便于模型求解收敛,坡顶取15 m,坡底取25 m,网格按线性梯度(长度)划分,起始长度1.2 m,结束长度0.5 m。由于填土土层由于土体较松散,易膨胀开裂,在降雨作用下容易引发降雨入渗,易软化下部土体,因此实际工程中对该部分填土进行了挖除。填土挖除后,为充分合理考虑到大气影响层对膨胀土边坡中黏土的影响,同时又不会影响到下部不透水泥岩,取大气影响层为距离坡面4 m范围的土体,正好为黏土厚度,急剧层为距离坡面1.5 m范围的土体(图11)。
3.2 含水量对稳定性的影响
根据室内直剪试验结果,同时考虑到膨胀土具有浅层性,将测得的7个含水量下(干密度均为1.6 g/cm3)的膨胀土抗剪强度参数指标c和φ赋予给受大气影响的风化层土体,即距离坡面4 m范围内的黏土。强、中风化泥岩层土体参数指标取地质勘察报告的值,具体数值见表5。计算得到不同含水量w下膨胀土边坡整体位移和潜在滑移面,如图12、图13所示。
分析图12和图13可知,随着含水量w的增大,边坡的整体位移整体呈增大趋势,非饱和膨胀土边坡的浅层破坏由受大气影响层膨胀土强度衰减导致。随着含水量的增加,土体的c不断减小,边坡位移不断增大,滑移面逐渐变浅;破坏形式为浅层滑塌式的破坏。边坡失稳的滑移面位置位于大气影响层和不透水泥岩的交界处,且与黏土的底部相切。
基于相同干密度,不同含水量下膨胀土的剪切试验和地质勘察报告,利用有限元分析软件对边坡进行稳定性分析,可得到随着膨胀土含水量的变化对边坡稳定性安全系数的影响规律,如图14所示的曲线,表达式为:
$$ y = - {\text{0}}{\text{.008}}{x^2} + {\text{0}}{\text{.1884}}x + {\text{2}}{\text{.025}} $$ (6) 随着w的增大,膨胀土的强度参数指标不断衰减,含水量较高比低含水量情况下的衰减速度更大。同时,膨胀土边坡在天然状况下处于稳定状态,但当w增大至27%时,其Fs为0.850,稳定性转变为失稳状态,发生滑坡、坍塌等工程现象;在此基础上,若继续增大含水量,膨胀土边坡将可能由浅层失稳进入完全失稳状态,这与实际工程中,在长时间降雨后,曾出现的多次滑坡现象类似。
3.3 干密度对稳定性的影响
根据试验结果,将测得的四个干密度下(含水量均为18%)的膨胀土抗剪强度参数指标c和φ赋予给距离坡面4 m范围的黏土。强、中风化泥岩层土体抗剪强度参数指标取地质勘察报告值,具体数值见表5。计算得到不同ρd下膨胀土边坡整体位移和潜在滑移面,如图15、图16所示。
从图15和图16中可以看出试样的ρd越小,边坡位移越大,潜在滑移面变浅;这是因为土体的c随着ρd的减小而减小,使得其抗剪强度降低;此时,边坡的破坏形式由整体滑动变为浅层滑塌。基于相同含水量,不同干密度下膨胀土的剪切试验和地质勘察报告,利用有限元分析软件对边坡进行稳定性分析,可得到随着膨胀土干密度的变化对边坡稳定性安全系数的影响规律,如图17所示的曲线,其表达式为:
$$ y = {\text{8}}{\text{.375}}{x^2} - {\text{23}}{\text{.24}}x + {\text{18}}{\text{.41}} $$ (7) 试样ρd越小,其抗剪强度越低;且在ρd越大时其Fs增大趋势越为显著;1.5 g/cm3干密度下的Fs为2.409,比1.4 g/cm3的高出0.124,而1.7 g/cm3干密度下的Fs与1.6 g/cm3条件下的差值为0.459。
4. 结 论
(1)含水量的增大、干密度的减小都会引起膨胀土的峰值抗剪强度、黏聚力以及内摩擦角发生不同程度的衰减,其中,黏聚力的衰减幅度相较于内摩擦角更大。
(2)通过多次膨胀土强度折减的方法可以很好地模拟降雨过程中由抗剪强度衰减引起的边坡稳定性的动态变化:风化层土体强度接近未风化层土体强度时,边坡处于稳定状态,潜在滑动面穿过分层界面;随着含水量增大、干密度变小,风化层抗剪强度会不断衰减,引起潜在滑动面逐渐外移,边坡稳定性降低。
(3)数值模拟结果表明:与干密度减小相比,含水量的增大对边坡稳定更为不利,含水量增加到27%以后,膨胀土边坡由稳定状态变为欠稳定状态,因此在分析膨胀土边坡稳定性时,应着重考虑含水量变化的影响。
-
-
[1] 唐辉明. 重大滑坡预测预报研究进展与展望[J]. 地质科技通报,2022,41(6):1 − 13. [TANG Huiming. Advance and prospect of major landslides prediction and forecasting[J]. Bulletin of Geological Science and Technology,2022,41(6):1 − 13. (in Chinese with English abstract)] TANG Huiming. Advance and prospect of major landslides prediction and forecasting[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 1 − 13. (in Chinese with English abstract)
[2] 铁永波,张宪政,卢佳燕,等. 四川省泸定县Ms 6.8级地震地质灾害发育规律与减灾对策[J]. 水文地质工程地质,2022,49(6):1 − 12. [TIE Yongbo,ZHANG Xianzheng,LU Jiayan,et al. Characteristics of geological hazards and it’s mitigations of the Ms 6.8 earthquake in Luding County, Sichuan Province[J]. Hydrogeology & Engineering Geology,2022,49(6):1 − 12. (in Chinese with English abstract)] TIE Yongbo, ZHANG Xianzheng, LU Jiayan, et al. Characteristics of geological hazards and it’s mitigations of the Ms 6.8 earthquake in Luding County, Sichuan Province[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 1 − 12. (in Chinese with English abstract)
[3] 黄润秋,李为乐. “5•12” 汶川大地震触发地质灾害的发育分布规律研究[J]. 岩石力学与工程学报,2008,27(12):2585 − 2592. [HUANG Runqiu,LI Weile. Research on development and distribution rules of geohazards induced by Wenchuan earthquake on 12th May,2008[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(12):2585 − 2592. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-6915.2008.12.028 HUANG Runqiu, LI Weile. Research on development and distribution rules of geohazards induced by Wenchuan earthquake on 12th May, 2008[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(12): 2585 − 2592. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2008.12.028
[4] 国务院抗震救灾总指挥部. 汶川特大地震抗震救灾总结报告[R]. 2008. [State Council Earthquake Relief Headquarters. Wenchuan earthquake relief summary report[R]. 2008. (in Chinese)] State Council Earthquake Relief Headquarters. Wenchuan earthquake relief summary report[R]. 2008. (in Chinese)
[5] 殷跃平. 汶川八级地震地质灾害研究[J]. 工程地质学报,2008,16(4):433 − 444. [YIN Yueping. Researches on the geo-hazards triggered by Wenchuan earthquake,Sichuan[J]. Journal of Engineering Geology,2008,16(4):433 − 444. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1004-9665.2008.04.001 YIN Yueping. Researches on the geo-hazards triggered by Wenchuan earthquake, Sichuan[J]. Journal of Engineering Geology, 2008, 16(4): 433 − 444. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2008.04.001
[6] 张倬元. 工程地质分析原理[M]. 4版. 北京:地质出版社,2016. [ZHANG Zhuoyuan. Principles of engineering geological analysis[M]. 4th ed. Beijing:Geological Publishing House,2016. (in Chinese)] ZHANG Zhuoyuan. Principles of engineering geological analysis[M]. 4th ed. Beijing: Geological Publishing House, 2016. (in Chinese)
[7] 王椿镛,段永红,吴庆举,等. 华北强烈地震深部构造环境的探测与研究[J]. 地震学报,2016,38(4):511 − 549. [WANG Chunyong,DUAN Yonghong,WU Qingju,et al. Exploration on the deep tectonic environment of strong earthquakes in North China and relevant research findings[J]. Acta Seismologica Sinica,2016,38(4):511 − 549. (in Chinese with English abstract)] WANG Chunyong, DUAN Yonghong, WU Qingju, et al. Exploration on the deep tectonic environment of strong earthquakes in North China and relevant research findings[J]. Acta Seismologica Sinica, 2016, 38(4): 511 − 549. (in Chinese with English abstract)
[8] 孙金龙,徐辉龙,詹文欢,等. 南海北部陆缘地震带的活动性与发震机制[J]. 热带海洋学报,2012,31(3):40 − 47. [SUN Jinlong,XU Huilong,ZHAN Wenhuan,et al. Activity and seismogenic mechanism of the continental margin seismic belt in the northern South China Sea[J]. Journal of Tropical Oceanography,2012,31(3):40 − 47. (in Chinese with English abstract)] SUN Jinlong, XU Huilong, ZHAN Wenhuan, et al. Activity and seismogenic mechanism of the continental margin seismic belt in the northern South China Sea[J]. Journal of Tropical Oceanography, 2012, 31(3): 40 − 47. (in Chinese with English abstract)
[9] 徐杰,周本刚,计凤桔,等. 华北渤海湾盆地区大震发震构造的基本特征[J]. 地震地质,2012,34(4):618 − 636. [XU Jie,ZHOU Bengang,JI Fengju,et al. Features of seismogenic structures of great earthquakes in the Bohai Bay Basin area,North China[J]. Seismology and Geology,2012,34(4):618 − 636. (in Chinese with English abstract)] DOI: 10.3969/j.issn.0253-4967.2012.04.008 XU Jie, ZHOU Bengang, JI Fengju, et al. Features of seismogenic structures of great earthquakes in the Bohai Bay Basin area, North China[J]. Seismology and Geology, 2012, 34(4): 618 − 636. (in Chinese with English abstract) DOI: 10.3969/j.issn.0253-4967.2012.04.008
[10] 陈祥熊,袁定强,吴长江. 台湾海峡南部Ms 7.3地震震源破裂特征及东南沿海地震形势分析[J]. 地震学报,1996(2):145 − 155. [CHEN Xiangxiong,YUAN Dingqiang,WU Changjiang. Focal rupture characteristics of the Ms 7.3 earthquake in the south of Taiwan strait and analysis of seismic situation along the southeast coast[J]. Acta Seismological Sinica,1996(2):145 − 155. (in Chinese with English abstract)] CHEN Xiangxiong, YUAN Dingqiang, WU Changjiang. Focal rupture characteristics of the Ms 7.3 earthquake in the south of Taiwan strait and analysis of seismic situation along the southeast coast[J]. Acta Seismological Sinica, 1996(2): 145 − 155. (in Chinese with English abstract)
[11] 王卫民,赵连锋,李娟,等. 四川汶川8.0级地震震源过程[J]. 地球物理学报,2008,51(5):1403 − 1410. [WANG Weimin,ZHAO Lianfeng,LI Juan,et al. Rupture process of the M 8.0 Wenchuan earthquake of Sichuan,China[J]. Chinese Journal of Geophysics,2008,51(5):1403 − 1410. (in Chinese with English abstract)] DOI: 10.3321/j.issn:0001-5733.2008.05.013 WANG Weimin, ZHAO Lianfeng, LI Juan, et al. Rupture process of the M 8.0 Wenchuan earthquake of Sichuan, China[J]. Chinese Journal of Geophysics, 2008, 51(5): 1403 − 1410. (in Chinese with English abstract) DOI: 10.3321/j.issn:0001-5733.2008.05.013
[12] 李锦轶,刘建峰,曲军峰,等. 中国东北地区主要地质特征和地壳构造格架[J]. 岩石学报,2019,35(10):2989 − 3016. [LI Jinyi,LIU Jianfeng,QU Junfeng,et al. Major geological features and crustal tectonic framework of Northeast China[J]. Acta Petrologica Sinica,2019,35(10):2989 − 3016. (in Chinese with English abstract)] DOI: 10.18654/1000-0569/2019.10.04 LI Jinyi, LIU Jianfeng, QU Junfeng, et al. Major geological features and crustal tectonic framework of Northeast China[J]. Acta Petrologica Sinica, 2019, 35(10): 2989 − 3016. (in Chinese with English abstract) DOI: 10.18654/1000-0569/2019.10.04
[13] 潘桂棠,肖庆辉,陆松年,等. 中国大地构造单元划分[J]. 中国地质,2009,36(1):1 − 28. [PAN Guitang,XIAO Qinghui,LU Songnian,et al. Subdivision of tectonic units in China[J]. Geology in China,2009,36(1):1 − 28. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-3657.2009.01.001 PAN Guitang, XIAO Qinghui, LU Songnian, et al. Subdivision of tectonic units in China[J]. Geology in China, 2009, 36(1): 1 − 28. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3657.2009.01.001
[14] 李锦轶,张进,刘建峰,等. 中国大陆主要变形系统[J]. 地学前缘,2014,21(3):226 − 245. [LI Jinyi,ZHANG Jin,LIU Jianfeng,et al. Major deformation systems in the Mainland of China[J]. Earth Science Frontiers,2014,21(3):226 − 245. (in Chinese with English abstract)] LI Jinyi, ZHANG Jin, LIU Jianfeng, et al. Major deformation systems in the Mainland of China[J]. Earth Science Frontiers, 2014, 21(3): 226 − 245. (in Chinese with English abstract)
[15] 王涛,吴树仁,石菊松,等. 历史强震对渭河中游群发大型滑坡的诱发效应反演[J]. 地球学报,2015,36(3):352 − 360. [WANG Tao,WU Shuren,SHI Jusong,et al. Inversion of the inducing effects of historical strong earthquakes on large-scale landslides around the middle reaches of the Weihe River[J]. Acta Geoscientica Sinica,2015,36(3):352 − 360. (in Chinese with English abstract)] WANG Tao, WU Shuren, SHI Jusong, et al. Inversion of the inducing effects of historical strong earthquakes on large-scale landslides around the middle reaches of the Weihe River[J]. Acta Geoscientica Sinica, 2015, 36(3): 352 − 360. (in Chinese with English abstract)
[16] 徐岳仁,张伟恒,李文巧,等. 1556年华县地震同震黄土滑坡密集区的发现及意义[J]. 地震地质,2018,40(4):721 − 737. [XU Yueren,ZHANG Weiheng,LI Wenqiao,et al. Distribution characteristics of the AD 1556 Huaxian earthquake triggered disasters and its implications[J]. Seismology and Geology,2018,40(4):721 − 737. (in Chinese with English abstract)] XU Yueren, ZHANG Weiheng, LI Wenqiao, et al. Distribution characteristics of the AD 1556 Huaxian earthquake triggered disasters and its implications[J]. Seismology and Geology, 2018, 40(4): 721 − 737. (in Chinese with English abstract)
[17] 张振中. 黄土地震灾害预测[M]. 北京:地震出版社,1999. [ZHANG Zhenzhong. Earthquake disaster prediction of loess[M]. Beijing:Seismological Press,1999. (in Chinese)] ZHANG Zhenzhong. Earthquake disaster prediction of loess[M]. Beijing: Seismological Press, 1999. (in Chinese)
[18] 王亚强,王兰民,张小曳. GIS支持下的黄土高原地震滑坡区划研究[J]. 地理科学,2004,24(2):170 − 176. [WANG Yaqiang,WANG Lanmin,ZHANG Xiaoye. GIS based seismic landslide zonation of the Loess Plateau[J]. Scientia Geographica Sinica,2004,24(2):170 − 176. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0690.2004.02.007 WANG Yaqiang, WANG Lanmin, ZHANG Xiaoye. GIS based seismic landslide zonation of the Loess Plateau[J]. Scientia Geographica Sinica, 2004, 24(2): 170 − 176. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0690.2004.02.007
[19] 王海科. 重大工程影响下黄土渗透特性与入渗机理研究[D]. 西安:长安大学,2023. [WANG Haike. Study on seepage characteristics and infiltration mechanism of loess under the influence of major projects[D]. Xi’an:Changan University,2023. (in Chinese with English abstract)] WANG Haike. Study on seepage characteristics and infiltration mechanism of loess under the influence of major projects[D]. Xi’an: Changan University, 2023. (in Chinese with English abstract)
[20] 王兰民,蒲小武,陈金昌. 黄土高原地震诱发滑坡分布特征与灾害风险[J]. 城市与减灾,2019(3):33 − 40. [WANG Lanmin,PU Xiaowu,CHEN Jinchang. Distribution characteristics and disaster risk of earthquake-induced landslides in Loess Plateau[J]. City and Disaster Reduction,2019(3):33 − 40. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-0495.2019.03.009 WANG Lanmin, PU Xiaowu, CHEN Jinchang. Distribution characteristics and disaster risk of earthquake-induced landslides in Loess Plateau[J]. City and Disaster Reduction, 2019(3): 33 − 40. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-0495.2019.03.009
[21] 王绅皓,谢婉丽,常一伦,等. 浸水作用下湿陷性黄土微观结构及分形特征研究[J]. 高校地质学报,2023,29(2):280 − 288. [WANG Shenhao,XIE Wanli,CHANG Yilun,et al. Microstructures and fractal characteristics of collapsible loess subjected to water immersion[J]. Geological Journal of China Universities,2023,29(2):280 − 288. (in Chinese with English abstract)] WANG Shenhao, XIE Wanli, CHANG Yilun, et al. Microstructures and fractal characteristics of collapsible loess subjected to water immersion[J]. Geological Journal of China Universities, 2023, 29(2): 280 − 288. (in Chinese with English abstract)
[22] 李维光,张继春. 地震作用下顺层岩质边坡稳定性的拟静力分析[J]. 山地学报,2007,25(2):184 − 189. [LI Weiguang,ZHANG Jichun. Equivalent static stability study on rock mass bedding slope under blasting[J]. Mountain Research,2007,25(2):184 − 189. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1008-2786.2007.02.009 LI Weiguang, ZHANG Jichun. Equivalent static stability study on rock mass bedding slope under blasting[J]. Mountain Research, 2007, 25(2): 184 − 189. (in Chinese with English abstract) DOI: 10.3969/j.issn.1008-2786.2007.02.009
[23] 邓东平,李亮,罗伟. 地震荷载作用下土钉支护边坡稳定性拟静力分析[J]. 岩土力学,2012,33(6):1787 − 1794. [DENG Dongping,LI Liang,LUO Wei. Stability analysis of slope protected by soil nailing under earthquake loads based on pseudo static method[J]. Rock and Soil Mechanics,2012,33(6):1787 − 1794. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2012.06.029 DENG Dongping, LI Liang, LUO Wei. Stability analysis of slope protected by soil nailing under earthquake loads based on pseudo static method[J]. Rock and Soil Mechanics, 2012, 33(6): 1787 − 1794. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2012.06.029
[24] 李泊良,张帆宇. 降雨和地震条件下浅层黄土滑坡三维稳定性评价[J]. 工程科学学报,2022,44(3):440 − 450. [LI Boliang,ZHANG Fanyu. Three-dimensional stability evaluation of shallow loess landslides under rainfall and earthquake conditions[J]. Chinese Journal of Engineering,2022,44(3):440 − 450. (in Chinese with English abstract)] DOI: 10.3321/j.issn.1001-053X.2022.3.bjkjdxxb202203013 LI Boliang, ZHANG Fanyu. Three-dimensional stability evaluation of shallow loess landslides under rainfall and earthquake conditions[J]. Chinese Journal of Engineering, 2022, 44(3): 440 − 450. (in Chinese with English abstract) DOI: 10.3321/j.issn.1001-053X.2022.3.bjkjdxxb202203013
[25] 赵振明,唐亚明,徐永,等. 山西大宁县典型滑坡体地貌特征与降雨和强震关系[J]. 地震工程学报,2020,42(6):1641 − 1649. [ZHAO Zhenming,TANG Yaming,XU Yong,et al. Geomorphic characteristics of typical landslides in Daning County,Shanxi Province,China,and its relationship with rainfall and strong earthquakes[J]. China Earthquake Engineering Journal,2020,42(6):1641 − 1649. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0844.2020.06.1641 ZHAO Zhenming, TANG Yaming, XU Yong, et al. Geomorphic characteristics of typical landslides in Daning County, Shanxi Province, China, and its relationship with rainfall and strong earthquakes[J]. China Earthquake Engineering Journal, 2020, 42(6): 1641 − 1649. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2020.06.1641
[26] CLOSE U,MCCORMICK E. Where the mountains walked[J]. National Geographic Magazine,1922,41(5):445 − 464.
[27] 王兰民. 黄土动力学[M]. 北京:地震出版社,2003. [WANG Lanmin. Loess dynamics[M]. Beijing:Seismological Press,2003. (in Chinese)] WANG Lanmin. Loess dynamics[M]. Beijing: Seismological Press, 2003. (in Chinese)
[28] 李昭淑,崔鹏. 1556年华县大地震的次生灾害[J]. 山地学报,2007(4):425 − 430. [LI Zhaoshu,CUI Peng. The secondary disasters of great Huaxian earthquake in 1556[J]. Journal of Mountain science,2007(4):425 − 430. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1008-2786.2007.04.007 LI Zhaoshu, CUI Peng. The secondary disasters of great Huaxian earthquake in 1556[J]. Journal of Mountain science, 2007(4): 425 − 430. (in Chinese with English abstract) DOI: 10.3969/j.issn.1008-2786.2007.04.007
[29] 吕艳,董颖,冯希杰,等. 1556年陕西关中华县特大地震地质灾害遗迹发育特征[J]. 工程地质学报,2014,22(2):300 − 308. [LYU Yan,DONG Ying,FENG Xijie,et al. Characteristics of geological relics due to 1556 Huaxian great earthquake in Guanzhong area of Shaanxi Province,China[J]. Journal of Engineering Geology,2014,22(2):300 − 308. (in Chinese with English abstract)] LYU Yan, DONG Ying, FENG Xijie, et al. Characteristics of geological relics due to 1556 Huaxian great earthquake in Guanzhong area of Shaanxi Province, China[J]. Journal of Engineering Geology, 2014, 22(2): 300 − 308. (in Chinese with English abstract)
[30] WANG T,WU S R,SHI J S,et al. Assessment of the effects of historical strong earthquakes on large-scale landslide groupings in the Wei River midstream[J]. Engineering Geology,2018,235:11 − 19. DOI: 10.1016/j.enggeo.2018.01.020
[31] 徐岳仁,杜朋,李文巧,等. 1718年通渭M 7.5地震滑坡特征分析——黄土高原历史强震触发滑坡数据库的应用[J]. 地球物理学报,2020,63(3):1235 − 1248. [XU Yueren,DU Peng,LI Wenqiao,et al. A case study on AD 1718 Tongwei M 7.5 earthquake triggered landslides:Application of landslide database triggered by historical strong earthquakes on the Loess Plateau[J]. Chinese Journal of Geophysics,2020,63(3):1235 − 1248. (in Chinese with English abstract)] DOI: 10.6038/cjg2020N0146 XU Yueren, DU Peng, LI Wenqiao, et al. A case study on AD 1718 Tongwei M 7.5 earthquake triggered landslides: Application of landslide database triggered by historical strong earthquakes on the Loess Plateau[J]. Chinese Journal of Geophysics, 2020, 63(3): 1235 − 1248. (in Chinese with English abstract) DOI: 10.6038/cjg2020N0146
[32] ZHUANG Jianqi,PENG Jianbing,XU Chong,et al. Distribution and characteristics of loess landslides triggered by the 1920 Haiyuan Earthquake,Northwest of China[J]. Geomorphology,2018,314:1 − 12. DOI: 10.1016/j.geomorph.2018.04.012
[33] 王磊,李孝波,苏占东,等. 高密度电法在黄土-泥岩接触面滑坡勘察中的应用[J]. 地质力学学报,2019,25(4):536 − 543. [WANG Lei,LI Xiaobo,SU Zhandong,et al. Application of high-density electrical method in loess-mudstone interface landslide investigation[J]. Journal of Geomechanics,2019,25(4):536 − 543. (in Chinese with English abstract)] DOI: 10.12090/j.issn.1006-6616.2019.25.04.052 WANG Lei, LI Xiaobo, SU Zhandong, et al. Application of high-density electrical method in loess-mudstone interface landslide investigation[J]. Journal of Geomechanics, 2019, 25(4): 536 − 543. (in Chinese with English abstract) DOI: 10.12090/j.issn.1006-6616.2019.25.04.052
[34] 冯卫,毕银强,唐亚明,等. 甘肃礼县至罗家堡断裂带沿线地质灾害分布规律及断层效应研究[J]. 自然灾害学报,2021,30(2):183 − 190. [FENG Wei,BI Yinqiang,TANG Yaming,et al. Research on the distribution law of geological disasters and fault effect along the Lixian-Luojiabu fault zone in Gansu[J]. Journal of Natural Disasters,2021,30(2):183 − 190. (in Chinese with English abstract)] FENG Wei, BI Yinqiang, TANG Yaming, et al. Research on the distribution law of geological disasters and fault effect along the Lixian-Luojiabu fault zone in Gansu[J]. Journal of Natural Disasters, 2021, 30(2): 183 − 190. (in Chinese with English abstract)
[35] 王兰民,吴志坚. 岷县漳县6.6级地震震害特征及其启示[J]. 地震工程学报,2013,35(3):401 − 412. [WANG Lanmin,WU Zhijian. Earthquake damage characteristics of the Minxian-Zhangxian Ms6.6 earthquake and its lessons[J]. China Earthquake Engineering Journal,2013,35(3):401 − 412. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0844.2013.03.0401 WANG Lanmin, WU Zhijian. Earthquake damage characteristics of the Minxian-Zhangxian Ms6.6 earthquake and its lessons[J]. China Earthquake Engineering Journal, 2013, 35(3): 401 − 412. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2013.03.0401
[36] 许冲,吴熙彦,徐锡伟. 黄土高原及邻区的地震滑坡[J]. 工程地质学报,2016,26(增刊):260 − 273. [XU Chong,WU Xiyan,XU Xiwei. Earthquake-triggered landslides in the loess plateau and its adjacent areas[J]. Journal of Engineering Geology,2016,26(Sup):260 − 273. (in Chinese with English abstract)] XU Chong, WU Xiyan, XU Xiwei. Earthquake-triggered landslides in the loess plateau and its adjacent areas[J]. Journal of Engineering Geology, 2016, 26(Sup): 260 − 273. (in Chinese with English abstract)
[37] 黄雅虹. 地震作用下黄土斜坡的稳定性分析预测[J]. 西北地震学报,1998(3):53 − 59. [HUANG Yahong. Analysis and prediction for stability of loess slope under the effect of earthquakes[J]. Northwestern Seismological Journal,1998(3):53 − 59. (in Chinese with English abstract)] HUANG Yahong. Analysis and prediction for stability of loess slope under the effect of earthquakes[J]. Northwestern Seismological Journal, 1998(3): 53 − 59. (in Chinese with English abstract)
[38] 马学宁. 地震作用下黑方台黄土滑坡稳定性分析及治理措施[J]. 湖南工程学院学报(自然科学版),2013,23(1):77 − 81. [MA Xuening. Stability analysis and control measures of earthquake-induced loess landslides in Heifangtai[J]. Journal of Hunan Institute of Engineering (Natural Science Edition),2013,23(1):77 − 81. (in Chinese with English abstract)] MA Xuening. Stability analysis and control measures of earthquake-induced loess landslides in Heifangtai[J]. Journal of Hunan Institute of Engineering (Natural Science Edition), 2013, 23(1): 77 − 81. (in Chinese with English abstract)
[39] 张振中,郑恒利,王兰民. 黄土随机振动强度参数在地震滑坡分析中的应用[J]. 西北地震学报,1991(3):45 − 49. [ZHANG Zhenzhong,ZHEGN Hengli,WANG Lanmin. Application of loess strength parameters under random vibration in analysis of seismic landslides[J]. Northwestern Seismological Journal,1991(3):45 − 49. (in Chinese with English abstract)] ZHANG Zhenzhong, ZHEGN Hengli, WANG Lanmin. Application of loess strength parameters under random vibration in analysis of seismic landslides[J]. Northwestern Seismological Journal, 1991(3): 45 − 49. (in Chinese with English abstract)
[40] 邹谨敞,邵顺妹. 海原地震滑坡及其分布特征探讨[J]. 内陆地震,1996(1):1 − 6. [ZHOU Jinchang,ZHAO Shunmei. Characteristics of Haiyuan earthquake landslide and its distribution[J]. Inland Earthquake,1996(1):1 − 6. (in Chinese with English abstract)] ZHOU Jinchang, ZHAO Shunmei. Characteristics of Haiyuan earthquake landslide and its distribution[J]. Inland Earthquake, 1996(1): 1 − 6. (in Chinese with English abstract)
[41] 谢定义. 试论我国黄土力学研究中的若干新趋向[J]. 岩土工程学报,2001,23(1):3 − 13. [XIE Dingyi. Exploration of some new tendencies in research of loess soil mechanics[J]. Chinese Journal of Geotechnical Engineering,2001,23(1):3 − 13. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-4548.2001.01.002 XIE Dingyi. Exploration of some new tendencies in research of loess soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1): 3 − 13. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-4548.2001.01.002
[42] 陈存礼,杨鹏,何军芳. 饱和击实黄土的动力特性研究[J]. 岩土力学,2007,28(8):1551 − 1556. [CHEN Cunli,YANG Peng,HE Junfang. Research on dynamic characteristics of saturated compacted loess[J]. Rock and Soil Mechanics,2007,28(8):1551 − 1556. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2007.08.005 CHEN Cunli, YANG Peng, HE Junfang. Research on dynamic characteristics of saturated compacted loess[J]. Rock and Soil Mechanics, 2007, 28(8): 1551 − 1556. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2007.08.005
[43] CHEN Huie,JIANG Yaling,NIU Cencen,et al. Dynamic characteristics of saturated loess under different confining pressures:A microscopic analysis[J]. Bulletin of Engineering Geology and the Environment,2019,78(2):931 − 944. DOI: 10.1007/s10064-017-1101-9
[44] WANG Qian,WANG Yan,MA Wenguo,et al. Dynamic characteristics of post-cyclic saturated loess[J]. Applied Sciences,2022,13(1):306. DOI: 10.3390/app13010306
[45] CAREY J M,MCSAVENEY M J,PETLEY D N. Dynamic liquefaction of shear zones in intact loess during simulated earthquake loading[J]. Landslides,2017,14(3):789 − 804. DOI: 10.1007/s10346-016-0746-y
[46] WU Zhijian,XU Shiming,CHEN Dawei,et al. An experimental study of the influence of structural parameters on dynamic characteristics of loess[J]. Soil Dynamics and Earthquake Engineering,2020,132:106067. DOI: 10.1016/j.soildyn.2020.106067
[47] WANG Ping,WANG Jun,CHAI Shaofeng,et al. Experimental study on dynamic strength regional characteristics of undisturbed loess based on the mohr-coulomb failure criterion[J]. Advanced Materials Research,2013,700:111 − 118. DOI: 10.4028/www.scientific.net/AMR.700.111
[48] QIAO Feng,CHANG Chaoyu,BO Jingshan,et al. Study on the dynamic characteristics of loess[J]. Sustainability,2023,15(6):5428. DOI: 10.3390/su15065428
[49] WEI Tingting,WU Zhijian,CHEN Yanping,et al. Three-dimensional characterization and quantitative research of Malan loess microstructure under seismic loading[J]. Frontiers in Earth Science,2023,10:1106168. DOI: 10.3389/feart.2022.1106168
[50] WANG N Q,LIU X L,LUO,et al. Study on Dynamic Strength Characteristics of Malan Loess. Applied Mechanics and Materials[C]. 2nd International Conference on Civil Engineering,Architecture and Building Materials (CEABM 2012),2012,Yantai,PEOPLES R CHINA.
[51] WANG N Q,LIU X L,BO H,et al. Test of Dynamic Strength Characteristics of Lishi Loess. Applied Mechanics and Materials [C]. International Conference on Sensors,Measurement and Intelligent Materials (ICSMIM 2012),2012,Guilin,PEOPLES R CHINA.
[52] LIU Wei,WANG Qian,LIN Gaochao,et al. Effect of pre-dynamic loading on dynamic liquefaction of undisturbed loess[J]. Bulletin of Earthquake Engineering,2020,18(13):5779 − 5806. DOI: 10.1007/s10518-020-00917-w
[53] WANG Haojie,SUN Ping,LIU Enlong,et al. Dynamic properties of Tianshui saturated remolded loess:A laboratory study[J]. Engineering Geology,2020,272:105570. DOI: 10.1016/j.enggeo.2020.105570
[54] CHENG Xuansheng,LI Xinlei,NIE Jun,et al. Research on the dynamic parameters of loess[J]. Geotechnical and Geological Engineering,2019,37(1):77 − 93. DOI: 10.1007/s10706-018-0592-x
[55] 颜灵勇,李孝波,欧阳刚垒. 黄土地震滑坡形成机理研究的若干进展[J]. 防灾科技学院学报,2021,23(2):46 − 53. [YAN Lingyong,LI Xiaobo,OUYANG Ganglei. Research progress in formation mechanism of loess coseismic landslides[J]. Journal of Institute of Disaster Prevention,2021,23(2):46 − 53. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1673-8047.2021.02.006 YAN Lingyong, LI Xiaobo, OUYANG Ganglei. Research progress in formation mechanism of loess coseismic landslides[J]. Journal of Institute of Disaster Prevention, 2021, 23(2): 46 − 53. (in Chinese with English abstract) DOI: 10.3969/j.issn.1673-8047.2021.02.006
[56] 刘魁. 固原市原州区地震诱发黄土滑坡形成机理研究[D]. 西安:长安大学,2012. [LIU Kui. Study on formation mechanism of loess landslide induced by earthquake in Yuanzhou District of Guyuan City[D]. Xi’an:Changan University,2012. (in Chinese with English abstract)] LIU Kui. Study on formation mechanism of loess landslide induced by earthquake in Yuanzhou District of Guyuan City[D]. Xi’an: Changan University, 2012. (in Chinese with English abstract)
[57] CHEN Jinchang,WANG Lanmin,WANG Ping,et al. Failure mechanism investigation on loess-mudstone landslides based on the Hilbert-Huang transform method using a large-scale shaking table test[J]. Engineering Geology,2022,302:106630. DOI: 10.1016/j.enggeo.2022.106630
[58] 王明轩,倪万魁. 喜家湾地震黄土滑坡形成机理[J]. 华北地震科学,2018,36(1):54 − 58. [WANG Mingxuan,NI Wankui. Study on the formation mechanism of Xijiawan loess landslide induced by earthquake[J]. North China Earthquake Sciences,2018,36(1):54 − 58. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1003-1375.2018.01.009 WANG Mingxuan, NI Wankui. Study on the formation mechanism of Xijiawan loess landslide induced by earthquake[J]. North China Earthquake Sciences, 2018, 36(1): 54 − 58. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-1375.2018.01.009
[59] 徐舜华,吴志坚,孙军杰,等. 岷县漳县6.6级地震典型滑坡特征及其诱发机制[J]. 地震工程学报,2013,35(3):471 − 476. [XU Shunhua,WU Zhijian,SUN Junjie,et al. Study of the characteristics and inducing mechanism of typical earthquake landslides of the Minxian-Zhangxian Ms 6.6 earthquake[J]. China Earthquake Engineering Journal,2013,35(3):471 − 476. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0844.2013.03.0471 XU Shunhua, WU Zhijian, SUN Junjie, et al. Study of the characteristics and inducing mechanism of typical earthquake landslides of the Minxian-Zhangxian Ms 6.6 earthquake[J]. China Earthquake Engineering Journal, 2013, 35(3): 471 − 476. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2013.03.0471
[60] 王鼐,王兰民. 河谷地区黄土地震滑坡特征与影响因素分析[J]. 岩土工程学报,2013,35(增刊1):434 − 438. [WANG Nai,WANG Lanmin. Characteristics and influencing factors of seismic loess slopes in valley areas[J]. Chinese Journal of Geotechnical Engineering,2013,35(Sup 1):434 − 438. (in Chinese with English abstract)] WANG Nai, WANG Lanmin. Characteristics and influencing factors of seismic loess slopes in valley areas[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(Sup 1): 434 − 438. (in Chinese with English abstract)
[61] 王立朝,侯圣山,董英,等. 甘肃积石山Ms 6.2级地震的同震地质灾害基本特征及风险防控建议[J]. 中国地质灾害与防治学报,2024,35(3):108 − 118. [WANG Lichao,HOU Shengshan,DONG Ying,et al. Basic characteristics of co-seismic geological hazards induced by Jishishan Ms 6.2 earthquake and suggestions for their risk control[J]. The Chinese Journal of Geological Hazard and Control,2024,35(3):108 − 118. (in Chinese with English abstract)] WANG Lichao, HOU Shengshan, DONG Ying, et al. Basic characteristics of co-seismic geological hazards induced by Jishishan Ms 6.2 earthquake and suggestions for their risk control[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 108 − 118. (in Chinese with English abstract)
[62] 段玉石,薄景山,彭达,等. 地震诱发黄土滑坡分布特征分析——以1920年海原特大地震为例[J]. 应用基础与工程科学学报,1 − 17. [DUAN Yushi,BO Jingshan,PENG Da,et al. Distribution characteristics of earthquake-induced loess landslides:A case study of the 1920 Haiyuan earthquake[J]. Journal of Basic Science and Engineering,1 − 17. (in Chinese with English abstract)] DUAN Yushi, BO Jingshan, PENG Da, et al. Distribution characteristics of earthquake-induced loess landslides: A case study of the 1920 Haiyuan earthquake[J]. Journal of Basic Science and Engineering, 1 − 17. (in Chinese with English abstract)
[63] 钱紫玲. 基于统计模型的黄土地震滑坡危险性评价[D]. 兰州:中国地震局兰州地震研究所,2023. [QIAN Ziling. Risk assessment of loess earthquake landslide based on statistical model[D]. Lanzhou:China Earthquake Administration Lanzhou Institute of Seismology,2023. (in Chinese with English abstract)] QIAN Ziling. Risk assessment of loess earthquake landslide based on statistical model[D]. Lanzhou: China Earthquake Administration Lanzhou Institute of Seismology, 2023. (in Chinese with English abstract)
[64] 程小杰,杨为民,向灵芝,等. 基于Newmark模型的天水市北山地震黄土滑坡危险性评价[J]. 地质力学学报,2017,23(2):296 − 305. [CHENG Xiaojie,YANG Weimin,XIANG Lingzhi,et al. Risk assessment of seismic loess landslide based on newmark model in Beishan,Tianshui City[J]. Journal of Geomechanics,2017,23(2):296 − 305.(in Chinese with English abstract)] DOI: 10.3969/j.issn.1006-6616.2017.02.013 CHENG Xiaojie, YANG Weimin, XIANG Lingzhi, et al. Risk assessment of seismic loess landslide based on newmark model in Beishan, Tianshui City[J]. Journal of Geomechanics, 2017, 23(2): 296 − 305.(in Chinese with English abstract) DOI: 10.3969/j.issn.1006-6616.2017.02.013
[65] 邓龙胜. 强震作用下黄土边坡的动力响应机理和动力稳定性研究[D]. 西安:长安大学,2010. [DENG Longsheng. Study on dynamic response mechanism and dynamic stability of loess slope under strong earthquake[D]. Xi’an:Changan University,2010. (in Chinese with English abstract)] DENG Longsheng. Study on dynamic response mechanism and dynamic stability of loess slope under strong earthquake[D]. Xi’an: Changan University, 2010. (in Chinese with English abstract)
[66] 赵文琛. 强震作用下黄土斜坡动力响应特征与稳定性分析[D]. 兰州:中国地震局兰州地震研究所,2016. [ZHAO Wenchen. Dynamic response characteristics and stability analysis of loess slope under strong earthquake[D]. Lanzhou:China Earthquake Administration Lanzhou Institute of Seismology,2016. (in Chinese with English abstract)] ZHAO Wenchen. Dynamic response characteristics and stability analysis of loess slope under strong earthquake[D]. Lanzhou: China Earthquake Administration Lanzhou Institute of Seismology, 2016. (in Chinese with English abstract)
[67] 车福东,王涛,辛鹏,等. 近远震作用下黄土滑坡动力响应与变形——以甘肃天水震区黎坪村滑坡为例[J]. 地质通报,2020,39(12):1981 − 1992. [CHE Fudong,WANG Tao,XIN Peng,et al. Dynamic response and deformation of loess landslide under near and far earthquakes:A case study of Liping Village landslide in Tianshui earthquake area,Gansu Province[J]. Geological Bulletin of China,2020,39(12):1981 − 1992. (in Chinese with English abstract)] DOI: 10.12097/j.issn.1671-2552.2020.12.012 CHE Fudong, WANG Tao, XIN Peng, et al. Dynamic response and deformation of loess landslide under near and far earthquakes: A case study of Liping Village landslide in Tianshui earthquake area, Gansu Province[J]. Geological Bulletin of China, 2020, 39(12): 1981 − 1992. (in Chinese with English abstract) DOI: 10.12097/j.issn.1671-2552.2020.12.012
[68] 常晁瑜,徐久欢,薄景山,等. 基于颗粒流的地震液化型滑坡运动学特征分析[J]. 地震工程与工程振动,2022,42(6):153 − 161. [CHANG Chaoyu,XU Jiuhuan,BO Jingshan,et al. Kinematic characteristics analysis of seismic liquefaction landslide based on particle flow[J]. Earthquake Engineering and Engineering Dynamics,2022,42(6):153 − 161. ((in Chinese with English abstract)] CHANG Chaoyu, XU Jiuhuan, BO Jingshan, et al. Kinematic characteristics analysis of seismic liquefaction landslide based on particle flow[J]. Earthquake Engineering and Engineering Dynamics, 2022, 42(6): 153 − 161. ((in Chinese with English abstract)
[69] 张子东,张晓超,任鹏,等. 非饱和黄土动力液化研究 ——以党家岔滑坡为例[J]. 地震工程学报,2021,43(5):1228 − 1237. [ZHANG Zidong,ZHANG Xiaochao,REN Peng,et al. Dynamic liquefaction of unsaturated loess:A case study of Dangjiacha landslide[J]. China Earthquake Engineering Journal,2021,43(5):1228 − 1237. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0844.2021.05.1228 ZHANG Zidong, ZHANG Xiaochao, REN Peng, et al. Dynamic liquefaction of unsaturated loess: A case study of Dangjiacha landslide[J]. China Earthquake Engineering Journal, 2021, 43(5): 1228 − 1237. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2021.05.1228
[70] 吴志坚,陈豫津,王谦,等. 岷县漳县6.6级地震永光村滑坡致灾机制分析[J]. 岩土工程学报,2019,41(S2):165 − 168. [WU Zhijian,CHEN Yujin,WANG Qian,et al. Disaster-causing mechanism of Yongguang landslide under Minxian-Zhangxian Ms 6.6 Earthquake[J]. Chinese Journal of Geotechnical Engineering,2019,41(S2):165 − 168. (in Chinese with English abstract)] DOI: 10.11779/CJGE2019S2042 WU Zhijian, CHEN Yujin, WANG Qian, et al. Disaster-causing mechanism of Yongguang landslide under Minxian-Zhangxian Ms 6.6 Earthquake[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 165 − 168. (in Chinese with English abstract) DOI: 10.11779/CJGE2019S2042
[71] 张晓超,裴向军,张茂省,等. 强震触发黄土滑坡流滑机理的试验研究——以宁夏党家岔滑坡为例[J]. 工程地质学报,2018,26(5):1219 − 1226. [ZHANG Xiaochao,PEI Xiangjun,ZHANG Maosheng,et al. Experimental study on mechanism of flow slide of loess landslides triggered by strong earthquake:A case study in Dangjiacha,Ningxia Province[J]. Journal of Engineering Geology,2018,26(5):1219 − 1226. (in Chinese with English abstract)] ZHANG Xiaochao, PEI Xiangjun, ZHANG Maosheng, et al. Experimental study on mechanism of flow slide of loess landslides triggered by strong earthquake: A case study in Dangjiacha, Ningxia Province[J]. Journal of Engineering Geology, 2018, 26(5): 1219 − 1226. (in Chinese with English abstract)
[72] 国家地震局兰州地震研究所宁夏回族自治区地震队. 一九二〇年海原大地震[M]. 北京:地震出版社,1980. [Ningxia Hui Autonomous Region Seismological Team, Lanzhou Institute of Seismology, National Seismological Bureau. Haiyuan earthquake in 1920[M]. Beijing:Seismological Press,1980. (in Chinese)] Ningxia Hui Autonomous Region Seismological Team, Lanzhou Institute of Seismology, National Seismological Bureau. Haiyuan earthquake in 1920[M]. Beijing: Seismological Press, 1980. (in Chinese)
[73] 彭建兵,王启耀,门玉明,等. 黄土高原滑坡灾害[M]. 北京:科学出版社,2019. [PENG Jianbing,WANG Qiyao,MEN Yuming,et al. Landslide disaster in Loess Plateau[M]. Beijing:Science Press,2019. (in Chinese)] PENG Jianbing, WANG Qiyao, MEN Yuming, et al. Landslide disaster in Loess Plateau[M]. Beijing: Science Press, 2019. (in Chinese)
[74] 张振中,张冬丽,刘红玫. 黄土震陷灾害典型震例的综合研究(英文)[J]. 西北地震学报,2005,27(1):36 − 41. [ZHANG Zhenzhong,ZHANG Dongli,LIU Hongmei. Comprehensive study on seismic subsidence of loess under earthquake[J]. Northwestern seismological Journal,2005,27(1):36 − 41. (in English with Chinese abstract)] ZHANG Zhenzhong, ZHANG Dongli, LIU Hongmei. Comprehensive study on seismic subsidence of loess under earthquake[J]. Northwestern seismological Journal, 2005, 27(1): 36 − 41. (in English with Chinese abstract)
[75] 王兰民. 黄土地层大规模地震液化滑移的机理与风险评估[J]. 岩土工程学报,2020,42(1):1 − 19. [WANG Lanmin. Mechanism and risk evaluation of sliding flow triggered by liquefaction of loess deposit during earthquakes[J]. Chinese Journal of Geotechnical Engineering,2020,42(1):1 − 19. (in Chinese with English abstract)] DOI: 10.11779/CJGE202001001 WANG Lanmin. Mechanism and risk evaluation of sliding flow triggered by liquefaction of loess deposit during earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 1 − 19. (in Chinese with English abstract) DOI: 10.11779/CJGE202001001
[76] SHANG H,NI W K,NIU F J,et al. Development characteristics and causes of seismic loess landslides in north-west China [J]. Disaster Advances,2013,6:24-38.
[77] ZHONG Xiumei,XU Xiaowei,CHEN Wenkai,et al. Characteristics of loess landslides triggered by the 1927 Mw8.0 earthquake that occurred in Gulang County,Gansu Province,China[J]. Frontiers in Environmental Science,2022,10:973262. DOI: 10.3389/fenvs.2022.973262
[78] LI Xiaobo,YAN Lingyong,WU Yiwen,et al. Distribution and characteristics of loess landslides induced by the 1654 Tianshui earthquake,Northwest of China[J]. Landslides,2023,20(12):2775 − 2790. DOI: 10.1007/s10346-023-02128-1
[79] 陈永明,石玉成,刘红玫,等. 黄土地区地震滑坡的分布特征及其影响因素分析[J]. 中国地震,2005,21(2):235 − 243. [CHEN Yongming,SHI Yucheng,LIU Hongmei,et al. Distribution characteristics and influencing factors analysis of seismic loess landslides[J]. Earthquake Research in China,2005,21(2):235 − 243. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1001-4683.2005.02.011 CHEN Yongming, SHI Yucheng, LIU Hongmei, et al. Distribution characteristics and influencing factors analysis of seismic loess landslides[J]. Earthquake Research in China, 2005, 21(2): 235 − 243. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-4683.2005.02.011
[80] 王兰民,郭安宁,王平,等. 1920年海原大地震震害特征与启示[J]. 城市与减灾,2020(6):43 − 53. [WANG Lanmin,GUO Anning,WANG Ping,et al. The characteristics and revelation of the Great Haiyuan Earthquake in 1920[J]. City and Disaster Reduction,2020(6):43 − 53. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-0495.2020.06.007 WANG Lanmin, GUO Anning, WANG Ping, et al. The characteristics and revelation of the Great Haiyuan Earthquake in 1920[J]. City and Disaster Reduction, 2020(6): 43 − 53. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-0495.2020.06.007
[81] 王尚,梁庆国,乔向进,等. 基于小波包和反应谱的黄土边坡动力特征研究[J]. 地震工程学报,2023,45(1):94 − 102. [WANG Shang,LIANG Qingguo,QIAO Xiangjin,et al. Dynamic characteristics of loess slopes based on wavelet packet and response spectrum[J]. China Earthquake Engineering Journal,2023,45(1):94 − 102. (in Chinese with English abstract)] WANG Shang, LIANG Qingguo, QIAO Xiangjin, et al. Dynamic characteristics of loess slopes based on wavelet packet and response spectrum[J]. China Earthquake Engineering Journal, 2023, 45(1): 94 − 102. (in Chinese with English abstract)
[82] 张兴臣,梁庆国,孙文,等. 地震作用下黄土边坡动力响应的时频特征分析[J]. 地震工程学报,2022,44(5):1090 − 1099. [ZHANG Xingchen,LIANG Qingguo,SUN Wen,et al. Time-frequency characteristics of dynamic responses of loess slopes under earthquake action[J]. China Earthquake Engineering Journal,2022,44(5):1090 − 1099. (in Chinese with English abstract)] ZHANG Xingchen, LIANG Qingguo, SUN Wen, et al. Time-frequency characteristics of dynamic responses of loess slopes under earthquake action[J]. China Earthquake Engineering Journal, 2022, 44(5): 1090 − 1099. (in Chinese with English abstract)
[83] 张彬,邵帅,邵生俊,等. 黄土丘陵区边坡动力响应及震陷变形分析方法[J]. 岩土工程学报,2023,45(4):869 − 875. [ZHANG Bin,SHAO Shuai,SHAO Shengjun,et al. Dynamic response of slopes in hilly regions of loess and analysis method for their seismic subsidence deformation[J]. Chinese Journal of Geotechnical Engineering,2023,45(4):869 − 875. (in Chinese with English abstract)] ZHANG Bin, SHAO Shuai, SHAO Shengjun, et al. Dynamic response of slopes in hilly regions of loess and analysis method for their seismic subsidence deformation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 869 − 875. (in Chinese with English abstract)
[84] 孙文,梁庆国,乔向进,等. 不同失稳形态黄土边坡的动力响应研究[J]. 铁道学报,2022,44(6):123 − 130. [SUN Wen,LIANG Qingguo,QIAO Xiangjin,et al. Study on dynamic response of loess slopes with different failure patterns[J]. Journal of the China Railway Society,2022,44(6):123 − 130. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1001-8360.2022.06.015 SUN Wen, LIANG Qingguo, QIAO Xiangjin, et al. Study on dynamic response of loess slopes with different failure patterns[J]. Journal of the China Railway Society, 2022, 44(6): 123 − 130. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-8360.2022.06.015
[85] 孙文,梁庆国,乔向进,等. 黄土边坡动力失稳的振动台试验研究[J]. 兰州交通大学学报,2021,40(2):15 − 22. [SUN Wen,LIANG Qingguo,QIAO Xiangjin,et al. Research on dynamic failure of loess slope by shaking table test[J]. Journal of Lanzhou Jiaotong University,2021,40(2):15 − 22. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1001-4373.2021.02.003 SUN Wen, LIANG Qingguo, QIAO Xiangjin, et al. Research on dynamic failure of loess slope by shaking table test[J]. Journal of Lanzhou Jiaotong University, 2021, 40(2): 15 − 22. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-4373.2021.02.003
[86] 田欣欣,严武建,郑海忠,等. 地震作用下含暗穴高边坡黄土路基稳定性分析[J]. 地震工程学报,2022,44(1):72 − 78. [TIAN Xinxin,YAN Wujian,ZHENG Haizhong,et al. Stability analysis of high-slope loess subgrade with hidden holes under earthquake[J]. China Earthquake Engineering Journal,2022,44(1):72 − 78. (in Chinese with English abstract)] TIAN Xinxin, YAN Wujian, ZHENG Haizhong, et al. Stability analysis of high-slope loess subgrade with hidden holes under earthquake[J]. China Earthquake Engineering Journal, 2022, 44(1): 72 − 78. (in Chinese with English abstract)
[87] 万金侠,施艳秋,陈小云. 基于动土压力响应特性的黄土滑坡振动台试验研究[J]. 防灾减灾工程学报,2021,41(3):586 − 593. [WAN Jinxia,SHI Yanqiu,CHEN Xiaoyun. Shaking table experiment of loess landslide based on dynamic earth pressure response characteristics[J]. Journal of Disaster Prevention and Mitigation Engineering,2021,41(3):586 − 593. (in Chinese with English abstract)] WAN Jinxia, SHI Yanqiu, CHEN Xiaoyun. Shaking table experiment of loess landslide based on dynamic earth pressure response characteristics[J]. Journal of Disaster Prevention and Mitigation Engineering, 2021, 41(3): 586 − 593. (in Chinese with English abstract)
[88] 邵帅,邵生俊,李宁,等. 地震作用下黄土边坡震陷破坏的动力离心模型试验研究[J]. 岩土工程学报,2021,43(2):245 − 253. [SHAO Shuai, SHAO Shengjun, LI Ning, et al. Dynamic centrifugal model tests on seismic subsidence of loess slopes under earthquake action[J]. Chinese Journal of Geotechnical Engineering,2021,43(2):245 − 253. (in Chinese with English abstract)] SHAO Shuai, SHAO Shengjun, LI Ning, et al. Dynamic centrifugal model tests on seismic subsidence of loess slopes under earthquake action[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 245 − 253. (in Chinese with English abstract)
[89] 施艳秋,谢显龙,张玘恺,等. 基于小波变换的黄土滑坡动土压力响应及其频谱特性研究[J]. 岩石力学与工程学报,2020,39(12):2570 − 2581. [SHI Yanqiu,XIE Xianlong,ZHANG Qikai,et al. Study on spectrum characteristics of dynamic earth pressure of loess landslides based on wavelet transform[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(12):2570 − 2581. (in Chinese with English abstract)] SHI Yanqiu, XIE Xianlong, ZHANG Qikai, et al. Study on spectrum characteristics of dynamic earth pressure of loess landslides based on wavelet transform[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(12): 2570 − 2581. (in Chinese with English abstract)
[90] 陈金昌,王兰民,王平,等. 基于振动台试验的纯黄土边坡动力响应研究[J]. 地震工程学报,2020,42(2):529 − 535. [CHEN Jinchang,WANG Lanmin,WANG Ping,et al. Dynamic response of loess slopes based on the shake table test[J]. China Earthquake Engineering Journal,2020,42(2):529 − 535. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0844.2020.02.529 CHEN Jinchang, WANG Lanmin, WANG Ping, et al. Dynamic response of loess slopes based on the shake table test[J]. China Earthquake Engineering Journal, 2020, 42(2): 529 − 535. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2020.02.529
[91] 夏坤,董林,蒲小武,等. 黄土塬地震动响应特征分析[J]. 岩土力学,2020,41(1):295 − 304. [XIA Kun,DONG Lin,PU Xiaowu,et al. Earthquake response characteristics of loess tableland[J]. Rock and Soil Mechanics,2020,41(1):295 − 304. (in Chinese with English abstract)] XIA Kun, DONG Lin, PU Xiaowu, et al. Earthquake response characteristics of loess tableland[J]. Rock and Soil Mechanics, 2020, 41(1): 295 − 304. (in Chinese with English abstract)
[92] 张泽林,吴树仁,王涛,等. 地震波振幅对黄土-泥岩边坡动力响应规律的影响[J]. 岩土力学,2018,39(7):2403 − 2412. [ZHANG Zelin,WU Shuren,WANG Tao,et al. Influence of seismic wave amplitude on dynamic response of loess-mudstone slope[J]. Rock and Soil Mechanics,2018,39(7):2403 − 2412. (in Chinese with English abstract)] ZHANG Zelin, WU Shuren, WANG Tao, et al. Influence of seismic wave amplitude on dynamic response of loess-mudstone slope[J]. Rock and Soil Mechanics, 2018, 39(7): 2403 − 2412. (in Chinese with English abstract)
[93] 芮雪莲,裴向军,张晓超. 强震触发黄土滑坡发生机制试验[J]. 实验室研究与探索,2016,35(1):23 − 26. [RUI Xuelian,PEI Xiangjun,ZHANG Xiaochao. Laboratory study of the mechanism of loess landslide caused by violent earthquake[J]. Research and Exploration In Laboratory,2016,35(1):23 − 26. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1006-7167.2016.01.007 RUI Xuelian, PEI Xiangjun, ZHANG Xiaochao. Laboratory study of the mechanism of loess landslide caused by violent earthquake[J]. Research and Exploration In Laboratory, 2016, 35(1): 23 − 26. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-7167.2016.01.007
[94] 张晓超,黄润秋,许模,等. 石碑塬滑坡黄土液化特征及其影响因素研究[J]. 岩土力学,2014,35(3):801 − 810. [ZHANG Xiaochao,HUANG Runqiu,XU Mo,et al. Loess liquefaction characteristics and its influential factors of Shibeiyuan landslide[J]. Rock and Soil Mechanics,2014,35(3):801 − 810. (in Chinese with English abstract)] ZHANG Xiaochao, HUANG Runqiu, XU Mo, et al. Loess liquefaction characteristics and its influential factors of Shibeiyuan landslide[J]. Rock and Soil Mechanics, 2014, 35(3): 801 − 810. (in Chinese with English abstract)
[95] PEI Xiangjun,ZHANG Xiaochao,GUO Bin,et al. Experimental case study of seismically induced loess liquefaction and landslide[J]. Engineering Geology,2017,223:23 − 30. DOI: 10.1016/j.enggeo.2017.03.016
[96] 胡成,卢坤林,朱大勇,等. 三维边坡拟静力抗震稳定性分析[J]. 岩石力学与工程学报,2011,30(增刊1):2904 − 2912. [HU Cheng,LU Kunlin,ZHU Dayong,et al. Analysis of pseudo-static seismic stability for three-dimensional slope[J]. Chinese Journal of Rock Mechanics and Engineering. 2011,30(Sup 1):2904 − 2912. (in Chinese with English abstract)] HU Cheng, LU Kunlin, ZHU Dayong, et al. Analysis of pseudo-static seismic stability for three-dimensional slope[J]. Chinese Journal of Rock Mechanics and Engineering. 2011, 30(Sup 1): 2904 − 2912. (in Chinese with English abstract)
[97] 郑颖人,叶海林,黄润秋,等. 边坡地震稳定性分析探讨[J]. 地震工程与工程振动,2010,30(2):173 − 180. [ZHEGN Yingren,YE Hailin,HUANG Runqiu,et al. Study on the seismic stability analysis of a slope[J]. Journal of Earthquake Engineering and Engineering Vibration,2010,30(2):173 − 180. (in Chinese with English abstract)] ZHEGN Yingren, YE Hailin, HUANG Runqiu, et al. Study on the seismic stability analysis of a slope[J]. Journal of Earthquake Engineering and Engineering Vibration, 2010, 30(2): 173 − 180. (in Chinese with English abstract)
[98] 刘春玲,祁生文,童立强,等. 利用FLAC3D分析某边坡地震稳定性[J]. 岩石力学与工程学报,2004(16):2730 − 2733. [LIU Chunling,QI Shengwen,TONG Liqiang,et al. Stability analysis of slope under earthquake with FLAC3D[J]. Chinese Journal of Rock Mechanics and Engineering,2004(16):2730 − 2733. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-6915.2004.16.014 LIU Chunling, QI Shengwen, TONG Liqiang, et al. Stability analysis of slope under earthquake with FLAC3D[J]. Chinese Journal of Rock Mechanics and Engineering, 2004(16): 2730 − 2733. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2004.16.014
[99] NEWMARK N M. Effects of earthquakes on dams and embankments[J]. Geotechnique,1965,15(2):139 − 160. DOI: 10.1680/geot.1965.15.2.139
[100] STEEDMAN R S,ZENG X. The influence of phase on the calculation of pseudo-static earth pressure on a retaining wall[J]. Géotechnique,1990,40(1):103 − 112.
[101] 李亮,褚雪松,庞峰,等. 地震边坡稳定性分析的拟静力方法适用性探讨[J]. 世界地震工程,2012,28(2):57 − 63. [LI Liang,CHU Xuesong,PANG Feng,et al. Discussion on suitability of pseudo-static method in seismic slope stability analysis[J]. World Earthquake Engineering,2012,28(2):57 − 63. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1007-6069.2012.02.010 LI Liang, CHU Xuesong, PANG Feng, et al. Discussion on suitability of pseudo-static method in seismic slope stability analysis[J]. World Earthquake Engineering, 2012, 28(2): 57 − 63. (in Chinese with English abstract) DOI: 10.3969/j.issn.1007-6069.2012.02.010
[102] KARRAY M,HUSSIEN M N,DELISLE M C,et al. Framework to assess pseudo-static approach for seismic stability of clayey slopes[J]. Canadian Geotechnical Journal,2018,55(12):1860 − 1876. DOI: 10.1139/cgj-2017-0383
[103] MENDEZ B,TASTAN E O,GUTIERREZ J. Performance-based slope stability analysis and the pseudo-static factor of safety[C]//Geotechnical Frontiers 2017. Orlando,Florida. Reston,VA:American Society of Civil Engineers,2017,278:390 − 399.
[104] UTILI S,ABD A H. On the stability of fissured slopes subject to seismic action[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2016,40(5):785 − 806. DOI: 10.1002/nag.2498
[105] TERZAGHI K. Mechanisms of landslide[M]. Engineering Geology (Berdey) volume,1950,Geological Society of America.
[106] KRAMER S L. Geotechnical earthquake engineering[M]. Upper Saddle River,NJ:Prentice Hall,1996.
[107] SEED H B. Considerations in the earthquake-resistant design of earth and rockfill dams[J]. Géotechnique,1979,29(3):215 − 263.
[108] SEED H B. Stability of earth and rock-fill dams during earthquake[J]. Embankment-Dam Eng. 1973. Casagrande.
[109] 中华人民共和国国家经济贸易委员会. 水工建筑物抗震设计规范:DL 5073—2000[S]. 北京:中国电力出版社,2001. [State Economic and Trade Commission of the People’s Republic of China. Specifications for seismic design of hydraulic structures:DL 5073—2000[S]. Beijing:China Electric Power Press,2001. (in Chinese)] State Economic and Trade Commission of the People’s Republic of China. Specifications for seismic design of hydraulic structures: DL 5073—2000[S]. Beijing: China Electric Power Press, 2001. (in Chinese)
[110] 中华人民共和国国家标准编写小组. 铁路工程抗震设计规范:GB 50111—2006[S]. 北京:中国计划出版社, 2009. [The National Standards Compilation Group of People’s Republic of China. Code for seismic design of railway engineering:GB 50111—2006[S].Beijing: China Plan Press, 2009. (in Chinese)] The National Standards Compilation Group of People’s Republic of China. Code for seismic design of railway engineering: GB 50111—2006[S].Beijing: China Plan Press, 2009. (in Chinese)
[111] 中华人民共和国交通部. 公路工程抗震设计规范:JTJ 004—1989[S]. 北京:人民交通出版社,1990. [Ministry of Transport of the People’s Republic of China. Specifications of earthquake resistant design for highway engineering:JTJ 004—1989[S]. Beijing:China Communications Press,1990. (in Chinese)] Ministry of Transport of the People’s Republic of China. Specifications of earthquake resistant design for highway engineering: JTJ 004—1989[S]. Beijing: China Communications Press, 1990. (in Chinese)
[112] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局.建筑抗震设计规范(2016版):GB 50011—2010[S]. 北京: 中国建筑工业出版社,2016. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Code for seismic design of buildings (2016 edition):GB 50011—2010[S]. Beijing: China Architecture & Building Press, 2016. (in Chinese)] Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Code for seismic design of buildings (2016 edition): GB 50011—2010[S]. Beijing: China Architecture & Building Press, 2016. (in Chinese)
[113] 梁承龙,刘芳. 地震作用下双层土裂缝边坡稳定性分析[J]. 地震工程学报,2022,44(5):1050 − 1058. [LIANG Chenglong,LIU Fang. Stability analysis of two-layered cracked slopes subjected to seismic excitation[J]. China Earthquake Engineering Journal,2022,44(5):1050 − 1058. (in Chinese with English abstract)] LIANG Chenglong, LIU Fang. Stability analysis of two-layered cracked slopes subjected to seismic excitation[J]. China Earthquake Engineering Journal, 2022, 44(5): 1050 − 1058. (in Chinese with English abstract)
[114] FARSHIDFAR N, KESHAVARZ A, MIRHOSSEINI S M. Pseudo-static seismic analysis of reinforced soil slopes using the horizontal slice method[J]. Arabian Journal of Geosciences,2020,13(7):283.
[115] 袁中夏,李德鹏,叶帅华. 地震和降雨条件下黄土高填方边坡稳定性分析[J]. 兰州理工大学学报,2022,48(4):119 − 125. [YUAN Zhongxia,LI Depeng,YE Shuaihua. Stability analysis of high fill slope with loess under earthquake and rainfall infiltration[J]. Journal of Lanzhou University of Technology,2022,48(4):119 − 125. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1673-5196.2022.04.018 YUAN Zhongxia, LI Depeng, YE Shuaihua. Stability analysis of high fill slope with loess under earthquake and rainfall infiltration[J]. Journal of Lanzhou University of Technology, 2022, 48(4): 119 − 125. (in Chinese with English abstract) DOI: 10.3969/j.issn.1673-5196.2022.04.018
[116] 李旭东,王平,王丽丽,等. 强震作用下坡顶建筑荷载对边坡稳定性影响研究[J]. 地震工程学报,2021,43(5):1220 − 1227. [LI Xudong,WANG Ping,WANG Lili,et al. Influence of top building on the slope stability under strong earthquakes[J]. China Earthquake Engineering Journal,2021,43(5):1220 − 1227. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0844.2021.05.1220 LI Xudong, WANG Ping, WANG Lili, et al. Influence of top building on the slope stability under strong earthquakes[J]. China Earthquake Engineering Journal, 2021, 43(5): 1220 − 1227. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2021.05.1220
[117] 刘畅,张平松,杨为民,等. 税湾地震黄土滑坡的岩土动力特性及其稳定性评价[J]. 西北地质,2020,53(4):176 − 185. [LIU Chang,ZHANG Pingsong,YANG Weimin,et al. Geotechnical dynamic characteristics and stability evaluation of loess landslides in Shuiwan earthquake,Tianshui,Gansu[J]. Northwestern Geology,2020,53(4):176 − 185. (in Chinese with English abstract)] LIU Chang, ZHANG Pingsong, YANG Weimin, et al. Geotechnical dynamic characteristics and stability evaluation of loess landslides in Shuiwan earthquake, Tianshui, Gansu[J]. Northwestern Geology, 2020, 53(4): 176 − 185. (in Chinese with English abstract)
[118] 陈亚光. 宝兰客专天水市王家墩滑坡地震稳定性分析[J]. 地震工程学报,2019,41(6):1607 − 1614. [CHEN Yaguang. Stability analysis of Wangjiadun landslide in Tianshui City under earthquake load[J]. China Earthquake Engineering Journal,2019,41(6):1607 − 1614. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0844.2019.06.1607 CHEN Yaguang. Stability analysis of Wangjiadun landslide in Tianshui City under earthquake load[J]. China Earthquake Engineering Journal, 2019, 41(6): 1607 − 1614. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2019.06.1607
[119] 闫东晗,薄景山,李孝波,等. 海原特大地震红土川滑坡拟静力强度折减法模拟分析[J]. 科学技术与工程,2019,19(28):50 − 55. [YAN Donghan,BO Jingshan,LI Xiaobo,et al. Simulation analysis of Hongtuchuan landslide in Haiyuan earthquake quasi-static strength reduction method[J]. Science Technology and Engineering,2019,19(28):50 − 55. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-1815.2019.28.006 YAN Donghan, BO Jingshan, LI Xiaobo, et al. Simulation analysis of Hongtuchuan landslide in Haiyuan earthquake quasi-static strength reduction method[J]. Science Technology and Engineering, 2019, 19(28): 50 − 55. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2019.28.006
[120] 孙萍,祝恩珍,张帅,等. 地震作用下甘肃天水地区黄土-泥岩接触面滑坡机理[J]. 现代地质,2019,33(1):218 − 226. [SUN Ping,ZHU Enzhen,ZHANG Shuai,et al. Mechanism of earthquake-triggered loess-mudstone interface landslide in Tianshui Area,Gansu Province[J]. Geoscience,2019,33(1):218 − 226.(in Chinese with English abstract)] SUN Ping, ZHU Enzhen, ZHANG Shuai, et al. Mechanism of earthquake-triggered loess-mudstone interface landslide in Tianshui Area, Gansu Province[J]. Geoscience, 2019, 33(1): 218 − 226.(in Chinese with English abstract)
[121] ZENG X,STEEDMAN R S. On the behaviour of quay walls in earthquakes[J]. Géotechnique,1993,43(3):417 − 431.
[122] CHOUDHURY D,NIMBALKAR S. Seismic passive resistance by pseudo-dynamic method[J]. Géotechnique,2005,55(9):699 − 702.
[123] CHOUDHURY D,NIMBALKAR S S. Pseudo-dynamic approach of seismic active earth pressure behind retaining wall[J]. Geotechnical & Geological Engineering,2006,24(5):1103 − 1113.
[124] CHOUDHURY D,NIMBALKAR S. Seismic rotational displacement of gravity walls by pseudo-dynamic method:Passive case[J]. Soil Dynamics and Earthquake Engineering,2007,27(3):242 − 249. DOI: 10.1016/j.soildyn.2006.06.009
[125] BAZIAR M H,SHAHNAZARI H,RABETI MOGHADAM M. Sliding stability analysis of gravity retaining walls using the pseudo-dynamic method[J]. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering,2013,166(4):389 − 398. DOI: 10.1680/geng.10.00036
[126] YAN Zuofei,DENG Yahong,HE Jia,et al. A pseudodynamic approach of seismic active pressure on retaining walls based on a curved rupture surface[J]. Mathematical Problems in Engineering,2020,2020:6462034.
[127] GANESH R,KHUNTIA S,SAHOO J P. Seismic uplift capacity of shallow strip anchors:A new pseudo-dynamic upper bound limit analysis[J]. Soil Dynamics and Earthquake Engineering,2018,109:69 − 75. DOI: 10.1016/j.soildyn.2018.03.004
[128] ZHAO Lianheng,YU Chenghao,LI Liang,et al. Rock slope reliability analysis using Barton-Bandis failure criterion with modified pseudo-dynamic approach[J]. Soil Dynamics and Earthquake Engineering,2020,139:106310. DOI: 10.1016/j.soildyn.2020.106310
[129] MUNWAR BASHA B,SIVAKUMAR BABU G L. Reliability assessment of internal stability of reinforced soil structures:A pseudo-dynamic approach[J]. Soil Dynamics and Earthquake Engineering,2010,30(5):336 − 353. DOI: 10.1016/j.soildyn.2009.12.007
[130] BASHA B M,BABU G L S. Seismic reliability assessment of internal stability of reinforced soil walls using the pseudo-dynamic method[J]. Geosynthetics International,2011,18(5):221 − 241. DOI: 10.1680/gein.2011.18.5.221
[131] ZHOU X P,CHENG H. Stability analysis of three-dimensional seismic landslides using the rigorous limit equilibrium method[J]. Engineering Geology,2014,174:87 − 102. DOI: 10.1016/j.enggeo.2014.03.009
[132] CHAKRABORTY D,CHOUDHURY D. Pseudo-static and pseudo-dynamic stability analysis of tailings dam under seismic conditions[J]. Proceedings of the National Academy of Sciences,India Section A:Physical Sciences,2013,83(1):63 − 71. DOI: 10.1007/s40010-013-0069-5
[133] 阮晓波,孙树林,刘文亮. 锚固岩石边坡地震稳定性拟动力分析[J]. 岩土力学,2013,34(增刊1):293 − 300. [RUAN Xiaobo,SUN Shulin,LIU Wenliang. Seismic stability of anchored rock slope using pseudo-dynamic method[J]. Rock and Soil Mechanics,2013,34(Sup 1):293 − 300. (in Chinese with English abstract)] RUAN Xiaobo, SUN Shulin, LIU Wenliang. Seismic stability of anchored rock slope using pseudo-dynamic method[J]. Rock and Soil Mechanics, 2013, 34(Sup 1): 293 − 300. (in Chinese with English abstract)
[134] RUAN Xiaobo,SUN Shulin,LIU Wenliang. Effect of the amplification factor on seismic stability of expanded municipal solid waste landfills using the pseudo-dynamic method[J]. Journal of Zhejiang University SCIENCE A,2013,14(10):731 − 738. DOI: 10.1631/jzus.A1300041
[135] ZHOU Xiaoping,QIAN Qihu,CHENG Hao,et al. Stability analysis of two-dimensional landslides subjected to seismic loads[J]. Acta Mechanica Solida Sinica,2015,28(3):262 − 276. DOI: 10.1016/S0894-9166(15)30013-6
[136] 卢玉林,薄景山,陈晓冉,等. 考虑渗流和地震时的砂土边坡稳定性计算[J]. 重庆大学学报,2017,40(1):65 − 75. [LU Yulin,BO Jingshan,CHEN Xiaoran,et al. Calculation of sand slope stability with considering seepage and earthquake[J]. Journal of Chongqing University,2017,40(1):65 − 75. (in Chinese with English abstract)] LU Yulin, BO Jingshan, CHEN Xiaoran, et al. Calculation of sand slope stability with considering seepage and earthquake[J]. Journal of Chongqing University, 2017, 40(1): 65 − 75. (in Chinese with English abstract)
[137] 邓亚虹,徐召,孙科,等. 一种考虑波动效应的拟动力地震边坡稳定性分析方法[J]. 地球科学与环境学报,2019,41(5):623 − 630. [DENG Yahong,XU Zhao,SUN Ke,et al. Pseudo-dynamic seismic slope stability analysis method considering wave propagation effects[J]. Journal of Earth Sciences and Environment,2019,41(5):623 − 630. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1672-6561.2019.05.010 DENG Yahong, XU Zhao, SUN Ke, et al. Pseudo-dynamic seismic slope stability analysis method considering wave propagation effects[J]. Journal of Earth Sciences and Environment, 2019, 41(5): 623 − 630. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-6561.2019.05.010
[138] 杨楠,邓亚虹,慕焕东,等. 一种基于拟动力法和剩余推力法的地震边坡稳定性分析新方法[J]. 工程地质学报,2023,31(2):607 − 616. [YANG Nan,DENG Yahong,MU Huandong,et al. A new method of seismic slope stability analysis based on pseudo-dynamic method and residual thrust method[J]. Journal of Engineering Geology,2023,31(2):607 − 616. (in Chinese with English abstract)] YANG Nan, DENG Yahong, MU Huandong, et al. A new method of seismic slope stability analysis based on pseudo-dynamic method and residual thrust method[J]. Journal of Engineering Geology, 2023, 31(2): 607 − 616. (in Chinese with English abstract)
[139] 蒋青江,邓亚虹,杨楠,等. 基于严格条分法的拟动力地震边坡稳定性分析方法研究[J]. 地震工程学报,2023,45(3):716 − 723. [JIANG Qingjiang,DENG Yahong,YANG Nan,et,al. Pseudo-dynamic seismic slope stability analysis based on rigorous slice method[J]. China Earthquake Engineering Journal,2023,45(3):716 − 723. (in Chinese with English abstract)] JIANG Qingjiang, DENG Yahong, YANG Nan, et, al. Pseudo-dynamic seismic slope stability analysis based on rigorous slice method[J]. China Earthquake Engineering Journal, 2023, 45(3): 716 − 723. (in Chinese with English abstract)
[140] 宋桂锋,杜江梅,柯鉴,等. 基于拟动力法的顺层岩质边坡稳定性极限分析[J]. 地震工程学报,2019,41(4):931 − 938. [SONG Guifeng,DU Jiangmei,KE Jian,et al. Stability limit analysis of bedding rock slopes based on pseudo-dynamic method[J]. China Earthquake Engineering Journal,2019,41(4):931 − 938. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0844.2019.04.931 SONG Guifeng, DU Jiangmei, KE Jian, et al. Stability limit analysis of bedding rock slopes based on pseudo-dynamic method[J]. China Earthquake Engineering Journal, 2019, 41(4): 931 − 938. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2019.04.931
[141] BELLEZZA I. A new pseudo-dynamic approach for seismic active soil thrust[J]. Geotechnical and Geological Engineering,2014,32(2):561 − 576. DOI: 10.1007/s10706-014-9734-y
[142] CHANDA N,GHOSH S,PAL M. Seismic stability of slope using modified pseudo-dynamic method[J]. International Journal of Geotechnical Engineering,2019,13(6):548 − 559. DOI: 10.1080/19386362.2017.1372056
[143] PAIN A,CHOUDHURY D,BHATTACHARYYA S K. Effect of dynamic soil properties and frequency content of harmonic excitation on the internal stability of reinforced soil retaining structure[J]. Geotextiles and Geomembranes,2017,45(5):471 − 486. DOI: 10.1016/j.geotexmem.2017.07.003
[144] QIN Changbing,CHIAN S C. Impact of earthquake characteristics on seismic slope stability using modified pseudodynamic method[J]. International Journal of Geomechanics,2019,19(9):04019106. DOI: 10.1061/(ASCE)GM.1943-5622.0001489
[145] 李雨浓,赵巍,刘畅,等. 基于修正拟动力法的抗滑桩加固边坡三维地震稳定性分析[J]. 中国公路学报,2024,37(1):44 − 54. [LI Yunnong,ZHAO Wei,LIU Chang,et al. 3D seismic stability analysis of slopes reinforced with stabilizing piles based on a modified pseudo-dynamic method[J]. China J. Highw. Transp,2024,37(1):44 − 54. (in Chinese with English abstract)] LI Yunnong, ZHAO Wei, LIU Chang, et al. 3D seismic stability analysis of slopes reinforced with stabilizing piles based on a modified pseudo-dynamic method[J]. China J. Highw. Transp, 2024, 37(1): 44 − 54. (in Chinese with English abstract)
[146] CHEN Guanghui,ZOU Jinfeng,SHENG Yuming,et al. Three-dimensional seismic bearing capacity assessment of heterogeneous and anisotropic slopes[J]. International Journal of Geomechanics,2022,22(9):04022148. DOI: 10.1061/(ASCE)GM.1943-5622.0002493
[147] 张磊,孙树林,储浩,等. 基于改进拟动力法的主动土压力分析研究[J]. 河北工程大学学报(自然科学版),2017,34(3):32 − 37. [ZHANG Lei,SUN Shulin,CHU Hao,et al. Active earth pressure of retaining wall based on modified pseu-do-dynamic method[J]. Journal of Hebei University of Engineering (Natural Science Edition),2017,34(3):32 − 37. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1673-9469.2017.03.007 ZHANG Lei, SUN Shulin, CHU Hao, et al. Active earth pressure of retaining wall based on modified pseu-do-dynamic method[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2017, 34(3): 32 − 37. (in Chinese with English abstract) DOI: 10.3969/j.issn.1673-9469.2017.03.007
[148] 陈立伟,安彦勇,赵靓,等. 基于改进拟动力法的沿河岩石边坡地震抗倾覆稳定性分析[J]. 水道港口,2023,44(5):819 − 827. [CHEN Liwei,AN Yanyong,ZHAO Jing,et al. Analysis of seismic anti overturning stability of rock slope along the river based on improved pseudo dynamic method[J]. Journal of Waterway and Harbor,2023,44(5):819 − 827. (in Chinese with English abstract)] CHEN Liwei, AN Yanyong, ZHAO Jing, et al. Analysis of seismic anti overturning stability of rock slope along the river based on improved pseudo dynamic method[J]. Journal of Waterway and Harbor, 2023, 44(5): 819 − 827. (in Chinese with English abstract)
-
期刊类型引用(5)
1. 贺伟明,石胜伟,蔡强,梁炯. 基于上下限解的膨胀土边坡首次滑动区域分析. 水文地质工程地质. 2025(01): 104-112 . 百度学术
2. 孙银磊,余川,廖磊,李志妃. 钢渣粉固化改良膨胀性黏土机理研究进展. 水文地质工程地质. 2025(01): 113-129 . 百度学术
3. 张锐,周豫,兰天,郑健龙,刘昭京,李彬. 高速铁路土工格栅加筋膨胀土边坡作用机制. 铁道科学与工程学报. 2024(01): 1-12 . 百度学术
4. 纪佑军,熊军,蒋国斌,王泽根. 考虑应变软化的鸡场镇降雨型滑坡数值分析. 水文地质工程地质. 2024(04): 178-188 . 百度学术
5. 张再江. 基于改进极限平衡原理的膨胀土边坡稳定性计算分析. 水利科技与经济. 2024(07): 48-51 . 百度学术
其他类型引用(8)