ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

四川九绵高速平武段物源量对泥石流流体性质与致灾强度影响的差异性分析

李玲, 陈宁生, 杨溢, 钟政, 黄娜

李玲,陈宁生,杨溢,等. 四川九绵高速平武段物源量对泥石流流体性质与致灾强度影响的差异性分析[J]. 中国地质灾害与防治学报,2024,35(5): 90-102. DOI: 10.16031/j.cnki.issn.1003-8035.202312029
引用本文: 李玲,陈宁生,杨溢,等. 四川九绵高速平武段物源量对泥石流流体性质与致灾强度影响的差异性分析[J]. 中国地质灾害与防治学报,2024,35(5): 90-102. DOI: 10.16031/j.cnki.issn.1003-8035.202312029
LI Ling,CHEN Ningsheng,YANG Yi,et al. Differential analysis of sediment volume on fluid properties and debris flow disaster impact in the northwest traffic corridor of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2024,35(5): 90-102. DOI: 10.16031/j.cnki.issn.1003-8035.202312029
Citation: LI Ling,CHEN Ningsheng,YANG Yi,et al. Differential analysis of sediment volume on fluid properties and debris flow disaster impact in the northwest traffic corridor of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2024,35(5): 90-102. DOI: 10.16031/j.cnki.issn.1003-8035.202312029

四川九绵高速平武段物源量对泥石流流体性质与致灾强度影响的差异性分析

基金项目: 国家自然科学基金-国际(地区)合作与交流项目(42361144880);青海省科技厅基础研究计划项目(2024-ZJ-904);中国博士后科学基金资助项目(GZC20232571;2024M753153)
详细信息
    作者简介:

    李 玲(1998—),女,四川内江人,安全工程专业,硕士研究生,研究方向为山地灾害评价与预测。E-mail:1694598637@qq.com

    通讯作者:

    杨 溢(1965—),男,云南大理人,地质工程专业,博士、教授,研究方向为灾害启动机理与水土保持。E-mail:2919847230@qq.com

  • 中图分类号: P642.23

Differential analysis of sediment volume on fluid properties and debris flow disaster impact in the northwest traffic corridor of Sichuan Province

  • 摘要:

    九绵高速公路LJ9段沟谷型泥石流灾害频发,时常对附近村落和基础设施造成威胁。为了避免灾害对区域高速公路和G247国道的二次冲击,对九绵高速LJ9段沿线存在泥石流暴发痕迹的6条泥石流沟的物源特征与规模进行研究,认为该地区泥石流属于低频沟谷暴雨型。泥石流容重值在1.647~1.843 g/cm3,流速为3.45~6.54 m/s,流量为29.47~253.45 m3/s,一次过流总量为0.99×104~8.28×104 m3。文章通过对比九绵高速“8•16”泥石流规模特征差异,分析物源量与泥石流的容重、规模的关系,建立了相关性公式。研究结果发现:(1)研究区泥石流属于低频沟谷暴雨型,流体性质与沟道物源量紧密相关,单位面积物源量与泥石流容重呈线性关系;单位面积物源量大于1.65×105 m3/km2和小于1.13×105 m3/km2时,泥石流分别表现为黏性和稀性。(2)在相同地质条件下,泥石流物源量与规模之间呈线性相关,泥石流一次总量随流域单位面积物源量减小而减小。(3)泥石流致灾能力受物源量控制,物源总量超过80×104 m3的沟道易形成黏性泥石流,沟口的堆积扇更大,对应破坏力更强;物源总量小于80×104 m3的沟道更易形成稀性泥石流,冲出沟口的破坏性明显小于黏性泥石流,对沟口的人员与工程建设的威胁更小。该研究结果可为九绵高速公路的规划设计与建设提供一定参考,也为山区基础设施的安全运营、灾害防御工程建设工作提供科学依据。

    Abstract:

    The LJ9 segment of Jiumian Expressway frequently experiences gully-type debris flow disasters, posing threats to nearby villages and infrastructure. Considering the unique characteristics and importance of the highway and G247 national road, this study investigates the material source characteristics and scale of six debris flow gullies with debris flow outbreak traces along the LJ9 section of Jiumian Expressway. The debris flows in this area are classified as low-frequency gully flash flood types. The bulk density of the debris flows ranges from 1.647 to 1.843 g/cm3, with velocities between 3.45 and 6.54 m/s, and flow rate ranging from 29.47 to 253.45 m3/s. The total volume of the debris flow ranges from 0.99×104 to 8.28×104 m3. This paper compares the differences in the scale characteristics of the “8•16” debris flow on the Jiumian Expressway, and analyze the relationship between the volume of material source and the bulk density and scale of debris flow, establishing relevant calculation formulas. The results show that: (1) The fluid properties of debris flow in the study area are classified as low-frequency gully flash flood types, closely related to the volume of material source, with a positive correlation between unit area material source volume and debris flow bulk density. When unit area material source volume exceeds 1.65×105 m3/km2 or falls below 1.13×105 m3/km2, debris flow exhibit viscous or diluted characteristics, respectively. (2) Under similar geological conditions, there is a linear correlation between material source volume and debris flow scale, with total debris flow volume decreasing as unit area material source volume decreases. (3) Debris flow damage potential is controlled by material source volume. Gullies with material source volumes exceeding 800 000 m3 are more likely to produce viscous debris flows, which has greater destructive power and form larger debris flow fans at their mouths. These findings provide insights for the design and construction of the Jiumian Expressway and serve as a scientific basis for the safe operation of infrastructure in mountainous regions and the construction work of geological hazard prevention projects.

  • 泥石流是发生在山区的一种突发性地质灾害,暴发突然,破坏力极强。为有效防治泥石流,国内外研究人员从泥石流的发育规律、防治措施、预警预防等方面进行了深入研究。

    试验作为研究泥石流的有效手段而被广泛应用,Iverson等[1-2]、George等[3]进行了多次泥石流启动试验,将泥石流的启动与孔隙水压力联系起来,用有效应力和孔隙水压力揭示其启动过程,并同步考虑黏粒的作用,但试验条件未考虑黏性颗粒的定量化及土体级配差异,因此相关成果略有不足。Takahashi[4]以侵蚀后的沟道堆积物为研究对象,进行了试验研究,研究成果表明松散物质特性、沟床比降、表面水流流速等对泥石流的启动有重要影响。国内的西南地区泥石流发育较为频繁,经过众多学者的深入研究,泥石流发育的地貌特征、发育条件、启动机制越发清晰,为其他地区的泥石流研究提供了强有力的理论基础。胡明鉴、陈中学等以蒋家沟为主要研究对象,借助试验技术手段系统研究了暴雨作用下滑坡与泥石流的共生关系[5],探明了堆积物源在降雨作用下自身结构和稳定性丧失是泥石流发育的内因[6],揭示了黏土颗粒对泥石流启动具有显著影响[7],并进一步借助数值模拟等手段探索了启动过程和失稳灾变模式[8-9]。程尊兰等[10-11]对冰湖溃决型泥石流形成机制及泥石流阻塞坝的形成进行了系统的研究。胡凯衡等[12-13]对泥石流沟床的形态阻力开展试验研究,精准描述了泥石流陈性波状运动状态。

    上述研究成果为泥石流试验研究奠定了坚实的理论基础,但由于泥石流物源启动的复杂性和区域差异性,通过对特定区域泥石流物源实施试验研究形成的理论具有的一定的局限性,旱区泥石流的相关研究几乎很少涉及。

    有鉴于此,文中以苏峪口泥石流为研究对象,通过开展模型试验,深入研究旱区泥石流物源土破坏与启动特征,明晰泥石流发育规律,进一步丰富对旱区泥石流的认识,为区域泥石流防治及防灾减灾工程设施的建设提供基础理论依据。

    研究区位于贺兰山东麓,气候类型为温带季风气候,干旱少雨,年降雨量400~800 mm,且降雨集中在7—8月份,多为短历时强降雨,易形成地表径流。区内泥石流物源主要来自沟道堆积物,粗颗粒含量高。相比于西南地区地形高差大、降雨量充盈、物源储备丰富、细颗粒(黏粒、粉粒和砂)含量高的特点,研究区泥石流发育模式明显不同。

    贺兰山东麓沿线分布数十条沟谷,孕育着沟谷型稀性泥石流,近年来位于银川段的数条沟谷灾害频发,严重威胁东麓沿线生产生活设施安全,泥石流沟谷分布见图1。其中苏峪口流域面积最大,为50.5 km2。沟谷长13.7 km,沟道比降73.9‰。该流域泥石流发育规模较大,危害较为严重,最近一次启动时间为2018年7月23日,部分冲出物保存完好。

    图  1  苏峪口流域周边泥石流沟谷分布
    Figure  1.  The distribution of debris flow gullies around Suyukou Basin

    选取长300 m、宽75 m的典型沟道堆积物取样,土体天然密度为1.54 g/cm3[5],试验用土按粗颗粒含量配置,密度分别为1.50 g/cm3、1.60 g/cm3、1.70 g/cm3,天然含水率为1.03%,饱和含水率为10.98%,土体级配曲线见图2,试验中分别筛分了两次试样,取平均值作为试验数据。不均匀系数Cu=66.96,曲率系数Cc=0.47,该土属级配不良土。

    图  2  试验土样颗粒级配曲线
    Figure  2.  Test the soil-like particle-grade matching curve

    试验装置由供水系统、物源箱、堆积区三部分组成,供水系统可提供不同流速的表面径流,模拟不同降雨频率下的后方汇水。模型装置由物源箱和堆积区组成,物源箱由上下两个独立箱体构成,箱体之间可在0°~90°范围内调节以模拟不同的沟道平面弯曲形态,模型箱总体长度3 m、宽0.75 m,箱体底部粘结不同粒径的粗颗粒,模拟沟床的粗糙度,使模型箱的粗糙程度更接近真实状态,箱内的土体采用平铺的方法,与沟床原型堆积相似,无边值考虑,且模型箱底面坡度可通过箱体底部的支座进行调节;堆积区由带有刻度的木板拼接而成,并铺设塑料布料防渗,试验装置简图及实物图见图3

    图  3  试验装置简图及实物图
    Figure  3.  A brief diagram of the test device and a physical diagram

    为了真实反映泥石流启动的客观规律,参考相关研究经验[14],对模型箱几何尺寸、洪水总量及土颗粒级配进行相似设计,模型的几何相似比λl为1∶100,依据弗劳德准则分别计算洪水总量和洪水冲刷时长比例。文中选用了20年一遇洪水进行相似设计,经计算,模型洪水总量Qm为1.46 m3,试验中控制平均流量(流量与截面积的乘积)为1.14 L/s。

    $$ \frac{{\nu }_{{\rm{n}}}^{2}}{\sqrt{{g}_{{\rm{n}}}{l}_{{\rm{n}}}}}=\frac{{\nu }_{{\rm{m}}}^{2}}{\sqrt{{g}_{{\rm{m}}}{l}_{{\rm{m}}}}} $$ (1)
    $$ \frac{{l}_{{\rm{m}}}}{{l}_{{\rm{n}}}}={\lambda }_{l}=\frac{1}{100} $$ (2)
    $$ \frac{{t}_{{\rm{m}}}}{{t}_{{\rm{n}}}}={\lambda }_{l}^{0.5}=\frac{1}{10} $$ (3)
    $$ \frac{{Q}_{{\rm{m}}}}{{Q}_{{\rm{n}}}}={\lambda }_{l}^{3}=\frac{1}{1\times {10}^{6}} $$ (4)

    式中:Vm——模型流速/(m·s−1);

    Vn——原型流速/(m·s−1);

    ${l}_{{\rm{m}}}$——模型几何尺寸/m;

    ${l}_{{\rm{n}}}$——原型几何尺寸/m

    ${t}_{{\rm{m}}}$——模型时间比尺/s;

    ${t}_{{\rm{n}}}$——原型时间比尺/s;

    ${Q}_{{\rm{m}}}$——模型洪水总量/m3

    ${Q}_{{\rm{n}}}$——原型洪水总量/m3

    物源相似依据《泥石流防治指南》设计,模型箱的宽度应大于或等于试验流体中最大粒径的5倍,且模型中最大颗粒粒径与流深之比应小于等于原型中泥石流的最大颗粒粒径与流深之比,见式(5)—(6)。模型箱宽度为75 cm,$D_{\rm{M_m}} $应小于15 cm,结合现场踏勘结果,沟道中堆积的最大块石粒径约为3 m,$D_{\rm{M_m}} $应小于3 cm。由此,确定了模型试验允许的最大颗粒粒径。采用等质量替代法用0.5~3 cm的颗粒替代粒径大于3 cm的颗粒。

    $$ {B}_{{\rm{f}}}\geqslant 5{D}_{{{\rm{M}_{m}}}} $$ (5)
    $$ {D}_{{{\rm{M}_{m}}}}/{H}_{{{\rm{C}_{m}}}}\leqslant {D}_{{{\rm{M}_{n}}}}/{H}_{{{\rm{C}_{n}}}} $$ (6)

    式中:${B}_{{\rm{f}}} $——模型箱的宽度/cm;

    ${D}_{{{\rm{M}_{m}}}} $${D}_{{{\rm{M}_{n}}}} $——模型与原型中流体的最大颗粒粒径/ cm;

    ${H}_{{{\rm{C}_{m}}}}$${H}_{{{\rm{C}_{n}}}} $——模型与原型中的流深/cm。

    试验设计采用正交试验法,选用沟床坡度、粗颗粒含量及土体含水率作为影响泥石流启动的关键性控制因素,其中土体含水率代表前期降雨量。据研究区实地调查与前期试验,物源粗颗粒含量介于60%~90%,苏峪口沟床平均坡度为5°,泥石流启动临界坡度为15°[15],由此设计了9组试验工况(表1)。试验全程采用摄像机记录物源破坏与泥石流的发育过程,并采用浮标法测量流速;现场测量泥石流冲沟发育形态、堆积形态与物源冲出量等特征。

    表  1  模型试验工况设计
    Table  1.  Model test condition design
    工况沟床坡度/(°)土体含水率/%粗颗粒含量/%
    10天然含水率60
    10半饱和含水率80
    10饱和含水率70
    15天然含水率80
    15半饱和含水率70
    15饱和含水率60
    5天然含水率70
    5半饱和含水率60
    5饱和含水率80
    下载: 导出CSV 
    | 显示表格

    根据试验现象,不同粗颗粒含量的物源启动模式可以概化为三类,分述如下。

    工况一(10°)、工况六(15°)、工况八(5°),粗颗粒含量为60%,三组试验启动模式为沟道侵蚀型,发育过程概化为:物源表面细颗粒迁移—顶面下切形成冲沟—侵蚀切割加深拓宽沟道—沟道形态稳定;分析认为出现该发育模式的原因在于物源细颗粒含量相对较高,孔隙充填密实,堆积体整体结构性较好,渗透性差,径流冲刷作用下,物源顶面满足临界启动速度的颗粒启动,下切形成冲沟并不断发展,直至侵蚀停止。受控制因素影响,发育特征有所不同:工况六为控制因素最佳组合,物源侵蚀最为剧烈,如图4(b)、(e)所示,冲沟平均下切深度达到11.47 cm,坡脚处冲刷18 s即形成汇流通道,侵蚀历时最长为409 s,测得浆体容重为1.34~1.56 g/cm3。侵蚀剧烈程度其次为工况一,冲刷历时36 s后,坡脚处形成汇流通道,冲沟平均下切深度为5.00 cm,侵蚀历时274 s,浆体容重为1.37~1.47 g/cm3,试验中沟道两侧土体崩塌后在沟道内堆积,如图4(d)所示。工况八坡度较小,重力侵蚀并不明显,仅在物源箱下部形成贯通性冲沟,上部为大面积面蚀,面蚀深度达到2.20 cm,如图4(f)所示,冲沟平均下切仅3.30 cm,浆体容重稍小,为1.21~1.31 g/cm3,侵蚀历时相对上述两种工况最短,历时240 s后,侵蚀停止。

    图  4  粗颗粒含量60%泥石流发育特征
    Figure  4.  The crude particles of the source are higher than 60% of the mudslide grown characteristics

    工况三、四、五为堵溃型,发育过程概化为:径流入渗—土体内部细颗粒迁出—物源堆积结构重组—物源堆积结构失稳—物源堵塞—溃决;试验中大规模的物源启动与冲出次数和淤积体的溃决次数基本一致,且过程短暂。分析认为由于粗颗粒含量增加,堆积体内部孔隙含量和渗流通道增加,细颗粒首先进行迁移,粗颗粒构成的骨架进行结构重组,发生沉降、铺床等现象,沟口物源由于结构重组引发溃决而启动,如图5(a)(b)(c)(d)所示。冲沟在物源滑动沉降时形成,在后续多次滑动中进一步拓宽加深,整体形态呈椭圆型、哑铃型,如图5(e)(f)所示。

    图  5  物源粗颗粒高于60%泥石流启动特征
    Figure  5.  The crude particles of the source are higher than 60% of the mudslide start-up characteristics

    相比沟道侵蚀型,堵溃型泥石流明显有着不同的发育特征,泥石流的形成主要由箱体内物源溃决滑出形成,由于物源侵蚀迁出方式不同,侵蚀历时相对沟道侵蚀型较长,且冲沟下切深度差异不大。工况三、四、五分别历时354 s、720 s、342 s后,水流清澈,侵蚀完全停止;下切深度分别为6.50 cm、6.63 cm、7.00 cm。由于物源的组成差异,所测浆体容重明显小于沟道侵蚀型,分别为1.15~1.35 g/cm3、1.07~1.26 g/cm3、1.22~1.54 g/cm3。堵溃型泥石流的启动时间相对沟道侵蚀型较为滞后,分别冲刷237 s、592 s、97 s后有物源冲出,启动前上游物源经历了不同程度的滑动、堆积等行为。

    工况二、七、九仅有部分细颗粒迁出,在物源表面形成粗化层,箱体内部粗颗粒出现短距离滑移和小范围的沉降,并未出现大规模的泥石流活动,为物源扰动型。发育过程划分为:径流入渗—土体内部细颗粒迁出—物源堆积结构重组并保持稳定;发育过程如图6所示。

    图  6  物源扰动后形成的粗化层
    Figure  6.  Coarsening layer formed after source disturbance

    据图分析:各组堆积扇粗细颗粒堆积均呈现一定的分选,细颗粒在距离沟口更远的区域内堆积,粗颗粒就近堆积,这一现象随着粗颗粒含量增加表征更明显。粗颗粒含量高于70%的工况,大于2 cm的颗粒在流至堆积区时就停止运动并堆积,1~2 cm的颗粒在距离沟口0.8~1.5 m的范围内堆积,小于1 cm的颗粒则在堆积区的边缘位置堆积,见图7(c)。粗颗粒含量低时(60%),细颗粒含量相对较高,初次堆积时,表现出粗细颗粒混杂,在表面径流持续冲刷下,堆积区细颗粒再次迁移,堆积物表面也表现出一定的粗细颗粒分选。分析认为造成粗细颗粒分选的原因在于流体运动至堆积区后,流体向两侧展布变宽,径流深度变小,大颗粒失去径流浮力而停止迁移,细颗粒在径流浮力下继续向前运动。

    图  7  粗颗粒含量高于60 %的物源各地形条件下堆积特征
    Figure  7.  The accumulation characteristics of the crude particle content is higher than 60% under the condition of the origin

    除工况八以外,其他工况形成的堆积扇的厚度均表现出中间厚两侧薄,后缘厚度大、前缘厚度小的堆积特征。如图8所示,工况八形成的堆积扇沿垂直径流方向的展布规律与其他工况一致,沿径流方向展布特征则相反。结合试验现象分析认为:粗颗粒含量为70%、80%的物源启动后,粗颗粒含量相对较高且就近堆积(图7);工况一、工况六的侵蚀程度均强于工况八,更多的粗颗粒被启动;而工况八坡度较小,物源势能不足,粗颗粒被启动的较少,堆积范围距离沟口最远也说明了这一点,因而沿径流方向的堆积特征与其他工况相反。

    图  8  粗颗粒含量60 %的物源各地形条件下堆积特征
    Figure  8.  The accumulation characteristics of the source under the condition of all shapes and conditions with 60% coarse particle content

    泥石流的发育规模常用物源冲出量表征,因此,将物源冲出总量或平均值作为监测指标,并分析其对不同因素水平的响应[16]。将同一因素水平下的冲出总量及平均值列于表2,并绘制成图(图8)。表2iii表示某因素三个水平下的物源冲出量;第四列至第六列分别代表iii的平均值。Ri表示平均值极差。代表影响因子的三个水平,i=(ABC),分表代表沟床坡度、土体含水率、粗颗粒含量三个影响因子,表中数据则代表相应工况下的冲出量实测值。

    表  2  试验数据正交分析表
    Table  2.  The test data orthogonal analysis table
    数据沟床坡度
    /(°)
    土体含水率
    /%
    粗颗粒含量
    /%
    误差项物源冲出总量/
    (10−3 m3
    i18.8037.3894.3750.88161.67
    i49.4846.2053.4052.09
    i93.3978.0913.9058.70
    $\bar{{\textit{I}}}_{ {i} }$6.2712.4631.4616.96
    $\bar{\textit{I I}}_{i}$16.4915.4017.8017.36
    $\bar{\textit{I I I}} _{i}$31.1326.034.6319.57
    Ri24.8613.5726.822.61
    注:iii表示某因素三个水平下的物源冲出量;$\bar{{\textit{I}}}$、$\bar{{\textit{I I}}}$、$\bar{{\textit{I I I}}}$表示的平均值,Ri表示极差。
    下载: 导出CSV 
    | 显示表格

    结合表2图9分析可知:①物源冲出量与沟床坡度成正比,随着沟床坡度增大,泥石流发育规模越大,易启动且侵蚀时间更长,物源侵蚀更剧烈;坡度为5 °时,仅有工况八(粗颗粒含量60%)形成泥石流,说明在相同的势能和水动力条件下,细粒含量越高,物源越容易启动,即泥石流较水石流易启动,工况三泥石流的形成验证了这一规律。②据图9,物源冲出量与土体含水率成正比,含水率越高,物源冲出量越大;对比分析同一粗颗粒含量或沟床坡度水平下,物源冲出量与含水率并非正比关系,说明含水率对泥石流的形成作用相对最小。③物源冲出量与粗颗粒含量成反比,随着粗颗粒含量增加,泥石流发育规模逐渐减小。④粗颗粒含量对应的极差值RC最大,即物源冲出量散布最大; RA稍小,为24.86; RB最小,为13.57,说明粗颗粒含量对物源冲出量影响最强,依次是沟床坡度、土体含水率。⑤沟床坡度为15 °,土体饱和,且粗颗粒含量为60%时,最利于泥石流的形成。因此,因素水平组合为A3B3C1为最佳组合,工况六的物源冲出量最大亦印证了这一规律。

    图  9  同一因素不同水平对物源冲出量的影响
    Figure  9.  The effect of different levels of the same factor on the amount of source out of the source

    为了检验数据的波动是否由试验条件改变引起的,将试验数据进行方差分析(表3),表中Adj SS、Adj MS为软件分析中间值,F是对模型的方差检验,P是判断F检验是否显著,根据P值大小检验三个因素对物源冲出量的显著性,P值越小,则代表影响因子对的结果影响越显著。三个因素对物源冲出量的显著性均为高度显著,说明物源冲出量的差异是由条件改变引起的。 土体含水率对应的P值最大,依次是沟床坡度、粗颗粒含量,说明对物源冲出量影响最为显著的因素是粗颗粒含量,其次是沟床坡度,影响相对最小的是土体含水率。 结合文中第2节中泥石流发育模式分析认为:研究区内泥石流防治与预测可分区进行,物源粗颗粒含量低且坡度大的区域泥石流更易启动;反之,坡度小、粗颗粒含量高的区域泥石流则不易启动。

    表  3  泥石流影响因素方差分析表
    Table  3.  The anovary table of the factors affected by mudslides
    来源自由度Adj SSAdj MSFP
    沟床坡度20.0008880.000444110.000.009
    土体含水率20.0003060.00015337.880.026
    粗颗粒含量20.0010260.000513127.150.008
    误差20.0000080.000004
    合计80.002228
    下载: 导出CSV 
    | 显示表格

    文中的主要研究目的在于探明贺兰山苏峪口泥石流的发育规律,为该地区泥石流防治提供理论支撑。研究结果显示,泥石流的启动模式与物源侵蚀因物源组成而存在差异,细颗粒含量高时,侵蚀以沟道侵蚀为主,且沟岸以崩塌、倾倒的方式进行物源补给。随着细颗粒含量降低,泥石流的启动模式转变为堵溃型,土体破坏以滑坡沉降为主,泥石流的启动具有明显的阵性特征,启动次数与堵塞体溃决次数相等。物源的粗颗粒含量、沟床坡度及土体含水率均会对泥石流发育产生不同程度的影响,其中,物源冲出量与沟床坡度、土体含水率成正比,与粗颗粒含量成反比且粗颗粒含量产生的影响最为显著,依次是沟床坡度、土体含水率。这与现有的研究结果相符[15, 17-18]

    分析上述试验结果认为:不同细粒含量的物源结构存在差异,内部结构对土体的渗透性与强度有显著影响。细颗粒含量越高,土体的渗透性越差,渗透水无法及时排除造成孔隙水压增大,有效应力相对减小;同时,堆积体表面水流因携带细颗粒冲刷能力增强,越来越多的颗粒被启动,因此,粗颗粒含量为60%的物源以沟道侵蚀的方式形成规模较大的泥石流。随着粗颗粒(>2 mm)的含量增加,物源堆积体内部结构发生变化,强度主要由咬合力构成,此时,透水性较大,渗流水可以自由流出,而不会引起孔隙水压的增大,细颗粒迁移在渗透水的长期渗流下,粗颗粒组成的土体骨架进行结构重组而引起坡体滑动与沉降。因此,粗颗粒含量高时泥石流难以启动。

    对比前人研究成果发现,将贯通性冲沟的形成作为泥石流的启动标志并不适用稀性泥石流和水石流。细颗粒含量高时,细小冲沟形成时流体容重并未达到1.3 t/m3;细颗粒含量较低时,泥石流的启动与沟口堵塞体的溃决相关,在溃口形成引发泥石流后,上游物源才进行滑坡、沉降等一系列活动。

    文中以贺兰山东麓苏峪口为原型,通过开展模型试验,研究了泥石流在不同粗颗粒含量、不同含水率及不同沟床坡度下的发育规律。并分析了泥石流发育规模与形成条件代表性因素之间的关系,现得出以下结论:

    (1)泥石流发育模式因物源组成而存在差异,细颗粒含量较高时,泥石流的类型为沟道侵蚀型,沟道两侧土体除直接侵蚀外,以崩塌、倾倒的方式进行补给。物源连续冲出直至侵蚀结束,侵蚀历时和冲沟形态稳定历时较长。冲出物堆积具有明显的分带特征,即粗颗粒就近堆积,细颗粒经远距离搬运后堆积,堆积扇展布宽,厚度小。随着粗颗粒含量增加,泥石流形成转变为堵溃型,且不易启动,土体破坏以滑动沉降的方式进行,泥石流启动具有阵型特征,且启动次数与沟口溃决次数相同,堆积扇在后口不远处堆积,堆积厚度大,展布小。

    (2)泥石流形成条件的代表因素对泥石流的形成作用不同,沟床坡度越大、含水率越高越有利于泥石流发育,粗颗粒含量反之。因素水平最佳组合为粗颗粒含量60%、沟床坡度为15°、含水率为饱和含水率,工况六的冲出物体积最大,印证了这一规律。

    (3)影响因素显著性分析结果表明,三种影响因素对物源冲出量均高度显著,其中,粗颗粒含量显著性最强,依次是沟床坡度、土体含水率。

    (4)结合研究区内短历时强降雨的降水特征及物源的强渗透性,研究区的泥石流防治可分区进行,物源细颗粒含量高的沟道可在上游进行分流以降低下游水深,防止过度冲刷;采取防护措施防止沟岸崩塌、倾倒;物源粗颗粒含量高的沟道可在沟道堆积物的坡脚处设置梯级坝系,防止堆积体坡脚发生溃决,进而有效阻止泥石流活动。

  • 图  1   研究区地理位置

    Figure  1.   Geographical location of the study area

    图  2   研究区地质图

    Figure  2.   Geological map of the study area

    图  3   2020年平武县月平均气温、降雨量

    Figure  3.   Monthly average temperature and rainfall in Pingwu County, 2020

    图  4   凹槽土体物源量计算模型

    Figure  4.   Calculation model of the source quantity of groove material sourc

    图  5   颗粒分析粒度曲线

    Figure  5.   Particle size curve from particle analysis

    图  6   研究区泥石流原状物颗粒组成

    Figure  6.   Composition of original debris flow particles in the study area

    图  7   研究区物源分布

    Figure  7.   Material source distribution in the study area

    图  8   阿祖沟凹槽物源分布示意图

    Figure  8.   Schematic diagram of groove material source distribution map of the Azu debris flow gully

    图  9   夺补河5号沟坡面侵蚀物源

    Figure  9.   Material source of slope erosion in No. 5 debris flow gully of Duobo River

    图  10   泥石流沟单位面积物源量与容重的关系

    Figure  10.   The Relationship between material source quantity and bulk density per unit area of debris flow gully

    图  11   单位面积物源量与一次泥石流总量的关系

    Figure  11.   The relationship between the volume of material source per unit area and the total volume of the debris flow

    图  12   泥石流堆积扇示意图

    Figure  12.   Schematic diagram of debris flow fans

    图  13   物源总量与泥石流堆积扇体积的关系

    Figure  13.   The relationship between the total volume of material source and the volume of debris flow fan

    图  14   阿祖沟泥石流沟口航拍图(受灾后)

    Figure  14.   Aerial photography of the Azu debris flow gully exit (post- disaster)

    图  15   杂排沟泥石流沟口堆积扇概况图

    Figure  15.   Overview of the debris flow fan at the Zapai debris flow gully exit

    表  1   泥石流动储量计算公式

    Table  1   Calculation formula for debris flow dynamic reserves

    物源类型 计算公式 说明
    坡面侵蚀物源 $ V=\mathrm{\alpha }{A}^{\gamma } $ V为坡面侵蚀物源体积/104 m3A为坡面侵蚀物源面积/m2
    ${\alpha } $为面积-体积修正系数;$ {\gamma } $为面积-体积经验指数,不同地区的修正系数与经验指数一般不同
    凹槽土体物源 松散土体面积:
    $ {\Delta }_{1}cod=\dfrac{1}{2}co\cdot cd=\dfrac{1}{2}h\cdot h\cdot \tan\alpha= $
    $ \dfrac{1}{2}{h}^{2}\cdot \tan(\beta-\theta ) $
    动储量体积:$ {V}_{01}={\Delta }_{1}cod\cdot {L}_{1} $
    $ \beta $为斜坡自然休止角/(°);$\alpha $为物源土体与自然休止角夹角/(°);co=h为原沟床深度/m;
    $ {V}_{01} $为下切侵蚀型动储量/m3;$ {L}_{1} $为沟床堆积体长度/m,具体参数位置见图4
    下载: 导出CSV

    表  2   泥石流运动参数式

    Table  2   Calculation formulas table for debris flow motion parameters

    序号 参数 公式 说明
    1 泥石流流速 $ {V_{\mathrm{c}}} = \left( {{M_{\mathrm{c}}}/a} \right){R^{2/3}}{I_{\mathrm{c}}}^{1/2} $
    $a = {(1 + {\varphi _{\mathrm{c}}}{\gamma _{\mathrm{s}}})^{\tfrac{1}{2}}}$
    ${\varphi _{\mathrm{c}}} = \dfrac{{{\gamma _{\mathrm{c}}} - {\gamma _{\mathrm{w}}}}}{{{\gamma _{\mathrm{s}}} - {\gamma _{\mathrm{c}}}}}$
    $ {V}_{\mathrm{c}} $为流速/(m·s−1);$ {M}_{\mathrm{c}} $为泥石流沟床粗糙系数,沟槽情况越复杂取值越大,取值为4.5~7.9(表3);$ R $为泥石流水力半径/m ;$ {I}_{\mathrm{c}} $为泥石流水力坡度;$ {\gamma _{\mathrm{s}}} $为固体颗粒的容重,取2.65~2.7 g/cm3;$ \gamma _{\mathrm{c}} $为泥石流容重/(g·cm−3);$ {\gamma _{\mathrm{w}}} $为水的容重,取1.0 g/cm3
    2 峰值流量 $ {Q_{\mathrm{C}}} =(1 + \varphi ){Q_P} \cdot {D_{\mathrm{C}}} $
    $ {Q_P} = 0.278\psi \dfrac{s}{{{\tau ^n}}}F $
    $ \varphi = ({\gamma _{\mathrm{c}}} - {\gamma _{\mathrm{w}}})/({\gamma _{\mathrm{s}}} - {\gamma _{\mathrm{c}}}) $
    $ {Q_{\mathrm{C}}} $为泥石流峰值流量/(m3·s−1);$ {Q_P} $为频率为P的暴雨洪水设计流量/(m3·s−1);$ \varphi $为泥石流泥沙修正系数,取值在0.8~1.2,见表3;$ {D_{\mathrm{C}}} $为堵塞系数,根据实际调查情况,取值见表3;$\psi $为洪峰径流系数;τ为流域汇流时间;n为暴雨指数;s为暴雨雨力;τns依据《四川省中小流域暴雨洪水计算手册》取值,F为流域面积
    3 泥石流一次
    冲出总量
    $ {W}_{\mathrm{c}}=0.264T{Q}_{\mathrm{c}} $ $ T $为泥石流历时/s;$ {Q_{\mathrm{C}}} $为泥石流峰值流量/(m3·s−1
    4 泥石流冲出
    固体物质总量
    $ {W}_{\mathrm{s}}=\left({\gamma }_{\mathrm{c}}-{\gamma }_{w}\right){W}_{\mathrm{c}}/\left({\gamma }_{\mathrm{s}}-{\gamma }_{w}\right) $ $ {W}_{\mathrm{c}} $为泥石流一次冲出总量/(m3·s−1
    下载: 导出CSV

    表  3   泥石流运动特征参数

    Table  3   Characteristic parameters of debris flow

    沟名 泥石流流速
    /(m·s−1
    泥石流容重
    /(g·cm−3
    泥石流峰值流量
    /(m3·s−1
    泥石流一次冲出总量
    /(104 m3
    固体物质总量
    /(104 m3
    堵塞系数 沟床糙率
    系数
    泥沙修正
    系数
    阿祖沟 4.21 1.843 174.14 8.28 3.73 2.7 4.9 1.15
    麻石扎3号桥沟 6.54 1.647 29.47 0.99 0.34 2.2 7.3 0.83
    夺补河5号桥沟 3.79 1.717 21.67 1.80 0.54 2.4 6.2 0.97
    杂排沟 3.45 1.811 253.45 6.12 3.20 2.6 5.2 0.91
    黄土梁左沟 4.50 1.677 81.38 1.612 0.49 1.9 6.9 0.85
    黄土梁右沟 4.36 1.697 88.79 2.18 0.54 2.1 6.7 0.83
      注:表格中的沟床糙率系数($ {M}_{\mathrm{c}} $),泥沙修正系数($ \varphi $)与堵塞系数($ {D_{\mathrm{C}}} $)均为结合研究区先前研究、地形条件与实地勘察数据等因素综合考虑后赋值
    下载: 导出CSV

    表  4   研究区泥石流沟基础资料统计表

    Table  4   Statistical table of basic data of debris flow gullies in the study area

    沟名 流域面积
    /km2
    容重
    /(g·cm−3
    坡面、凹槽物源
    面积S1S2
    /(10−4 km2
    凹槽土体物源量
    /(104 m3
    物源总量
    /(×104m3)
    单位面积物源/
    (104 m3·km−2
    阿祖沟 4.54 1.843 5.80、2.19 26.29 102.89 22.62
    麻石扎3号沟 2.34 1.647 2.25、0 0 2.32 0.99
    夺补河5号沟 1.78 1.717 2.36、0 3.37 18.20 10.11
    杂排沟 5.68 1.811 3.96、2.17 28.16 97.69 17.20
    黄土梁左沟 5.14 1.677 1.01、0 0 10.18 1.98
    黄土梁右沟 5.74 1.697 3.84、0 0 38.73 6.74
    下载: 导出CSV

    表  5   泥石流堆积扇数据

    Table  5   Data of debris flow fans

    沟名 堆积坡度
    /(°)
    堆积厚度
    /m
    面积
    /(104 m2
    堆积体积
    /(104 m3
    阿祖沟 10.0 2.5 6.31 3.98
    麻石扎3号沟 10.1 1.2 0.51 0.34
    夺补河5号沟 8.0 1.2 1.45 1.07
    杂排沟 7.0 2.4 4.12 2.94
    黄土梁左沟、右沟 7.6 1.5 1.68 1.12
    下载: 导出CSV
  • [1] 刘希林,莫多闻. 论泥石流及其学科性质[J]. 自然灾害学报,2001,10(3):1 − 6. [LIU Xilin,MO Duowen. Debris flow and its subject attribute[J]. Journal of Natural Disasters,2001,10(3):1 − 6. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1004-4574.2001.03.001

    LIU Xilin, MO Duowen. Debris flow and its subject attribute[J]. Journal of Natural Disasters, 2001, 10(3): 1 − 6. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-4574.2001.03.001

    [2]

    ALEXANDER D. Urban landslides[J]. Progress in Physical Geography:Earth and Environment,1989,13(2):157 − 189. DOI: 10.1177/030913338901300201

    [3] 王高峰,杨强,陈宗良,等. 白龙江流域甘家沟泥石流风险评估研究[J]. 泥沙研究,2020,45(4):66 − 73. [WANG Gaofeng,YANG Qiang,CHEN Zongliang,et al. Risk assessment of debris flow in the Ganjia gully of the Bailongjiang Basin[J]. Journal of Sediment Research,2020,45(4):66 − 73. (in Chinese with English abstract)]

    WANG Gaofeng, YANG Qiang, CHEN Zongliang, et al. Risk assessment of debris flow in the Ganjia gully of the Bailongjiang Basin[J]. Journal of Sediment Research, 2020, 45(4): 66 − 73. (in Chinese with English abstract)

    [4] 康志成. 我国泥石流流速研究与计算方法[J]. 山地研究,1987,5(4):247 − 259. [KANG Zhicheng. A velocity research of debris flow and it is calating method in China[J]. Journal of Mountain Research,1987,5(4):247 − 259. (in Chinese with English abstract)]

    KANG Zhicheng. A velocity research of debris flow and it is calating method in China[J]. Journal of Mountain Research, 1987, 5(4): 247 − 259. (in Chinese with English abstract)

    [5] 唐邦兴,章书成. 泥石流研究[J]. 中国科学院院刊,1992,7(2):119 − 123. [TANG Bangxing,ZHANG Shucheng. Debris flow study[J]. Bulletin of the Chinese Academy of Sciences,1992,7(2):119 − 123. (in Chinese)]

    TANG Bangxing, ZHANG Shucheng. Debris flow study[J]. Bulletin of the Chinese Academy of Sciences, 1992, 7(2): 119 − 123. (in Chinese)

    [6] 杨成林,陈宁生,李战鲁. 汶川地震次生泥石流形成模式与机理[J]. 自然灾害学报,2011,20(3):31 − 37. [YANG Chenglin,CHEN Ningsheng,LI Zhanlu. Formation mode and mechanism fordebris flow induced by Wenchuan earthquake[J]. Journal of Natural Disasters,2011,20(3):31 − 37. (in Chinese with English abstract)]

    YANG Chenglin, CHEN Ningsheng, LI Zhanlu. Formation mode and mechanism fordebris flow induced by Wenchuan earthquake[J]. Journal of Natural Disasters, 2011, 20(3): 31 − 37. (in Chinese with English abstract)

    [7] 陈宁生,杨成林,周伟,等. 泥石流勘查技术[M]. 北京:科学出版社,2011. [CHEN Ningsheng,YANG Chenglin,ZHOU Wei,et al. Investigation technolog for debris flows[M]. Beijing:Science Press,2011. (in Chinese)]

    CHEN Ningsheng, YANG Chenglin, ZHOU Wei, et al. Investigation technolog for debris flows[M]. Beijing: Science Press, 2011. (in Chinese)

    [8] 李培基,梁大兰. 泥石流容重及其计算[J]. 泥沙研究,1982(3):75 − 83. [LI Peiji,LIANG Dalan. Debris flow bulk density and its calculation[J]. Journal of Sediment Research,1982(3):75 − 83. (in Chinese)]

    LI Peiji, LIANG Dalan. Debris flow bulk density and its calculation[J]. Journal of Sediment Research, 1982(3): 75 − 83. (in Chinese)

    [9] 周必凡,李德基,罗德富,等. 泥石流防治指南[M]. 北京:科学出版社,1991. [ZHOU Bifan,LI Deji,LUO Defu,et al. Guidelines for debris flow control [M]. Beijing:Science Press,1991. (in Chinese)]

    ZHOU Bifan, LI Deji, LUO Defu, et al. Guidelines for debris flow control [M]. Beijing: Science Press, 1991. (in Chinese)

    [10] 杜榕恒,康志成,陈循谦,等. 云南小江泥石流综合考察与防治规划研究[M]. 重庆:科学技术文献出版社,1987. [DU Ronghuan,KANG Zhicheng,CHEN Xunqian,etal. A comprehensive investigation and control planning for debris flow in the Xiaojiang River Basin of Yunnan Province[M]. Chongqing:Branch of Science and Technology Literature Publishing House,1987. (in Chinese)]

    DU Ronghuan, KANG Zhicheng, CHEN Xunqian, etal. A comprehensive investigation and control planning for debris flow in the Xiaojiang River Basin of Yunnan Province[M]. Chongqing: Branch of Science and Technology Literature Publishing House, 1987. (in Chinese)

    [11] 程尊兰. 泥石流设计流量中容重的计算方法[J]. 泥石流,1995(4):95 − 97. [CHENG Zunlan. Calculation method of bulk density in design flow of debris flow[J]. Debris Flow,1995(4):95 − 97. (in Chinese)]

    CHENG Zunlan. Calculation method of bulk density in design flow of debris flow[J]. Debris Flow, 1995(4): 95 − 97. (in Chinese)

    [12] 李炳志,潘华利,邓其娟,等. 动床条件下泥石流运动参数变化特征实验研究[J]. 防灾减灾工程学报,2022,42(4):850 − 858. [LI Bingzhi,PAN Huali,DENG Qijuan,et al. Experimental study on variation characteristics of debris flow movement parameters under movable bed conditions[J]. Journal of Disaster Prevention and Mitigation Engineering,2022,42(4):850 − 858. (in Chinese with English abstract)]

    LI Bingzhi, PAN Huali, DENG Qijuan, et al. Experimental study on variation characteristics of debris flow movement parameters under movable bed conditions[J]. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(4): 850 − 858. (in Chinese with English abstract)

    [13] 黄海,刘建康,杨东旭. 泥石流容重的时空变化特征及影响因素研究[J]. 水文地质工程地质,2020,47(2):161 − 168. [HUANG Hai,LIU Jiankang,YANG Dongxu. A study of the characteristics and influencing factors of spatial-temporal changes in the debris flow density[J]. Hydrogeology & Engineering Geology,2020,47(2):161 − 168. (in Chinese with English abstract)]

    HUANG Hai, LIU Jiankang, YANG Dongxu. A study of the characteristics and influencing factors of spatial-temporal changes in the debris flow density[J]. Hydrogeology & Engineering Geology, 2020, 47(2): 161 − 168. (in Chinese with English abstract)

    [14] 黄海,马东涛. 泥石流容重的内涵诠释及其对灾害防治的启示[J]. 地质论评,2022,68(1):205 − 216. [HUANG Hai,MA Dongtao. The physical connotation of debris flow density and the enlightenment to geohazards mitigation[J]. Geological Review,2022,68(1):205 − 216. (in Chinese with English abstract)]

    HUANG Hai, MA Dongtao. The physical connotation of debris flow density and the enlightenment to geohazards mitigation[J]. Geological Review, 2022, 68(1): 205 − 216. (in Chinese with English abstract)

    [15] 韩征,徐林荣,苏志满,等. 基于流域形态完整系数的泥石流容重计算方法[J]. 水文地质工程地质,2012,39(2):100 − 105. [HAN Zheng,XU Linrong,SU Zhiman,et al. Research on the method for calculating the bulk density of debris flow based on the integrity coefficient of watershed morphology[J]. Hydrogeology & Engineering Geology,2012,39(2):100 − 105. (in Chinese with English abstract)]

    HAN Zheng, XU Linrong, SU Zhiman, et al. Research on the method for calculating the bulk density of debris flow based on the integrity coefficient of watershed morphology[J]. Hydrogeology & Engineering Geology, 2012, 39(2): 100 − 105. (in Chinese with English abstract)

    [16] 谢娜,丁宏伟. 基于各类单因素组合的泥石流容重计算方法[J]. 兰州大学学报(自然科学版),2021,57(3):389 − 394. [XIE Na,DING Hongwei. A modified method used to estimate the bulk density of debris flow based on the combination of various single factors[J]. Journal of Lanzhou University (Natural Sciences),2021,57(3):389 − 394. (in Chinese with English abstract)]

    XIE Na, DING Hongwei. A modified method used to estimate the bulk density of debris flow based on the combination of various single factors[J]. Journal of Lanzhou University (Natural Sciences), 2021, 57(3): 389 − 394. (in Chinese with English abstract)

    [17] 陈宁生,崔鹏,刘中港,等. 基于黏土颗粒含量的泥石流容重计算[J]. 中国科学E辑:技术科学,2003,33(增刊1):164 − 174. [CHEN Ningsheng,CUI Peng,LIU Zhonggang,et al. Debris flow bulk density calculation based on clay particle content [J]. Scientia Sinica (Technologica),2003,33(Sup 1):164 − 174. (in Chinese)]

    CHEN Ningsheng, CUI Peng, LIU Zhonggang, et al. Debris flow bulk density calculation based on clay particle content [J]. Scientia Sinica (Technologica), 2003, 33(Sup 1): 164 − 174. (in Chinese)

    [18] 陈宁生,杨成林,李欢. 基于浆体的泥石流容重计算[J]. 成都理工大学学报(自然科学版),2010,37(2):168 − 173. [CHEN Ningsheng,YANG Chenglin,LI Huan. Calculation of the debris flow concentration based on debris flow slurry[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2010,37(2):168 − 173. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-9727.2010.02.009

    CHEN Ningsheng, YANG Chenglin, LI Huan. Calculation of the debris flow concentration based on debris flow slurry[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2010, 37(2): 168 − 173. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-9727.2010.02.009

    [19] 潘华利,安笑,邓其娟,等. 泥石流松散固体物源研究进展与展望[J]. 科学技术与工程,2020,20(24):9733 − 9741. [PAN Huali,AN Xiao,DENG Qijuan,et al. Progress and prospects of research on debris flow solid source[J]. Science Technology and Engineering,2020,20(24):9733 − 9741. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-1815.2020.24.007

    PAN Huali, AN Xiao, DENG Qijuan, et al. Progress and prospects of research on debris flow solid source[J]. Science Technology and Engineering, 2020, 20(24): 9733 − 9741. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2020.24.007

    [20] 丁军. 强震区泥石流活动规模与最大堆积长度预测研究[D]. 成都:成都理工大学,2011:51 − 52. [DING Jun. Research on magnitude and runout distance of of debris-flows in strong earthquake area[D]. Chengdu:Chengdu University of Technology,2011:51 − 52. (in Chinese with English abstract)]

    DING Jun. Research on magnitude and runout distance of of debris-flows in strong earthquake area[D]. Chengdu: Chengdu University of Technology, 2011: 51 − 52. (in Chinese with English abstract)

    [21] 徐粒,李倩,王瑛,等. 气候变化情景下泥石流危险性响应分析[J]. 气候变化研究进展,2020,16(4):415 − 423. [XU Li,LI Qian,WANG Ying,et al. Analysis of the changes in debris flow hazard in the context of climate change[J]. Climate Change Research,2020,16(4):415 − 423. (in Chinese with English abstract)]

    XU Li, LI Qian, WANG Ying, et al. Analysis of the changes in debris flow hazard in the context of climate change[J]. Climate Change Research, 2020, 16(4): 415 − 423. (in Chinese with English abstract)

    [22] 唐泽,李婧. 基于数值模拟的沟谷型暴雨泥石流冲出规模研究[J]. 甘肃水利水电技术,2022,58(1):42 − 47. [TANG Ze,LI Jing. Research on the scale of gully-type rainstorm debris flow based on numerical simulation[J]. Gansu Water Resources and Hydropower Technology,2022,58(1):42 − 47. (in Chinese)]

    TANG Ze, LI Jing. Research on the scale of gully-type rainstorm debris flow based on numerical simulation[J]. Gansu Water Resources and Hydropower Technology, 2022, 58(1): 42 − 47. (in Chinese)

    [23]

    ZHANG Yan,LYU Liqun,LI Peng. An optimized volume of fluid method for modelling three-dimensional debris flows. Implementation in Open FOAM,validation,and application in the Aiwa Watershed,Beijing[J]. Computers and Geotechnics 144.

    [24] 罗超鹏,常鸣,武彬彬,等. 基于FLOW-3D的泥石流龙头运动过程模拟研究[J]. 中国地质灾害与防治学报,2022,33(6):53 − 62. [LUO Chaopeng,CHANG Ming,WU Binbin,et al. Simulation of debris flow head movement process in mountainous area based on FLOW-3D[J]. The Chinese Journal of Geological Hazard and Control,2022,33(6):53 − 62. (in Chinese with English abstract)]

    LUO Chaopeng, CHANG Ming, WU Binbin, et al. Simulation of debris flow head movement process in mountainous area based on FLOW-3D[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 53 − 62. (in Chinese with English abstract)

    [25] 李俊,陈宁生,欧阳朝军,等. 扎木弄沟滑坡型泥石流物源及堵河溃坝可能性分析[J]. 灾害学,2017,32(1):80 − 84. [LI Jun,CHEN Ningsheng,OUYANG Chaojun,et al. Volume of loose materials and the analysis of possibility of blocking and dam break triggered by debris flows in Zhamunonggou[J]. Journal of Catastrophology,2017,32(1):80 − 84. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-811X.2017.01.014

    LI Jun, CHEN Ningsheng, OUYANG Chaojun, et al. Volume of loose materials and the analysis of possibility of blocking and dam break triggered by debris flows in Zhamunonggou[J]. Journal of Catastrophology, 2017, 32(1): 80 − 84. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-811X.2017.01.014

    [26]

    ZHONG Zheng,CHEN Ningsheng,HU Guisheng,et al. Aggravation of debris flow disaster by extreme climate and engineering:A case study of the Tongzilin gully,Southwestern Sichuan Province,China[J]. Natural Hazards 109(1):237-253.

    [27]

    TIAN Shufeng,HU Guisheng,CHEN Ningsheng,et al. Extreme climate and tectonic controls on the generation of a large-scale,low-frequency debris flow. [J] Catena, 2022, 212.

    [28] 杨华铨,柳金峰,孙昊,等. 四川木里县项脚沟“7•5” 特大型泥石流特征及发展趋势分析[J]. 中国地质灾害与防治学报,2024,35(1):100 − 107. [YANG Huaquan,LIU Jinfeng,SUN Hao,et al. Analysis of the characteristics and development trends of the “7•5” catastrophic debris flow in Xiangjiao gully,Muli County,Sichuan[J]. The Chinese Journal of Geological Hazard and Control,2024,35(1):100 − 107. (in Chinese with English abstract)]

    YANG Huaquan, LIU Jinfeng, SUN Hao, et al. Analysis of the characteristics and development trends of the “7•5” catastrophic debris flow in Xiangjiao gully, Muli County, Sichuan[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 100 − 107. (in Chinese with English abstract)

    [29] 袁路,胡雨豪,马东涛,等. 泥石流性质和规模对声波特性影响的实验研究[J]. 山地学报,2018,36(6):889 − 897. [YUAN Lu,HU Yuhao,MA Dongtao,et al. Experimental study on the influence of debris flow properties and scale on acoustic characteristics[J]. Mountain Research,2018,36(6):889 − 897. (in Chinese with English abstract)]

    YUAN Lu, HU Yuhao, MA Dongtao, et al. Experimental study on the influence of debris flow properties and scale on acoustic characteristics[J]. Mountain Research, 2018, 36(6): 889 − 897. (in Chinese with English abstract)

    [30] 詹美强,葛永刚,郭晓军,等. 不同密实度条件下泥石流沟侧岸堆积体破坏过程研究[J]. 自然灾害学报,2019,28(5):143 − 151. [ZHAN Meiqiang,GE Yonggang,GUO Xiaojun,et al. Experimental study on failure process of lateral bank deposition debris flow gully with different conditions of compactness[J]. Journal of Natural Disasters,2019,28(5):143 − 151. (in Chinese with English abstract)]

    ZHAN Meiqiang, GE Yonggang, GUO Xiaojun, et al. Experimental study on failure process of lateral bank deposition debris flow gully with different conditions of compactness[J]. Journal of Natural Disasters, 2019, 28(5): 143 − 151. (in Chinese with English abstract)

    [31]

    LIU Mei,ZHANG Yong,TIAN Shufeng,et al. Effects of loose deposits on debris flow processes in the Aizi Valley,southwest China[J]. Journal of Mountain Science,2020,17(1):156 − 172. DOI: 10.1007/s11629-019-5388-9

    [32]

    HÜRLIMANN M,COPONS R,ALTIMIR J. Detailed debris flow hazard assessment in Andorra:A multidisciplinary approach[J]. Geomorphology,2006,78(3/4):359 − 372.

    [33] 张宪政,铁永波,宁志杰,等. 四川汶川县板子沟“6•26”特大型泥石流成因特征与活动性研究[J]. 水文地质工程地质,2023,50(5):134 − 145. [ZHANG Xianzheng,TIE Yongbo,NING Zhijie,et al. Study on the Causes, Characteristics and Activity of the “6•26” Large-scale Mud-rock Flow in Banzi Gou, Wenchuan County,Sichuan Province[J]. Hydrogeology & Engineering Geology,2023,50(5):134 − 145. (in Chinese with English abstract)]

    ZHANG Xianzheng, TIE Yongbo, NING Zhijie, et al. Study on the Causes, Characteristics and Activity of the “6•26” Large-scale Mud-rock Flow in Banzi Gou, Wenchuan County, Sichuan Province[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 134 − 145. (in Chinese with English abstract)

    [34] 王高峰,高幼龙,姚亚辉,等. 甘肃省白龙江流域降雨型潜在泥石流危险性预报模型[J]. 中国地质,2022,49(3):732 − 748. [WANG Gaofeng,GAO Yilong,YAO Yahui,et al. Potential landslide hazard forecast model of rainfall type in the Bailongjiang River basin, Gansu Province[J]. Geology in China,2022,49(3):732 − 748. (in Chinese with English abstract)]

    WANG Gaofeng, GAO Yilong, YAO Yahui, et al. Potential landslide hazard forecast model of rainfall type in the Bailongjiang River basin, Gansu Province[J]. Geology in China, 2022, 49(3): 732 − 748. (in Chinese with English abstract)

    [35] 文海家,胡吉威,张辉,等. 泥石流危险范围Laharz修正模型及其应用[J]. 吉林大学学报(地球科学版),2024,54(3):905 − 918. [WEN Haijia,HU Jiwei,ZHANG Hui,et al. Laharz modified model of debris flow danger range and its application[J]. Journal of Jilin University (Earth Science Edition),2024,54(3):905 − 918. (in Chinese with English abstract)]

    WEN Haijia, HU Jiwei, ZHANG Hui, et al. Laharz modified model of debris flow danger range and its application[J]. Journal of Jilin University (Earth Science Edition), 2024, 54(3): 905 − 918. (in Chinese with English abstract)

    [36] 李彦稷,胡凯衡. 基于扇形地形态特征的泥石流危险评估[J]. 山地学报,2017,35(1):32 − 38. [LI Yanji,HU Kaiheng. Risk assessment based on morphological characteristics of debris flow alluvial fan[J]. Mountain Research,2017,35(1):32 − 38. (in Chinese with English abstract)]

    LI Yanji, HU Kaiheng. Risk assessment based on morphological characteristics of debris flow alluvial fan[J]. Mountain Research, 2017, 35(1): 32 − 38. (in Chinese with English abstract)

    [37] 崔鹏,邓宏艳,王成华,等. 山地灾害[M]. 北京:高等教育出版社,2018. [CUI Peng,DENG Hongyan,WANG Chenghua,et al. Mountain hazards[M]. Beijing:Higher Education Press,2018. (in Chinese with English abstract)]

    CUI Peng, DENG Hongyan, WANG Chenghua, et al. Mountain hazards[M]. Beijing: Higher Education Press, 2018. (in Chinese with English abstract)

    [38]

    TANG Chuan,ZHU Jing,DING Jun,et al. Catastrophic debris flows triggered by a 14 August 2010 rainfall at the epicenter of the Wenchuan earthquake[J]. Landslides,2011,8(4):485 − 497. DOI: 10.1007/s10346-011-0269-5

    [39] 胡旭东,沈已桐,胡凯衡,等. 震区泥石流物源与冲出量的关系——以四川汶川县簇头沟为例[J]. 山地学报,2022,40(3):369 − 383. [HU Xudong,SHEN Yitong,HU Kaiheng,et al. Relationship between debris flow sediments and amount of debris flow discharges in earthquake affected region:A case study of the cutougou valley in Wenchuan County,Sichuan Province,China[J]. Mountain Research,2022,40(3):369 − 383. (in Chinese with English abstract)]

    HU Xudong, SHEN Yitong, HU Kaiheng, et al. Relationship between debris flow sediments and amount of debris flow discharges in earthquake affected region: A case study of the cutougou valley in Wenchuan County, Sichuan Province, China[J]. Mountain Research, 2022, 40(3): 369 − 383. (in Chinese with English abstract)

    [40] 乔建平,黄栋,杨宗佶,等. 汶川地震极震区泥石流物源动储量统计方法讨论[J]. 中国地质灾害与防治学报,2012,23(2):1 − 6. [QIAO Jianping,HUANG Dong,YANG Zongji,et al. Statistical method on dynamic reserve of debris flow’s source materials in meizoseismal area of Wenchuan earthquake region[J]. The Chinese Journal of Geological Hazard and Control,2012,23(2):1 − 6. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1003-8035.2012.02.001

    QIAO Jianping, HUANG Dong, YANG Zongji, et al. Statistical method on dynamic reserve of debris flow’s source materials in meizoseismal area of Wenchuan earthquake region[J]. The Chinese Journal of Geological Hazard and Control, 2012, 23(2): 1 − 6. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-8035.2012.02.001

    [41] 张勇. 凹槽土体失稳起动泥石流的力学机制与规模放大过程[D]. 成都:中国科学院大学(中国科学院水利部成都山地灾害与环境研究所),2020. [ZHANG Yong. Mechanical mechanism and scale amplification process of debris flow originating from colluviums deposits in hollow regions[D]. University of Chinese Academy of Sciences (Chengdu Institute of Mountain Disaster and Environment,Ministry of Water Resources,Chinese Academy of Sciences),2020. (in Chinese with English abstract)]

    ZHANG Yong. Mechanical mechanism and scale amplification process of debris flow originating from colluviums deposits in hollow regions[D]. University of Chinese Academy of Sciences (Chengdu Institute of Mountain Disaster and Environment, Ministry of Water Resources, Chinese Academy of Sciences), 2020. (in Chinese with English abstract)

    [42] 屈永平,唐川,刘洋,等. 四川省都江堰市龙池地区“8•13” 泥石流堆积扇调查和分析[J]. 水利学报,2015,46(2):197 − 207. [QU Yongping,TANG Chuan,LIU Yang,et al. Survey and analysis of the“8•13” debris flows fan in Longchi Town of Dujiangyan City,Sichuan Province[J]. Journal of Hydraulic Engineering,2015,46(2):197 − 207. (in Chinese with English abstract)]

    QU Yongping, TANG Chuan, LIU Yang, et al. Survey and analysis of the“8•13” debris flows fan in Longchi Town of Dujiangyan City, Sichuan Province[J]. Journal of Hydraulic Engineering, 2015, 46(2): 197 − 207. (in Chinese with English abstract)

  • 期刊类型引用(3)

    1. 江洎洧,王汉武,黄玲,张静波. 固-液相变含水率区间松散土石体中细粒组分抗剪特性试验. 工程科学与技术. 2024(01): 160-168 . 百度学术
    2. 蓝再成,胡卸文,曹希超,黄光林,白金钊,冯霄. 汉源县工业园区硝厂沟泥石流成灾机理及其堆积范围分析. 中国地质灾害与防治学报. 2024(03): 61-69 . 本站查看
    3. 徐平,杨益新,朱志豪. 运营地铁盾构隧道基底沉降的影响因素分析. 水文地质工程地质. 2024(04): 157-166 . 百度学术

    其他类型引用(3)

图(15)  /  表(5)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  10
  • PDF下载量:  48
  • 被引次数: 6
出版历程
  • 收稿日期:  2023-12-28
  • 修回日期:  2024-05-06
  • 录用日期:  2024-07-03
  • 网络出版日期:  2024-07-10
  • 刊出日期:  2024-10-24

目录

/

返回文章
返回