Development characteristics and kinematic characteristic of debris flow in Maojia gully, Kangding-Xinduqiao Expressway
-
摘要:
毛家沟位于川西藏东交通廊道高山峡谷地区,地形切割强烈,山体陡峻,沟内松散物源储量大、分布广,且短时强降雨频发,具备暴发大型泥石流灾害的可能。拟建康定至新都桥高速公路选线比较方案均需穿越毛家沟,泥石流成为控制地质选线的重要因素。本文通过现场调查、遥感解译,基于GIS技术获取了毛家沟及其两条大型支沟沟道流域形态参数。利用雨洪修正法,通过Matlab和Python揭示了沟道不同部位、不同降雨频率下的泥石流峰值流量、流速、泥深及整体冲击力等动力学特征参数,系统评价了康新高速两个选线方案受泥石流暴发威胁程度。结果表明,降雨频率P =1%时,流量在堵溃点陡增20.8~122.9%,N3线1#桥(K线1#桥)、N3线2#桥、K线2#桥的流量分别为203.71 m3/s、298.34 m3/s、148.73 m3/s,影响高度分别为12.06 m、12.18 m、11.64 m,4处大桥均存在桥墩被泥石流冲击淤埋的风险,需做好泥石流预警及治理防护措施。
Abstract:Maojia gully is located in the high mountain canyon area of the Western Sichuan and Eastern Tibet transportation corridor, with strong terrain cutting, steep mountains, large reserves and wide distribution of loose material sources in gully, and frequent short-term heavy rainfall, which has the possibility of large-scale debris flow disasters. The comparison scheme of the proposed Kangding to Xinduqiao expressway route selection needs to pass through Maojia gully, and the debris flow becomes an important factor controlling the geological route selection. In this paper, the morphological parameters of Maojia gully and its two large branches gullies were obtained by field investigation, remote sensing interpretation and GIS technology. By using the stormwater correction method, Matlab and Python were used to reveal the kinematic characteristic of debris flow, such as flow rate, velocity, depth of debris flow and overall impact force of debris flow in different parts of the channel and different rainfall frequencies, and systematically evaluated the level of threat of the two route selection schemes of Kangding-Xinduqiao Expressway by debris flow outbreak. The results show that when the rainfall frequency P=1%, Flow rate increases of 20.8 to 122.9% at the plugging and collapse points, the flow rate of N3 line 1# bridge (K line 1# bridge), N3 line 2# bridge and K line 2# bridge are 203.71 m3/s, 298.34 m3/s and 148.73 m3/s, and the affected height is 12.06 m, 12.18m and 11.64 m, respectively. There is a risk that the piers of the four Bridges will be silted attacked by debris flow impact, and debris flow early warning and management and protection measures will be vital.
-
0. 引言
近年来,我国工程建设逐步向西部推进,泥石流灾害对居民生活、工程建设的危害日益增显,不仅威胁工程的建设及运营,严重的甚至可以导致人员伤亡[1 − 5]。川西藏东交通廊道位于青藏高原东南缘,东起成都,向西经康定、昌都,终至拉萨,是西藏自治区与外省的重要通道[6 − 7]。该地区地形起伏大,地质条件复杂,新构造运动活跃发育,河流冰川发育,气候湿润,为泥石流高发地区,因泥石流活动导致公路、铁路交通阻断、施工事故的案例屡见不鲜[8 − 10]。在此地区的工程建设中,受复杂地形地貌影响,铁路、公路选线常常出现无法绕避泥石流沟的情况,因此科学评价泥石流的发育特征并快速准确揭示泥石流动力学特性,对于川西藏东交通廊道安全建设具有重要意义。
前人针对川西藏东交通廊道泥石流灾害发育特征和对工程影响研究众多。王运生等分析了川藏铁路泸定段的地质环境条件,提出该地区泥石流主要以堵河-溃决的危害形式影响工程设施[11]。向兵等认为丰富物源是川西地区低频泥石流危害性大的关键,并提出了川西地区针对公路泥石流防控的要点[9]。袁东等分析了西部山区交通廊道泥石流的发育类型和分布规律,指出了工程建设中防控难点和对策建议[12]。
泥石流流量、流速等动力学特性分析对于防治工程的设计起重要作用。对于流速,现阶段的计算公式有:弯道超高公式、基于量纲分析的经验公式、基于运动模型的半经验公式和改进的曼宁公式,而在工程实际中最多采用的一般为第二种[13 − 15]。流量计算方法包括:配方法、形态调查法、综合成因法和经验公式法,其中考虑堵塞因素的雨洪修正法也是配方法的一种,目前应用最广泛[16]。另外,胡卸文等对火后泥石流、冰湖溃决型泥石流、震后泥石流等特殊泥石流的流量计算方法也进行了探讨论述[18 − 19]。近年来,GIS技术在泥石流防控工作的应用也逐渐增多[20],传统泥石流参数计算方法在量取流域参数时效率较低,计算位置局限于某一特定断面。如何提升计算效率以满足日益增加的工程需求成为了现阶段泥石流灾害防治工作的新挑战。
毛家沟位于甘孜藏族自治州康定市境内,为典型的“宽缓沟道型泥石流”。G4218线康定至新都桥段高速公路(以下简称“康新高速”)拟设选线方案都以桥隧形式穿越毛家沟及其支沟磨子沟、野人沟。本文通过现场调查、遥感解译,分析了毛家沟泥石流的孕灾环境和发育特征,基于雨洪修正法,提出了利用GIS、Matlab揭示毛家沟沟道各点动力学特征参数的方法,为康新高速的线路方案选取和灾害防控及川西藏东交通廊道地质灾害防控提供了理论科学依据。
1. 研究区泥石流孕灾环境
1.1 地形地貌
毛家沟位于四川盆地青藏高原东南缘过渡区的川西高原,为大渡河支流折多河右岸支沟,地形切割强烈,为高山峡谷地貌,河谷宽缓,山体陡峻(图1)。高程3201~5487 m,最大相对高差2286 m,沟谷岸坡坡度15~77°主支沟沟口泥石流堆积扇明显,多有挤压主河道现象。
毛家沟流域面积144.29 km2,主沟长23.48 km,形态顺直,平均纵坡降75.3‰,共发育14条支沟,其中野人沟和磨子沟流域面积最大,沟道与主沟大角度相交,在下游交汇,流域特征参数见表1。
沟域 流域面积F/km2 沟长L/km 平均纵坡降J/‰ 毛家沟 144.29 23.48 75.30 磨子沟 20.73 8.18 174.85 野人沟 42.54 11.73 182.50 3#支沟 1.19 1.82 472.79 4#支沟 4.75 3.24 223.86 5#支沟 4.40 2.95 279.51 6#支沟 4.84 3.18 235.62 7#支沟 5.97 3.75 163.83 8#支沟 6.91 4.53 169.08 9#支沟 3.13 1.98 228.49 10#支沟 4.76 2.42 174.81 1-1#支沟 6.56 3.20 155.96 2-1#支沟 5.75 3.69 199.59 2-2#支沟 8.67 3.80 189.96 8-1#支沟 0.68 0.60 381.43 1.2 水源条件
泥石流暴发的主要水源条件是降雨、融雪和冰湖溃决[22]。研究区属青藏高原亚湿润气候区,年平均降雨量约1100 mm,集中在5~9月,降水强度大,历时短,易形成暴雨型泥石流。上游海拔高,常年积雪,夏季冰雪融水量大,为泥石流起动提供一定水源条件。上游发育一处冰湖,根据遥感解译,现状面积约5.7×104 m2,历史变化不显著,周围无明显冰崩、冰滑坡,溃决可能性较小,形成冰湖溃决型泥石流可能性小。近30年,康定地区由短时强降雨引发泥石流共记录到40次[22],因此,短时暴雨仍是毛家沟泥石流最主要的水源激发条件。
1.3 物源储量
流域内主要出露地层为燕山晚期似斑状黑云花岗岩(
$ {\text{γ}}_{\text{βn5}}^{\text{3}} $ )、三叠系上统居里寺组板岩、石英砂岩(T1j)。在多期强烈地震作用下,流域内岩体破碎、风化强烈,滑坡崩塌不良地质现象发育。上游山地冰川发育,冰碛物堆积体分布广泛。构造及冰川活动导致沟内第四系松散堆积物种类丰富,涵盖第四系更新统(${\mathrm{Q}}_{\mathrm{p}}^{fgl} $ )冰水堆积层,全新统崩坡积层(${\mathrm{Q}}_4^{col+dl}$ )、冲洪积层(${\mathrm{Q}}_4^{al+pl} $ )、泥石流堆积层(${\mathrm{Q}}_4^{sef} $ )和人工填筑层(${\mathrm{Q}}_4^{ml} $ )等。根据野外调查及遥感解译,沟域内发育物源主要有5类,为崩滑物源、沟道物源、坡面物源、早期冰碛物源以及冻融物源。沟域内共发育294处物源,估算物源总静储量2.7×108 m3,动储量7.7×106 m3,典型物源照片见图2。
1.4 泥石流活动历史
根据走访调查,毛家沟主沟四十年来未暴发大规模泥石流,1995年曾暴发山洪。部分支沟沟口堆积扇发育,且沟道侵蚀作用明显,呈泥石流堆积特征,历史暴发泥石流频率较高,如图3。
2. 泥石流动力学特性
泥石流的流量、流速、泥深、整体冲击力等动力学参数是泥石流灾害防控中的重要依据。本文基于雨洪修正法对上述参数计算,流程见图4。
2.1 计算参数
研究区处于川西山地,相对高差200 m以上,故在确定流域产流参数(μ)、汇流参数(m)时,皆采用“川西南山地”分区对应公式。假定暴雨历时1~6 h,暴雨参数选取n2。
泥石流容重(γc)及泥深修正系数(φ)由数量化得分获取,根据《泥石流灾害防治工程勘查规范》(DZ/T0220—2006)[23],对毛家沟、野人沟及磨子沟进行泥石流易发性评价,分别得分84、90、98,为轻度、中度、中度易发,查附录G可知,容重(γc)分别为1.579、1.676、1.621 g/cm3;泥沙修正系数(φ)分别为0.549、0.710、0.611。根据四川省暴雨统计参数图集,研究区所处位置10 min、1 h、6 h、24 h暴雨均值分别为5,9,24,37 mm,变差系数分别为0.55、0.43、0.39、0.38。本文中分别取降雨频率P=5%、2%、1%。
根据调查在毛家沟内发现7处潜在堵塞点,分布位置见图5a,引发堵塞的原因包括支沟泥石流暴发、崩塌滑坡失稳挤压主沟道等,毛家沟、野人沟、磨子沟沟道总体较顺直,河段宽窄较均匀,陡坎、卡口不多;主支沟交角多小于60°,形成区不大集中;河床堵塞情况一般,堵塞系数取值1.5~2.5,沟床糙率系数取值10~20。从上游至下游随堵塞点变多逐步变大。例如,堵溃点D5处沟道左岸发育一处中型崩塌,如图5b,体积约2.5×104m3,沟道内多崩塌碎块石,堵沟较严重,堵塞系数(Dc)取值由1.6变为1.7,沟床糙率系数(M)取值由16变为18;堵溃点D1处主沟沟道受两支沟沟口挤压,如图5c,沟口堆积体体积约9×104m3,沟道堵塞程度较严重,堵塞系数(Dc)取值由1.8变为1.9,沟床糙率系数(M)取值由18变为20。堵塞系数(Dc)、沟床糙率系数(M)沿沟道分段赋值结果见表2。
沟道 堵溃点 距沟口位置/km 堵塞系数 沟床糙率系数 堵塞原因 毛家沟 D1 4.2 1.9 20 磨子沟、野人沟
挤压主沟1.8 18 D2 6.9 左岸崩滑体 1.7 16 D3 9.5 6#、7#支沟
挤压主沟1.6 14 D4 16.2 大块石 1.5 12 野人沟 D5 5.3 1.7 18 左岸崩滑体 1.6 16 D6 8.1 支沟挤压 1.5 14 磨子沟 D7 4.2 1.6 16 支沟挤压 1.5 14 沟道宽度(D)指泥石流行进过程中流经轨迹的宽度,是计算泥石流流速(Vc)的主要控制参数,一般可在现场观察泥石流、洪水痕迹测量获取。定义沟谷宽度(W)为沟道岸坡坡度突增处间距,获取过程如下:选取沟道内一点做垂直于沟道的剖面线,读取剖面线上各点高程,沟道线与剖面线交点即为沟底,高程最低,由此点向剖面线左右两侧,以一定间距x0(由DEM精度确定,本文中取12.5 m)为间隔,计算高差ΔHi及高差增率δi,如式1—3,寻找高差增率(δi)第一次超过50%的地形点,所得左右两侧两点至对岸水平距离平均值为沟谷宽度(W),示意图见图6。此过程可基于DEM数据,利用Python代码库GDAL、Shapely实现。
$$ \mathrm{\Delta}{H}_{{i}}{=H}_{{i+1}}{-H}_{{i}} $$ (1) $$ {\delta}_{{i}}=(\Delta{H}_{{i+}\mathrm{1}}\mathrm{-\Delta}{H}_{{i}})/\Delta{H}_{i} $$ (2) $$ {W}=({W}_{\mathrm{L}}+{W}_{\mathrm{R}})/2 $$ (3) 式中:Hi——岸坡某处海拔高程/m;
ΔHi——间隔x0内岸坡高差/m;
δi——相邻间隔高差增率/m;
WL(R)——左(右)侧δi首次超过50%的地形点至对 岸水平距离/m;
W——沟谷宽度/m。
毛家沟作为典型“宽缓沟道型泥石流沟”,沟道长,高差大,泥石流暴发不频繁,痕迹不明显,直接测量沟道宽度难度大。因此本文结合遥感影像及现场调查,获取了16处泥石流沟道宽度,见表3,与处理DEM数据得到的沟谷宽度对比拟合,得出幂函数拟合关系如式4,函数曲线见图7。通过拟合公式计算反推得到沟道宽度(D)栅格,进行泥石流流速等参数计算。
沟道 距沟口距离/km 沟谷宽度/m 沟道宽度/m 毛家沟 1.09 62 37 2.38 99 47 2.99 112 53 4.32 87 45 6.82 110 51 9.23 99 48 11.70 136 62 13.36 87 44 野人沟 0.72 112 53 1.72 150 67 2.84 161 75 4.54 100 45 磨子沟 1.17 112 52 2.37 124 52 2.88 113 56 3.80 137 54 $$ {D}\mathrm{=1.467}{W}^{\mathrm{0.758}},\;{R}^{\mathrm{2}}\mathrm{=0.866} $$ (4) 式中:D——泥石流沟道宽度/m;
W——泥石流沟谷宽度/m。
利用ArcGIS:Hydrology模块提取毛家沟、野人沟、磨子沟流域参数。其中,数字高程数据(DEM)来源于日本ALOS卫星相控阵型L波段合成孔径雷达(PALSAR),精度12.5m。首先利用ArcMAP水文分析模块中的填洼(fill)对DEM数据修正,并使用流向(flow direction)确定流域沟道汇水范围,使用河网分级(stream order)和河网栅格矢量化(stream to feature)确定毛家沟内汇水沟道,重分类后保留毛家沟主沟、野人沟、磨子沟沟道,之后使用流量(flow accumulation)和栅格字段计算器确定沟道各点的汇水面积(F)、汇水沟长(L)、平均纵坡降(J),流域参数提取流程见图8。
2.2 计算结果
分别计算毛家沟、野人沟、磨子沟降雨频率在P=5%、P=2%、P=1%下的泥石流流量、流速、泥深、整体冲击力等动力学特征参数。结果显示,在不同降雨频率下,毛家沟暴发泥石流的最大峰值流量分别为420,566,676 m3/s;最大流速分别为6.1,5.7,7.2 m/s;最大泥深为2.1,2.3,2.5 m;最大整体冲击力7.4,8.5,9.6 tF/m2;动力学参数最大点均位于毛家沟沟口。
各项动力学参数均呈现由上游到下游数值逐渐增大、在主支沟交汇点陡增两个特点,分析动力学参数变化与潜在堵溃点分布位置关系,以P=1%时为例,毛家沟、磨子沟、野人沟内的泥石流峰值流量随距沟口距离减小而增大,分别在7个潜在堵溃点处陡增20.8%~122.9%,在D1处,流量由293 m3/s陡增至655 m3/s;D3处由193 m3/s陡增至250 m3/s;D5处148 m3/s陡增至198 m3/s(图9)。另外,流量在陡增后,流域和沟道形态变化明显,汇水面积和汇水沟长增加,沟道纵坡降降低,故峰值流量呈现小幅下降的趋势。毛家沟的各项动力学特征参数计算结果见图10 − 13。
3. 泥石流对拟设线路的影响评价
拟建康新高速公路两种比选方案皆以桥隧形式通过毛家沟。K线服务区设于毛家沟下游右岸山坡,通过1#桥以隧道形式穿越毛家沟,通过2#桥进入磨子沟左岸山体,两处大桥桥面最低高程分别为3447.24,3577.40 m。N3线1#大桥设于野人沟沟口,2#桥设于毛家沟、磨子沟与野人沟交汇处上游500 m处,两处大桥桥面最低高程分别为3439.54,3574.97 m。
考虑10 m的安全高度及泥石流爬高过程中受沟床阻力的影响,分析4处拟设桥位处的泥石流影响高度,其中泥石流爬高∆Hc、影响高度(H)计算公式如式5—6。K线服务区(1#桥)与N3线1#桥位置重合,取相同的泥石流动力学参数。拟设桥位处各动力学参数见表4。
动力学参数 设计频率/% N3线1#桥/K线服务区 N3线2#桥 K线2#桥 泥石流流量/(m3·s−1) 5 124.57 181.58 91.52 2 169.71 247.71 124.28 1 203.71 298.34 148.73 泥石流流速/(m·s−1) 5 4.41 3.05 3.83 2 4.62 3.55 4.43 1 4.78 4.06 4.70 泥石流泥深/m 5 0.48 1.11 0.36 2 0.56 1.20 0.44 1 0.89 1.34 0.51 泥石流整体冲击力/(Tf·m−2) 5 6.22 2.60 4.71 2 7.27 3.58 8.08 1 8.20 9.41 9.55 泥石流影响高度/m 5 11.47 11.58 11.11 2 11.65 11.84 11.44 1 12.06 12.18 11.64 $$ \Delta{Hc}\mathrm={Vc}^{\mathrm{2}}\mathrm{/2}{g} $$ (5) $$ {H}\mathrm={Hc}{+\Delta}{Hc}+{H'} $$ (6) 式中:∆Hc——泥石流爬高/m;
Vc——泥石流流速/(m·s−1);
g——重力加速度/(m·s−2);
H——泥石流影响高度/m;
Hc——泥石流泥深/m;
H'——安全高度,取10 m。
根据线路与沟道相对位置,分析拟设桥面高度与P=1%时的泥石流影响高度(图14—15),泥石流不会直接对桥面直接冲击淤埋,但可能对桥墩产生直接威胁,危害方式包括:(1)裹挟大块石冲击损坏桥墩;(2)堵塞桥涵导致桥墩侧向变形倾斜,影响桥体安全;(3)桥墩基础受冲刷掏蚀导致桥体不均匀沉降。
2种方案均受毛家沟泥石流暴发的威胁,为保证线路运营安全,需建立完善的泥石流预警系统,必要时可根据动力学参数结果采取相应治理措施。此外,为避免增加毛家沟内可启动物源,需加强工程建设弃渣、土石料的安全管理。
4. 结论
(1)毛家沟位于川西藏东交通廊道的高山峡谷地区,流域面积大,地形高差大,沟道长缓,支沟发育,属于典型的“宽缓沟道型泥石流沟”。受构造活动影响,沟内山体风化强烈,岩体破碎,为泥石流发育提供了丰富的物源,同时充足的降雨及冰雪融水为泥石流的起动提供了触发条件。
(2)基于GIS,在研究区DEM栅格数据的基础上,提取了沟道各点的汇水面积(F)、汇水沟长(L)、平均纵坡降(J)、沟谷宽度(W)等流域参数栅格。同时根据统计分析,得到了沟道宽度(D)与沟谷宽度(W)的函数关系(D=1.467W0.758)。
(3)利用Matlab和Python,对获取的流域参数栅格进行矩阵运算,揭示了毛家沟在降雨概率P=5%、2%、1%时的沟道各点的泥石流峰值流量、流速、泥深、整体冲击力。各项动力学参数最大值均出现在毛家沟沟口,流量在堵溃点处陡增20.8%~122.9%。
(4)分析拟设康新高速两种方案4处桥址处的泥石流动力学参数,采用高架桥的方案可避免泥石流对线路的直接冲淤,但桥墩会存在受泥石流冲击损坏的可能。建议合理选取桥基桥墩位置,必要设置治理措施,同时加强工程建设土石材料与弃渣的堆放管理。
-
表 1 毛家沟主、支沟流域特征参数
Table 1 Basin Characterization Parameters of main and branch ditches basins in Maojia gully
沟域 流域面积F/km2 沟长L/km 平均纵坡降J/‰ 毛家沟 144.29 23.48 75.30 磨子沟 20.73 8.18 174.85 野人沟 42.54 11.73 182.50 3#支沟 1.19 1.82 472.79 4#支沟 4.75 3.24 223.86 5#支沟 4.40 2.95 279.51 6#支沟 4.84 3.18 235.62 7#支沟 5.97 3.75 163.83 8#支沟 6.91 4.53 169.08 9#支沟 3.13 1.98 228.49 10#支沟 4.76 2.42 174.81 1-1#支沟 6.56 3.20 155.96 2-1#支沟 5.75 3.69 199.59 2-2#支沟 8.67 3.80 189.96 8-1#支沟 0.68 0.60 381.43 表 2 堵溃点位置及成因
Table 2 The location and cause of the plugging point
沟道 堵溃点 距沟口位置/km 堵塞系数 沟床糙率系数 堵塞原因 毛家沟 D1 4.2 1.9 20 磨子沟、野人沟
挤压主沟1.8 18 D2 6.9 左岸崩滑体 1.7 16 D3 9.5 6#、7#支沟
挤压主沟1.6 14 D4 16.2 大块石 1.5 12 野人沟 D5 5.3 1.7 18 左岸崩滑体 1.6 16 D6 8.1 支沟挤压 1.5 14 磨子沟 D7 4.2 1.6 16 支沟挤压 1.5 14 表 3 沟道宽度、沟谷宽度统计
Table 3 Statistics of the width of the ditch and valley
沟道 距沟口距离/km 沟谷宽度/m 沟道宽度/m 毛家沟 1.09 62 37 2.38 99 47 2.99 112 53 4.32 87 45 6.82 110 51 9.23 99 48 11.70 136 62 13.36 87 44 野人沟 0.72 112 53 1.72 150 67 2.84 161 75 4.54 100 45 磨子沟 1.17 112 52 2.37 124 52 2.88 113 56 3.80 137 54 表 4 拟设桥位处泥石流动力学参数
Table 4 Dynamic parameters of debris flow at the proposed bridge site
动力学参数 设计频率/% N3线1#桥/K线服务区 N3线2#桥 K线2#桥 泥石流流量/(m3·s−1) 5 124.57 181.58 91.52 2 169.71 247.71 124.28 1 203.71 298.34 148.73 泥石流流速/(m·s−1) 5 4.41 3.05 3.83 2 4.62 3.55 4.43 1 4.78 4.06 4.70 泥石流泥深/m 5 0.48 1.11 0.36 2 0.56 1.20 0.44 1 0.89 1.34 0.51 泥石流整体冲击力/(Tf·m−2) 5 6.22 2.60 4.71 2 7.27 3.58 8.08 1 8.20 9.41 9.55 泥石流影响高度/m 5 11.47 11.58 11.11 2 11.65 11.84 11.44 1 12.06 12.18 11.64 -
[1] 张明,王章琼,白俊龙,等. 基于ArcGIS的“三高” 地区高速公路泥石流危险性评价[J]. 中国地质灾害与防治学报,2020,31(2):24 − 32. [ZHANG Ming,WANG Zhangqiong,BAI Junlong,et al. Hazard assessment of debris flow along highway of high altitude cold and intensity regions with aid of ArcGIS[J]. The Chinese Journal of Geological Hazard and Control,2020,31(2):24 − 32. (in Chinese with English abstract)] ZHANG Ming, WANG Zhangqiong, BAI Junlong, et al. Hazard assessment of debris flow along highway of high altitude cold and intensity regions with aid of ArcGIS[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(2): 24 − 32. (in Chinese with English abstract)
[2] 李元灵,王军朝,陈龙,等. 2016年帕隆藏布流域群发性泥石流的活动特征及成因分析[J]. 水土保持研究,2018,25(6):397 − 402. [LI Yuanling,WANG Junchao,CHEN Long,et al. Characteristics and geneses of the group-occurring debris flows along parlung Zangbo River zone in 2016[J]. Research of Soil and Water Conservation,2018,25(6):397 − 402. (in Chinese)] LI Yuanling, WANG Junchao, CHEN Long, et al. Characteristics and geneses of the group-occurring debris flows along parlung Zangbo River zone in 2016[J]. Research of Soil and Water Conservation, 2018, 25(6): 397 − 402. (in Chinese)
[3] 张元军. 基于RS和GIS的炉霍县地质灾害危险性评价[D]. 成都:西南交通大学,2015. [ZHANG Yuanjun. Luhuo County Based on RS & GIS Geological Hazard Assessment[D]. Chengdu:Southwest Jiaotong University,2015. (in Chinese with English abstract)] ZHANG Yuanjun. Luhuo County Based on RS & GIS Geological Hazard Assessment[D]. Chengdu: Southwest Jiaotong University, 2015. (in Chinese with English abstract)
[4] 陈世龙,罗加,刘晓钦. 江达县觉布寺沟泥石流发育特征及防治对策研究[J]. 四川地质学报,2020,40(2):274 − 277. [CHEN Shilong,LUO Jia,LIU Xiaoqin. The development and control of debris flow in the juebusi valley,jomda,Tibet[J]. Acta Geologica Sichuan,2020,40(2):274 − 277. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1006-0995.2020.02.021 CHEN Shilong, LUO Jia, LIU Xiaoqin. The development and control of debris flow in the juebusi valley, jomda, Tibet[J]. Acta Geologica Sichuan, 2020, 40(2): 274 − 277. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-0995.2020.02.021
[5] 刘佳,赵海军,马凤山,等. 我国高寒山区泥石流研究现状[C]//中国地质学会. 中国科学院地质与地球物理研究所中国科学院页岩气与地质工程重点实验室;中国科学院大学,2020: [LIU Jia,ZHAO Haijun,MA Fengshan et al. Research status of debris flow in China's alpine mountains[C]//Geological Society of China. Key Laboratory of Shale Gas and Geological Engineering,Institute of Geology and Geophysics,Chinese Academy of Sciences;University of Chinese Academy of Sciences;2020:(in Chinese)] LIU Jia, ZHAO Haijun, MA Fengshan et al. Research status of debris flow in China's alpine mountains[C]//Geological Society of China. Key Laboratory of Shale Gas and Geological Engineering, Institute of Geology and Geophysics, Chinese Academy of Sciences;University of Chinese Academy of Sciences;2020: (in Chinese)
[6] 杨志华,郭长宝,吴瑞安等. 川西藏东交通廊道区域工程地质条件评价[J/OL]. 地质通报,1 − 16. [Yang Zhihua,Guo Changbao,Wu Rui'an,et al. Evaluation of engineering geological conditions in the eastern Sichuan-Tibet traffic corridor[J/OL]. Geological Bulletin,1 − 16(in Chinese)] Yang Zhihua, Guo Changbao, Wu Rui'an, et al. Evaluation of engineering geological conditions in the eastern Sichuan-Tibet traffic corridor[J/OL]. Geological Bulletin, 1 − 16(in Chinese)
[7] 卓冠晨,戴可人,周福军,等. 川藏交通廊道典型工点InSAR监测及几何畸变精细判识[J]. 地球科学,2022(6):2031 − 2047. [ZHUO Guanchen,DAI Keren,ZHOU Fujun,et al. Monitoring typical construction sites of sichuan-tibet traffic corridor by InSAR and intensive distortion analysis[J]. Earth Science,2022(6):2031 − 2047. (in Chinese)] DOI: 10.3321/j.issn.1000-2383.2022.6.dqkx202206010 ZHUO Guanchen, DAI Keren, ZHOU Fujun, et al. Monitoring typical construction sites of sichuan-tibet traffic corridor by InSAR and intensive distortion analysis[J]. Earth Science, 2022(6): 2031 − 2047. (in Chinese) DOI: 10.3321/j.issn.1000-2383.2022.6.dqkx202206010
[8] 周斌,邹强,蒋虎,等. 川西高原气候变化特征及泥石流动态危险性响应研究[J]. 自然灾害学报,2022,31(4):241 − 255. [ZHOU Bin,ZOU Qiang,JIANG Hu,et al. Research on climate change characteristics and change of debris flow hazard in the Chuanxi Plateau[J]. Journal of Natural Disasters,2022,31(4):241 − 255. (in Chinese)] ZHOU Bin, ZOU Qiang, JIANG Hu, et al. Research on climate change characteristics and change of debris flow hazard in the Chuanxi Plateau[J]. Journal of Natural Disasters, 2022, 31(4): 241 − 255. (in Chinese)
[9] 向兵,谢万银,苏玉杰,等. 川西公路低频泥石流发育特征与防治综述[J]. 山西建筑,2023,49(17):1 − 8. [XIANG Bing,XIE Wanyin,SU Yujie,et al. Summary of development characteristics and prevention models of low-frequency debris flow on the traffic arteries in West Sichuan[J]. Shanxi Architecture,2023,49(17):1 − 8. (in Chinese)] XIANG Bing, XIE Wanyin, SU Yujie, et al. Summary of development characteristics and prevention models of low-frequency debris flow on the traffic arteries in West Sichuan[J]. Shanxi Architecture, 2023, 49(17): 1 − 8. (in Chinese)
[10] 符方熹,聂德新,任光明,等. 川西泥石流分布特征与防治原则研究[J]. 中国地质灾害与防治学报,1998,9(1):41 − 46. [FU Fangxi,NIE Dexin,REN Guangming,et al. The study on debris flow’s distribution character in western Sichuan[J]. The Chinese Journal of Geological Hazard and Control,1998,9(1):41 − 46. (in Chinese)] FU Fangxi, NIE Dexin, REN Guangming, et al. The study on debris flow’s distribution character in western Sichuan[J]. The Chinese Journal of Geological Hazard and Control, 1998, 9(1): 41 − 46. (in Chinese)
[11] 王运生,程万强,刘江伟. 川藏铁路廊道泸定段地质灾害孕育过程及成灾机制[J]. 地球科学,2022(3):950 − 958. [WANG Yunsheng,CHENG Wanqiang,LIU Jiangwei. Forming process and mechanisms of geo-hazards in Luding section of the sichuan-tibet railway[J]. Earth Science,2022(3):950 − 958. (in Chinese)] DOI: 10.3321/j.issn.1000-2383.2022.3.dqkx202203015 WANG Yunsheng, CHENG Wanqiang, LIU Jiangwei. Forming process and mechanisms of geo-hazards in Luding section of the sichuan-tibet railway[J]. Earth Science, 2022(3): 950 − 958. (in Chinese) DOI: 10.3321/j.issn.1000-2383.2022.3.dqkx202203015
[12] 袁东,张广泽,王栋,等. 西部山区交通廊道泥石流发育特征及选线对策[J]. 地质通报,2023,42(5):743 − 752. [YUAN Dong,ZHANG Guangze,WANG Dong,et al. Analysis on development characteristics of debris flow and route selection countermeasures along the traffic lines in mountain areas of Western China[J]. Geological Bulletin of China,2023,42(5):743 − 752. (in Chinese)] DOI: 10.12097/j.issn.1671-2552.2023.05.007 YUAN Dong, ZHANG Guangze, WANG Dong, et al. Analysis on development characteristics of debris flow and route selection countermeasures along the traffic lines in mountain areas of Western China[J]. Geological Bulletin of China, 2023, 42(5): 743 − 752. (in Chinese) DOI: 10.12097/j.issn.1671-2552.2023.05.007
[13] 王喜安,陈剑刚,陈华勇,等. 考虑浆体黏度的泥石流流速计算方法[J]. 长江科学院院报,2020,37(4):56 − 61. [WANG Xian,CHEN Jiangang,CHEN Huayong,et al. Calculation of debris flow velocity in consideration ofViscosity of slurry[J]. Journal of Yangtze River Scientific Research Institute,2020,37(4):56 − 61. (in Chinese with English abstract)] DOI: 10.11988/ckyyb.20181354 WANG Xian, CHEN Jiangang, CHEN Huayong, et al. Calculation of debris flow velocity in consideration ofViscosity of slurry[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(4): 56 − 61. (in Chinese with English abstract) DOI: 10.11988/ckyyb.20181354
[14] 吴积善. 泥石流流态及流速计算[C]//中国科学院成都地理研究所. 泥石流论文集 (1). 重庆:科学技术文献出版社重庆分社,1981:79 − 86. [Wu Jishan. Flow pattern and velocity calculation of debris flow[C] //Chengdu Institute of Geography,Chinese Academy of Sciences. Debris Flow Proceedings (1). Chongqing:Chongqing Branch,Scientific and Technical Literature Press,1981:79 − 86. (in Chinese)] Wu Jishan. Flow pattern and velocity calculation of debris flow[C] //Chengdu Institute of Geography, Chinese Academy of Sciences. Debris Flow Proceedings (1). Chongqing: Chongqing Branch, Scientific and Technical Literature Press, 1981: 79 − 86. (in Chinese)
[15] 朱兴华,崔鹏,唐金波,等. 粘性泥石流流速计算方法[J]. 泥沙研究,2013(3):59 − 64. [ZHU Xinghua,CUI Peng,TANG Jinbo,et al. Calculation of viscous debris flow velocity[J]. Journal of Sediment Research,2013(3):59 − 64. (in Chinese with English abstract)] DOI: 10.3969/j.issn.0468-155X.2013.03.011 ZHU Xinghua, CUI Peng, TANG Jinbo, et al. Calculation of viscous debris flow velocity[J]. Journal of Sediment Research, 2013(3): 59 − 64. (in Chinese with English abstract) DOI: 10.3969/j.issn.0468-155X.2013.03.011
[16] 张雄,裴向军,裴钻,等. 极震区泥石流流量计算方法的研究[J]. 自然灾害学报,2014,23(6):227 − 233. [ZHANG Xiong,PEI Xiangjun,PEI Zuan,et al. Study on discharge calculation method of debris flows in meizoseismal areas[J]. Journal of Natural Disasters,2014,23(6):227 − 233. (in Chinese with English abstract)] ZHANG Xiong, PEI Xiangjun, PEI Zuan, et al. Study on discharge calculation method of debris flows in meizoseismal areas[J]. Journal of Natural Disasters, 2014, 23(6): 227 − 233. (in Chinese with English abstract)
[17] 易伟,余斌,胡卸文,等. 山火后首次泥石流预警[J]. 地球科学,2023. [YI Wei,YU Bin,HU Xiowen et al. The first warning of debris flow after mountain fire [J]. Earth Science,2023. (in Chinese)] YI Wei, YU Bin, HU Xiowen et al. The first warning of debris flow after mountain fire [J]. Earth Science, 2023. (in Chinese)
[18] 胡卸文,吕小平,黄润秋,等. 唐家山堰塞湖大水沟泥石流发育特征及堵江危害性评价[J]. 岩石力学与工程学报,2009,28(4):850 − 858. [HU Xiewen,LU Xiaoping,HUANG Runqiu,et al. Developmental features and evaluation of blocking dangers of dashui ditch debris flow in Tangjiashan dammed lake[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(4):850 − 858. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-6915.2009.04.026 HU Xiewen, LU Xiaoping, HUANG Runqiu, et al. Developmental features and evaluation of blocking dangers of dashui ditch debris flow in Tangjiashan dammed lake[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(4): 850 − 858. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2009.04.026
[19] 刘波,胡卸文,何坤,等. 西藏洛隆县巴曲冰湖溃决型泥石流演进过程模拟研究[J]. 水文地质工程地质,2021,48(5):150 − 160. [LIU Bo,HU Xiewen,HE Kun,et al. Characteristics and evolution process simulation of the Baqu gully debris flow triggered by ice-lake outburst in Luolong County of Tibet,China[J]. Hydrogeology & Engineering Geology,2021,48(5):150 − 160. (in Chinese)] LIU Bo, HU Xiewen, HE Kun, et al. Characteristics and evolution process simulation of the Baqu gully debris flow triggered by ice-lake outburst in Luolong County of Tibet, China[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 150 − 160. (in Chinese)
[20] 杨洋,曾繁如,赵银兵,等. GIS和MATLAB在泥石流防治工程流量计算中的应用研究—以北川县苏保河为例[J]. 地球与环境,2013,41(3):266 − 273. [YANG Yang,ZENG Fanru,ZHAO Yinbing,et al. Application of flow calculation of debris flow in control engineering by GIS technology and MATLAB:A case study of the su-Bao river in Beichuan County[J]. Earth and Environment,2013,41(3):266 − 273. (in Chinese with English abstract)] YANG Yang, ZENG Fanru, ZHAO Yinbing, et al. Application of flow calculation of debris flow in control engineering by GIS technology and MATLAB: A case study of the su-Bao river in Beichuan County[J]. Earth and Environment, 2013, 41(3): 266 − 273. (in Chinese with English abstract)
[21] 康志成,李焯芬,马蔼乃,等. 中国泥石流研究[M]. 北京:科学出版社,2004. [KANG Zhicheng,LIZhuofen,MAAinao,etal. Study on debris flow in China[M]. Beijing:Science Press,2004. (in Chinese with English abstract)] KANG Zhicheng, LIZhuofen, MAAinao, etal. Study on debris flow in China[M]. Beijing: Science Press, 2004. (in Chinese with English abstract)
[22] 王敏,王严琪,孙树峻,等. 四川省康定市泥石流灾害与降水预报阈值确定[J]. 高原山地气象研究,2021,41(4):125 − 130. [WANG Min,WANG Yanqi,SUN Shujun,et al. Debris flow disasters and precipitation forecast threshold determination in Kangding City[J]. Plateau and Mountain Meteorology Research,2021,41(4):125 − 130. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1674-2184.2021.04.018 WANG Min, WANG Yanqi, SUN Shujun, et al. Debris flow disasters and precipitation forecast threshold determination in Kangding City[J]. Plateau and Mountain Meteorology Research, 2021, 41(4): 125 − 130. (in Chinese with English abstract) DOI: 10.3969/j.issn.1674-2184.2021.04.018
[23] 中华人民共和国国土资源部. 泥石流防治工程勘查规范,DZ/T0220—2006[S]. 北京:中国标准出版社,2006. [Ministry of Land and Resources of the People’s Repiblic of China. Specification of geological investigation for debris flow stabilization:DZ/T0220—2006[S]. Beijing:China Standards Press,2006. (in Chinese)] Ministry of Land and Resources of the People’s Repiblic of China. Specification of geological investigation for debris flow stabilization: DZ/T0220—2006[S]. Beijing: China Standards Press, 2006. (in Chinese)