Risk amplification effect caused by main stream road bridges and culverts blockages due to debris flow
-
摘要:
2020年8月17日,四川省平武县亚者造祖村干流沿岸4条沟相继暴发泥石流,导致G247国道多处断道和垮方,九绵高速项目部及民工驻地等多处遭受巨大损毁,泥石流裹挟的大量漂木汇入干流后,引发下游公路桥涵堵塞并回水淹没村庄,放大了灾害风险。为了避免类似灾害再次发生,灾后基于野外调查和遥感解译等手段,探讨了此次泥石流灾害风险特征,并重点分析了干流公路桥涵堵塞对泥石流灾害的风险放大效应。结果表明:(1)亚者造祖村“8•17”泥石流为低频稀性大规模群发性泥石流,暴发频率约为50年一遇。阿祖沟和杂排沟泥石流在规模上属特大型,麻石扎三号沟和夺补河五号沟泥石流在规模上属大型,堆积扇受灾面积约为16.66×104 m2。(2)干流公路桥涵布设不当,导致泥石流裹挟的大量漂木堵塞桥涵,形成堰塞体,致使受灾面积增大了16.78×104 m2,风险范围扩大了约1倍。(3)对于植被覆盖良好的湿润山区,干流公路桥涵修建时应适当增大桥墩之间的轴向间距,给河道预留出一定的宽度和运行空间,避免因漂木堵塞放大泥石流灾害风险。研究可为类似山区干流公路桥涵合理规划及泥石流相关防治预警工作提供参考。
Abstract:On August 17, 2020, debris flows successively occurred in four ravines along the main stream of Yazhezaozu Village, Pingwu County, Sichuan Province. This event resulted in multiple collapses and interruptions along the G247 national highway, and extensive damage to the Jiumian expressway project site and laborer residences, among other areas. A significant volume of driftwood carried by the debris flow converged into the main stream, leading to the blockage of downstream road bridges and culverts, causing backflow and village flooding, thereby exacerbating the disaster risk. To prevent similar disasters in the future, post-disaster investigations using field surveys and remote sensing interpretations explored the characteristics of this debris flow disaster's risk. A primary focus was placed on analyzing the risk amplification effect caused by blockages in main stream road bridges and culverts due to debris flow. The results indicated: (1) The ‘8.17’ debris flow in Yazhezaozu Village was a low-frequency, large-scale, rare, and extensive group occurrence, with an eruption frequency of approximately once every 50 years. The debris flows in Azu Gully and Zapai Gully were extremely large-scale, while Mashizha No. 3 Gully and Duobu River No. 5 Gully were large-scale, with an affected debris fan area of about 16.66×104 square meters. (2) Improper layout of main stream road bridges and culverts resulted in the blockages of driftwood carried by the debris flow, forming dammed bodies, increasing the affected area by 16.78×104 square meters, and enlarging the risk range by about 1-fold. (3) In well-vegetated, moist mountainous areas, when constructing main stream road bridges and culverts, it is advisable to appropriately increase the axial spacing between bridge piers, allowing for a certain width and operational space in the river channel. This will prevent the amplification of debris flow disaster risks caused by driftwood blockages. This study aims to provide guidance for the reasonable planning of main stream road bridges and culverts in similar mountainous areas and relevant prevention and early warning of debris flows.
-
Keywords:
- debris flow /
- bridges and culverts /
- driftwood /
- blockage /
- risk
-
0. 引言
地面沉降又称地面下降或地陷,是指在自然环境和人类建设活动影响下,由于地下松散土层及岩层压缩固结,导致地表标高损失的一种地质现象[1]。造成该现象的自然因素和社会经济因素被认为是地面沉降的驱动力,主要包括水文地质条件、矿产资源开发及地下水开采状况等[2 − 3]。地面沉降形成原因复杂,防护与治理难度较高[4 − 6],对人民的生命财产安全造成较大的损害。为深入探索沉降机制及其变化规律,国内外学者对沉降监测方法和驱动力因素进行研究,并不断发展新的理论技术[7 − 10]。
传统的地面沉降监测手段主要为水准测量和GNSS,这种局部单点测量的技术不仅成本高而且空间分辨率低,难以识别和监测大面积的地表形变[11]。时序合成孔径雷达干涉测量(time-series interferometric synthetic aperture radar,TS-InSAR)技术不仅周期短、精度高,还能够全天时、全天候地对大范围的地表形变进行监测,极大地弥补了传统监测手段的不足[12]。其中永久散射体雷达干涉[13](permanent scatterer interferometric synthetic aperture radar,PS-InSAR)和小基线集雷达干涉[14](small baseline subset interferometric synthetic aperture radar,SBAS-InSAR)最具代表性。PS-InSAR方法能够有效获取高相干目标(如建筑、桥梁及裸岩等)的时序形变信息,但在植被茂盛、稳定散射体稀少的区域,无法取得足量的稳定目标点,易使得形变解算结果产生偏差[15]。而SBAS-InSAR方法是利用慢失相关滤波相位像素点获取地表形变信息,该类点能够在短时段内保持较强的相干性,且普遍存在于自然界中(如草地、裸土等)。因此SBAS-InSAR方法比PS-InSAR方法更适用于大范围区域的形变监测[16 − 17]。
皖北地区的地面沉降问题历来较为突出,亳州市作为安徽省重要的新兴产业基地,其城市地质灾害监测一直受到政府及相关管理部门广泛关注。以往对该区域地面沉降的研究更侧重于观测数据的处理方法以及成因的简单分析[18 − 19],对于其驱动力的量化研究尚且不足。探求地面沉降的主要驱动因素,能够为地质灾害防治和城市建设提供科学指导。本文以亳州市为研究区,选取2021年10月至2022年10月共62景Sentinel-1数据,利用SBAS-InSAR技术对亳州市地面沉降进行监测,分析亳州市地面沉降的时空分布特征,并基于地理加权回归(geographically weighted regression,GWR)模型,从地质环境、水文地质条件、人类工程活动和经济发展状况等方面对亳州市地面沉降的空间分异进行分析,探究亳州市地面沉降的主要驱动因素。
1. 研究区与数据
1.1 研究区概况
亳州市位于黄淮海平原南端,皖、豫两省交界,全市下辖一区三县,总面积约8522.58 km2(图1)。亳州市地处中朝准地台的淮河台坳二级构造单元,主要发育有褶皱、断裂构造。该地区地形起伏较小,地势西北高、东南低,辖境与黄河决口扇形地相连,总体呈典型的黄淮堆积型地貌[20]。地层属华北地层大区徐淮地层分区,第四系覆盖区内大部分基岩,第四系及新近系松散地层厚度在800~1000 m。亳州市煤炭资源丰富,根据《亳州市矿产资源总体规划(2021—2025年)》,区内现有煤矿产地17处,主要分布在涡阳、蒙城等地,保有资源储量43.50亿吨,占全省煤炭资源储量17.17%。主要含煤层为石炭、二叠系地层,煤层埋深600~1000 m。
亳州市地下水类型可划分为松散岩类孔隙水、碳酸盐岩类裂隙溶洞水和基岩裂隙水三种类型。按照含水层的埋藏条件,可进一步划分为浅层孔隙含水层组(50 m以浅)、中深层隙含水层组(50~165 m)、深层孔隙含水层组(165~660 m)、超深层孔隙含水层组(660~900 m)。根据《2021年亳州市水资源公报》,亳州市地下水资源总量约为15.67×108 m3,浅层地下水供水量4.59×108 m3,中深层地下水供水量为1.47×108 m3。全市域内已形成9个超采区,总面积约980.9 km2,其中浅层地下水超采区开采量约0.4×108 m3/a,中深层地下水超采区开采量约1.38×108 m3/a。
1.2 数据
1.2.1 Sentinel-1
Sentinel-1卫星是欧洲航天局发射的地球观测卫星,重访周期为12天,具有干涉宽幅(IW)、超宽幅(EW)、波(WV)和带状图(SM)四种工作模式。本文选取2021年10月至2022年10月间,共62景升轨Sentinel-1干涉宽幅(IW)模式的SLC影像用于形变监测,数据的基本参数见表1。
表 1 Sentinel-1卫星数据参数表Table 1. Parameters of Sentinel-1 satellite data参数 数值 监测日期 轨道高度/km 700 2021-10-02、2021-10-14、2021-10-26、
2021-11-07、2021-11-19、2021-12-01、
2021-12-13、2022-01-06、2022-01-18、
2022-01-30、2022-02-11、2022-02-23、
2022-03-07、2022-03-19、2022-03-31、
2022-04-12、2022-04-24、2022-05-06、
2022-05-18、2022-05-30、2022-06-11、
2022-06-23、2022-07-05、2022-07-17、
2022-07-29、2022-08-10、2022-08-22、
2022-09-03、2022-09-15、2022-09-27、
2022-10-09重访周期/d 12 入射角/(°) 29~46 分辨率/m 5×20 幅宽/m 250 极化方式 VV 轨道号 142,101 / 142,106 1.2.2 SRTM DEM
SRTM数据由美国国家航空航天局(NASA)和美国国家地理空间情报局(NGA)生产并面向全球用户免费发布,该数据覆盖了全球约五分之四的陆地表面,分辨率为30 m,高程精度为±16 m。本文中用于去除干涉测量过程中由地形起伏因素导致的地形相位。
1.2.3 其它数据
驱动力因子的选择主要依据研究区地质环境、水文地质条件、人类工程活动和经济发展状况四方面的综合影响,共选取8个指标,分别为松散层厚度、中深层地下水埋深、深层地下水埋深、中深层水位变幅、深层水位变幅、道路密度、人口密度和单位面积GDP。
2. 方法原理与数据处理
2.1 地面沉降监测
2.1.1 SBAS-InSAR原理
将覆盖研究区的N+1幅影像进行配准后,参照一定的阈值组成M个干涉对[21],则有:
$$ \frac{{N + 1}}{2} \leqslant M \leqslant \frac{{N(N + 1)}}{2}$$ (1) 假设第i(i∈1, 2, ···, M)个干涉对的主辅影像获取时间为ta和tb(其中tb在ta之后),并且其干涉相位中除去形变相位的部分已被剔除,则该干涉对的相位可以表示为:
$$ \varDelta \varphi _j^{({t_a},{t_b})} = {\varphi ^{{t_b}}} - {\varphi ^{{t_a}}} $$ (2) 那么M个干涉对的形变相位可以表示为如下矩阵形式:
$$ \varDelta \varphi ={\left[\varDelta {\varphi }_{1},\varDelta {\varphi }_{2},\varDelta {\varphi }_{3},\cdots ,\varDelta {\varphi }_{M}\right]}^{T} $$ (3) 每个干涉都可以产生一个观测方程,结合式(2)(3),可以组成具有M个观测方程的方程组,其中有N个待求未知数,矩阵形式方程组如下:
$$ A\varphi = \varDelta \varphi $$ (4) 式中:A——M×N的系数矩阵。
若矩阵A的秩r(A)大于N,则可以通过最小二乘法求解式(4),公式如下:
$$ \varphi = {\left( {{A^T}A} \right)^{ - 1}}{A^T}\varDelta \varphi $$ (5) 但在实际计算中,r(A)通常小于N,无法求得ATA矩阵的逆矩阵,此时则对矩阵A进行奇异值分解,分解形式如下:
$$ A = US{V^T} $$ (6) 式中:U——M×M阶正交矩阵,由AAT的特征向量组成;
S——M阶对角矩阵;
V——由ATA的特征向量组成的N×M阶正交矩阵。
$$ {A^ + } = V{S^ + }{U^T} $$ (7) $$ \varphi = {A^ + }\varDelta \varphi $$ (8) 式中:UT——U的转置矩阵;
A+、S+——矩阵A、矩阵S的广义逆矩阵。
将求解出时序形变量φ,除以形变所对应的时间间隔,即可求解出对应的形变速率。
2.1.2 数据处理流程
SBAS-InSAR技术路线如图2所示,获取地面形变信息的流程主要包括两部分:数据预处理和SBAS-InSAR工作流。本研究使用ENVI平台的SARscape对Sentinel-1数据进行处理,SARscape是由sarmap公司开发的一款专业的雷达影像处理软件,已被广泛应用于处理ERS-1/2、RADARSAT-1/2、ENVISAT ASAR、ALOS PALSAR以及 Sentinel-1(哨兵)等一系列星载雷达数据[22 − 25]。
Sentinel-1数据预处理步骤如下:①将数据导入为SARscape的标准格式;②对同一时期两景SAR影像进行镶嵌;③按照研究区范围对数据进行裁剪。对预处理后的影像进行SBAS-InSAR处理,主要流程包括:①对输入数据以最优的组合方式配对;②配对后的像对进行干涉处理;③利用控制点对所有数据重去平;④去除大气相位并估算形变速率;⑤地理编码,将形变结果投影到地理坐标系上。
2.2 地理加权回归模型
空间关系具有异质性和非平稳性规律,为了对空间数据进行精确局部描述,Fotheringham基于局部光滑的思想提出了地理加权回归模型(geographical weighted regression , GWR)[26]。GWR实质上是一种空间变系数回归模型[27],可以根据空间数据的位置信息生成对应的局部回归系数,从而对变量的局部空间关系与空间异质性进行合理的解释[28]。
2.2.1 模型构建
运用GWR模型进行回归分析时,考虑到因子间的多重共线性问题会影响模型的可靠性,因此本文首先计算各因子的方差膨胀因子(VIF)。结果显示(表2),各因子的VIF均处于0到10之间[29],表明因子间不存在多重共线性。
表 2 模型多重共线性检验Table 2. Model multicollinearity test因子 VIF 因子 VIF 中深层地下水埋深 1.234526 松散层厚度 1.519002 中深层水位变幅 1.625721 人口密度 1.116396 深层水位变幅 1.681352 道路密度 1.053348 深层地下水埋深 2.087465 单位面积GDP 2.481104 在此基础上,对亳州市地面沉降建立GWR模型如下:
$$ {y_i} = \sum\limits_{i = 0}^p {{\beta _j}} ({u_i},{v_i}){x_{ij}} + {\varepsilon _i}\quad i = 1,2,\cdots, n $$ (9) 式中:yi——响应变量;
βj(ui, vi)——第i个样本点在(ui, vi)处的第j个回归 参数;
xij——影响因素;
εi——随机误差项。
采用赤池信息准则最优带宽策略,构建不同运行模式下的活动强度GWR模型[27],结果如表3所示。地面沉降GWR模型的可决系数(R2)为0.394583,表明自变量与因变量之间具有相关性。校正可决系数(adjusted R2)是0.373125,说明可解释因变量在模型中具有较高比例。
表 3 2022年地面沉降GWR回归模型参数Table 3. Ground subsidence GWR regression model parameters for 2022监测年份 带宽 赤池信息准则 可决系数 校正可决系数 2022年 824 11850.657545 0.394583 0.373125 3. 结果
3.1 精度验证
为验证本文中研究区地面沉降数据的可靠性,选取谯城区周围3个同期水准点测量值与SBAS-InSAR监测结果进行对比。结果(表4)显示,SBAS-InSAR结果与水准测量值的误差在1 mm以内,说明监测结果具有较高的可信度。
表 4 SBAS-InSAR监测结果与水准数据对比Table 4. Comparison between SBAS-InSAR monitoring results and leveling data点名 实测形变量/mm SBAS-InSAR监测的形变量/mm 差值/mm BJ01 3 3.83 0.83 BJ02 −1 −0.54 −0.46 BXJ08 −4 −3.78 −0.22 监测结果与实测数据间存在一定误差,主要是因为SAR影像在干涉过程中受到大气延迟、地形起伏和失相干等多种因素影响产生的误差。此外,水准测量获取的是单个监测点的高程变化,而SBAS-InSAR结果则是一个单元格网(面状)的平均形变量,二者不一定完全对应。
3.2 地面沉降时空分布特征
通过SBAS-InSAR处理,得到2021年10月至2022年10月内亳州市地表形变速率(图3)。亳州市整体沉降速率为5~30 mm/a,平均沉降速率为5.7 mm/a。地面沉降主要分布于谯城区东北部、涡阳县城、利辛县城以及蒙城县的部分地区;沉降最严重区域位于涡阳县公吉寺镇以北,受煤矿开采影响,沉降速率幅值达到84.3 mm/a;谯城区东北侧的地面沉降幅值为25.8 mm/a;在利辛县城及蒙城县的部分地区内,大多数区域地面沉降速率幅度小于10 mm/a水平,局部区域地面沉降幅度达到20 mm/a水平。
监测时段内沿雷达视线向(Line of Sight, LOS)的时序累计形变量如图4所示。在涡阳县中部、谯城区东北部、利辛县西部以及蒙城县中部,均监测到明显形变,形变量随时间推移逐渐增大。截至观测结束,涡阳县受煤矿开采影响区域,累积沉降量幅值达到83.4 mm,其余地区最大累计沉降量为27.3 mm;亳州市大部分区域地表累计沉降量处于5~30 mm水平,平均累计沉降量为7.3 mm左右。
3.3 地理加权回归模型构建结果
为了能够有效地掌握建模数据的分布情况,本文使用最小值、中值、最大值及平均值对模型运算结果进行叙述性统计。各建模变量拟合系数如表5所示,当系数为正时,自变量与因变量呈正相关关系;当系数为负时,自变量与因变量呈负相关关系,且拟合系数的绝对值越大,相关性越强。因此,各因素对地面沉降的贡献度排序依次为深层水位变幅、中深层水位变幅、中深层地下水埋深、深层地下水埋深、单位面积GDP、松散层厚度、道路密度、人口密度。
表 5 模型运算结果叙述性统计Table 5. Descriptive statistics of model calculation results变量 最小值 中值 最大值 平均值 深层水位变幅 -1.487 0.938 7.769 3.141 中深层水位变幅 -1.482 0.602 2.674 0.596 中深层地下水埋深 -0.747 -0.311 0.065 -0.341 深层地下水埋深 -0.293 -0.050 0.085 -0.104 单位面积GDP -0.003 0.000 0.001 -0.001 松散层厚度 -0.014 0.000 0.013 -0.0005 道路密度 -0.000 0.000 0.001 0.0005 人口密度 -0.001 0.000 0.001 0.000 4. 讨论
4.1 采煤区地面沉降影响因素
亳州市煤矿资源主要分布在涡阳、蒙城两县,其中涡阳县现有矿产地13处,是区内主要的采煤区。结合驱动力因子回归结果与煤炭实际开采情况可知,采煤区沉降受地下水抽取与煤矿开采共同影响,而煤矿开采是沉降严重区域形变的主导因素。驱动力因子回归系数显示,采煤区地面沉降与中深层水位变幅,见图5(c)、深层水位变幅,见图5(d)呈显著正相关,说明地下水水位变化对地面沉降具有一定贡献。而该地区沉降最严重区域位于涡阳县公吉寺镇以北的信湖煤矿,最大沉降达83.4 mm。信湖煤矿于2021年9月16日正式投产,随着采矿活动的进行,矿区沉降速率持续加快。煤炭被采出后,形成采空区,随着采空区范围不断扩张,采空区上部覆岩和周围岩体的应力平衡遭到破坏,覆岩受到的重力作用逐渐增加,当压力超过临界值后,煤层顶板及周围岩体发生弯曲、断裂和垮落,导致整个上覆岩层的变形和移动,最终在地表形成大范围塌陷坑[30]。
4.2 非采煤区地面沉降影响因素
非采煤沉降区主要位于谯城区东北部与利辛县西部,累计沉降量幅值为27.3 mm。驱动力因子回归系数显示,地下水状况与非采煤区地面沉降相关性较强,中深层水位变幅,见图5(c)和深层水位变幅,见图5(d)与地面沉降呈现正相关。自20世纪80年代以来,亳州市城市经济持续发展,人口迅速增长,对地下水资源的需求量也逐年增加。据有关资料估测[20],亳州市目前地下水日开采量在3.5×105 m3左右,深层地下水开采量在1.9×105 m3。对深层地下水的过度开采,诱使承压水头持续降低,降落漏斗面积不断扩大。当水头压力差作用于下伏黏性土层时,黏性土层的中低压缩性,会导致其越流或者压密释水,引起自身测压水头下降,使土体被纵向压缩;而砂性含水层受水头减小的影响,会释放出一部分储存的水,使得含水层内部的应力状态发生变化。原本承压水头支撑的上覆载荷被转移至含水层砂砾间,致使砂砾间的有效压力增加,含水层被垂直压缩。在地表上监测到的沉降量,即为降落漏斗范围内黏性土层与含水砂性土层的压缩量之和[31]。
4.3 地质因素对地面沉降的影响
松散层厚度与地面沉降的关系如图5(e)所示,在亳州市中部和西南部回归系数为负,对地面沉降起抑制作用;在北部和南部回归系数为正,对地面沉降起促进作用。亳州市地处淮北平原,地下发育有第四系和新近系松散沉积物[20],构成了地面沉降的物质基础。城市公共设施建设快速发展,城市建筑物的荷载不断增加,导致松散层被压实,进而引发地面沉降[22];另一方面,松散层中不同土层持水性具有的很大差异,过度开采地下水,使得土层颗粒间的有效应力增大,孔隙体积被压缩,导致地面沉降。
5. 结论
本文利用2021年10月至2022年10月期间62景Sentinel-1卫星SAR影像,采用SBAS-InSAR技术获取了亳州市该时段内的地面形变速率及累计形变量,并对地面沉降的时空格局以及驱动力因素进行了分析,结果如下:
(1)亳州市全域地面基本稳定,但局部地区存在明显的地面沉降现象。2021年10月至2022年10月期间,亳州市地面沉降最严重区域位于涡阳县公吉寺镇以北,幅值为84.3 mm/a,主要受煤矿开采影响所致。其他因采水导致地面沉降最大速率为25.8 mm/a,位于谯城区东北侧。
(2)监测时段内,涡阳县中部、谯城区东北部、利辛县西部以及蒙城县中部均监测到明显形变,并且形变量随时间推移逐渐增大,亳州市整体平均累计沉降量为7.3 mm左右,采煤沉降区累计沉降量幅值为83.4 mm,非采煤沉降区累计沉降量幅值为27.3 mm。
(3)各驱动力因素对地面沉降的贡献度排序为深层水位变幅、中深层水位变幅、中深层地下水埋深、深层地下水埋深、单位面积GDP、松散层厚度、道路密度、人口密度。
-
表 1 研究区4条泥石流沟地形地貌特征参数
Table 1 Topographic and geomorphologic characteristics parametes of four debris flow gullies in the study area
流域名称 流域面积
/km2主沟长度
/km平均纵
比降/‰最高海拔
/m最低海拔
/m最大高差
/m阿祖沟 4.10 3.10 244 3110 2353 757 麻石扎三号沟 2.43 3.20 294 3302 2361 941 夺补河五号沟 1.80 2.54 311 3147 2357 791 杂排沟 6.16 5.45 223 3543 2330 1213 表 2 研究区4条泥石流沟雨洪法相关参数计算结果
Table 2 Calculation results of storm flood method related parameters in four debris flow gullies in the study area
流域 P/% $ \psi $ $ \tau$/h $ n $ $ s $/(mm·h−1) $ {D}_{{\mathrm{c}}} $ $ {Q}_{{\mathrm{w}}} $/(m3·s−1) $ {Q}_{{\mathrm{c}}} $/(m3·s−1) $ Q $/(104 m3) $ {Q}_{{\mathrm{H}}} $/(104 m3) 阿祖沟 1 0.91 0.97 0.8 59.20 2.8 63.26 302.82 19.19 7.91 2 0.90 1.01 0.8 51.60 2.6 52.35 232.71 14.74 6.08 5 0.87 1.08 0.79 42.00 2.4 39.16 160.70 10.18 4.20 麻石扎三号沟 1 0.94 1.07 0.8 59.20 2.8 35.57 174.58 8.30 3.57 2 0.93 1.12 0.8 51.60 2.6 29.61 134.97 6.41 2.76 5 0.91 1.19 0.79 42.00 2.4 22.41 94.27 4.48 1.93 夺补河五号沟 1 0.94 0.90 0.8 59.20 2.8 30.42 140.24 6.66 2.63 2 0.93 0.94 0.8 51.60 2.6 25.33 108.46 5.15 2.03 5 0.92 1.00 0.79 42.00 2.4 19.19 75.84 3.60 1.42 杂排沟 1 0.93 1.58 0.8 59.20 2.8 65.48 282.62 17.91 6.30 2 0.92 1.65 0.8 51.60 2.6 54.50 218.44 13.84 4.87 5 0.90 1.76 0.79 42.00 2.4 41.17 152.30 9.65 3.39 注:$ \psi $为洪峰径流系数,$ \tau $为流域汇流时间,s为暴雨雨力。 表 3 研究区4条泥石流沟形态调查法相关参数计算结果
Table 3 Calculation results of morphological survey method related parameters in four debris flow gullies in the study area
流域 $ x $/% $ {\gamma }_{{\mathrm{c}}} $/(g·cm−3) $ R $/m $ {W}_{{\mathrm{c}}} $/m2 $ {V}_{{\mathrm{c}}} $/(m·s−1) $ {Q}_{{\mathrm{c}}}' $/(m3·s−1) $ Q' $/(104 m3) $ {Q}_{{\mathrm{H}}}' $/(104 m3) 阿祖沟 1.15 1.68 2.0 41.00 8.40 344.39 16.37 6.79 麻石扎三号沟 1.37 1.71 2.2 16.28 9.64 156.86 7.45 3.20 夺补河五号沟 0.82 1.65 1.7 13.86 8.77 121.47 5.77 2.27 杂排沟 0.52 1.61 2.0 21.76 8.51 185.18 11.73 4.12 注:R为水力半径。 表 4 研究区4条泥石流沟堆积扇特征及危害对象
Table 4 Characteristics and vulnerable objects of accumulation fans in four debris flow gullies in the study area
流域 堆积扇面积/(104 m2) 平均堆积厚度/m 堆积体积/(104 m3) 主要危害对象 阿祖沟 5.95 2.5 14.88 九绵高速项目部驻地、民工驻地、钢筋加工中心 麻石扎三号沟 3.14 1.5 4.72 G247国道 夺补河五号沟 3.43 1.3 4.45 九绵高速预制梁场、拌合站、白马隧道洞口驻地 杂排沟 4.14 2.3 9.52 G247国道、在建九绵高速、沟口民宿 表 5 泥石流堵河相关参数与计算结果
Table 5 Related parameters and calculation results of debris flow blocking river
流域 $ {Q}_{{\mathrm{c}}} $/(m3·s−1) $ {\gamma }_{{\mathrm{c}}} $/(g·cm−3) $ {V}_{{\mathrm{c}}} $/(m·s−1) $ \mathrm{\alpha } $/(°) J/‰ $ {C}_{\gamma } $ 堵河情况 阿祖沟 232.71 1.68 8.40 60 244 1.19 不堵 麻石扎三号沟 134.97 1.71 9.64 120 294 0.81 不堵 夺补河五号沟 108.46 1.65 8.77 80 311 0.65 不堵 杂排沟 218.44 1.61 8.51 120 223 1.09 不堵 -
[1] 陈宁生,周海波,卢阳,等. 西南山区泥石流防治工程效益浅析[J]. 成都理工大学学报(自然科学版),2013,40(1):50 − 58. [CHEN Ningsheng,ZHOU Haibo,LU Yang,et al. Analysis of benefits of debris flow control projects in southwest mountain areas of China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2013,40(1):50 − 58. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-9727.2013.01.008 CHEN Ningsheng, ZHOU Haibo, LU Yang, et al. Analysis of benefits of debris flow control projects in southwest mountain areas of China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2013, 40(1): 50 − 58. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-9727.2013.01.008
[2] 赵聪,梁京涛,铁永波,等. 西藏雅鲁藏布江峡谷特大巨型泥石流活动与泥沙输移特征研究[J]. 中国地质灾害与防治学报,2024,35(4):45 − 55. [ZHAO Cong,LIANG Jingtao,TIE Yongbo,et al. Study on the activities of the massive debris flows and sediment transport characteristics in the Grand Bend of the Yarlung Zangbo River Gorge, Xizang[J]. The Chinese Journal of Geological Hazard and Control,2024,35(4):45 − 55. (in Chinese with English abstract)] ZHAO Cong, LIANG Jingtao, TIE Yongbo, et al. Study on the activities of the massive debris flows and sediment transport characteristics in the Grand Bend of the Yarlung Zangbo River Gorge, Xizang[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(4): 45 − 55. (in Chinese with English abstract)
[3] 史继帅, 姜亮, 翟胜强. 四川甘洛县黑西洛沟 “8•31” 泥石流动力过程[J]. 中国地质灾害与防治学报,2024,35(3):52 − 60. [SHI Jishuai, JIANG Liang, ZHAI Shengqiang. Dynamic process of “8•31” debris flow in Heixiluogou, Ganluo County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2024,35(3):52 − 60. (in Chinese with English abstract)] SHI Jishuai, JIANG Liang, ZHAI Shengqiang. Dynamic process of “8•31” debris flow in Heixiluogou, Ganluo County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 52 − 60. (in Chinese with English abstract)
[4] 谢湘平,王小军,李忠丽,等. 漂木对泥石流输移过程影响试验研究[J]. 水利水电技术(中英文),2022,53(5):179 − 189. [XIE Xiangping,WANG Xiaojun,LI Zhongli,et al. Experimental study of influence from driftwood on debris flow transport process[J]. Water Resources and Hydropower Engineering,2022,53(5):179 − 189. (in Chinese with English abstract)] XIE Xiangping, WANG Xiaojun, LI Zhongli, et al. Experimental study of influence from driftwood on debris flow transport process[J]. Water Resources and Hydropower Engineering, 2022, 53(5): 179 − 189. (in Chinese with English abstract)
[5] 于国强,张霞,顾小凡,等.基底侵蚀作用对黄土坡面泥流动力过程影响机制研究[J/OL].中国地质,(2024-07-05)[2024-07-28]. [YU Guoqiang,ZHANG Xia,GU Xiaofan,et al. Influence of the basal erosion on kinetic process of loess slope debris flow[J/OL].Geology in China,(2024-07-05)[2024-07-28]. http://kns.cnki.net/kcms/detail/11.1167.p.20240704.1646.002.html. (in Chinese with English abstract)] YU Guoqiang, ZHANG Xia, GU Xiaofan, et al. Influence of the basal erosion on kinetic process of loess slope debris flow[J/OL].Geology in China, (2024-07-05)[2024-07-28]. http://kns.cnki.net/kcms/detail/11.1167.p.20240704.1646.002.html. (in Chinese with English abstract)
[6] 李钰,甘滨蕊,王协康,等. 四川省甘洛县2019年群发性山洪泥石流灾害的形成机理[J]. 水土保持通报,2020,40(6):281 − 287. [LI Yu,GAN Binrui,WANG Xiekang,et al. Formation mechanism of group flash flood/debris flow disasters in Ganluo County,Sichuan Province in 2019[J]. Bulletin of Soil and Water Conservation,2020,40(6):281 − 287. (in Chinese with English abstract)] LI Yu, GAN Binrui, WANG Xiekang, et al. Formation mechanism of group flash flood/debris flow disasters in Ganluo County, Sichuan Province in 2019[J]. Bulletin of Soil and Water Conservation, 2020, 40(6): 281 − 287. (in Chinese with English abstract)
[7] 张宪政,铁永波,宁志杰, 等. 四川汶川县板子沟 “6•26” 特大型泥石流成因特征与活动性研究[J]. 水文地质工程地质,2023,50(5):134 − 145. [ZHANG Xianzheng,TIE Yongbo,NING Zhijie,et al. Characteristics and activity analysis of the catastrophic “6•26” debris flow in the Banzi Catchment, Wenchuan County of Sichuan Province[J]. Hydrogeology & Engineering Geology,2023,50(5):134 − 145. (in Chinese with English abstract)] ZHANG Xianzheng, TIE Yongbo, NING Zhijie, et al. Characteristics and activity analysis of the catastrophic “6•26” debris flow in the Banzi Catchment, Wenchuan County of Sichuan Province[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 134 − 145. (in Chinese with English abstract)
[8] 陈剑刚,费高高,王喜安,等. 漂木对山洪泥石流运动致灾影响研究进展[J]. 水利水电科技进展,2022,42(3):104 − 111. [CHEN Jiangang,FEI Gaogao,WANG Xi’an,et al. Advances on disaster effects of drift wood in flash flood debris flows[J]. Advances in Science and Technology of Water Resources,2022,42(3):104 − 111. (in Chinese with English abstract)] CHEN Jiangang, FEI Gaogao, WANG Xi’an, et al. Advances on disaster effects of drift wood in flash flood debris flows[J]. Advances in Science and Technology of Water Resources, 2022, 42(3): 104 − 111. (in Chinese with English abstract)
[9] 袁东,张广泽,王栋,等. 西部山区交通廊道泥石流发育特征及选线对策[J]. 地质通报,2023,42(5):743 − 752. [YUAN Dong,ZHANG Guangze,WANG Dong,et al. Development characteristics of debris flow in traffic corridors in western mountainous areas and route selection countermeasures[J]. Geological Bulletin of China,2023,42(5):743 − 752. (in Chinese with English abstract)] YUAN Dong, ZHANG Guangze, WANG Dong, et al. Development characteristics of debris flow in traffic corridors in western mountainous areas and route selection countermeasures[J]. Geological Bulletin of China, 2023, 42(5): 743 − 752. (in Chinese with English abstract)
[10] CHEN Jiangang,LIU Wenrun,ZHAO Wanyu,et al. Magnitude amplification of flash floods caused by large woody in Keze gully in Jiuzhaigou National Park,China[J]. Geomatics,Natural Hazards and Risk,2021,12(1):2277 − 2299. DOI: 10.1080/19475705.2021.1961882
[11] 陈晓清,崔鹏,韦方强. 良好植被区泥石流防治初探[J]. 山地学报,2006,24(3):333 − 339. [CHEN Xiaoqing,CUI Peng,WEI Fangqiang. Study of control debris flow in high-covered vegetation region[J]. Journal of Mountain Science,2006,24(3):333 − 339. (in Chinese with English abstract)] CHEN Xiaoqing, CUI Peng, WEI Fangqiang. Study of control debris flow in high-covered vegetation region[J]. Journal of Mountain Science, 2006, 24(3): 333 − 339. (in Chinese with English abstract)
[12] 崔鹏,陈晓清,柳素清,等. 风景区泥石流防治特点与技术[J]. 地学前缘,2007,14(6):172 − 180. [CUI Peng,CHEN Xiaoqing,LIU Suqing,et al. Techniques of debris flow prevention in National Parks[J]. Earth Science Frontiers,2007,14(6):172 − 180. (in Chinese with English abstract)] DOI: 10.1016/S1872-5791(08)60009-3 CUI Peng, CHEN Xiaoqing, LIU Suqing, et al. Techniques of debris flow prevention in National Parks[J]. Earth Science Frontiers, 2007, 14(6): 172 − 180. (in Chinese with English abstract) DOI: 10.1016/S1872-5791(08)60009-3
[13] 高克昌,孟国才,韦方强,等. 德宏“7•5” 特大滑坡泥石流灾害分析及其对策[J]. 防灾减灾工程学报,2005,25(3):251 − 257. [GAO Kechang,MENG Guocai,WEI Fangqiang,et al. Analysis and counter-measure for the large-scale landslide-debris flow hazard in Dehong,Yunnan,China[J]. Journal of Disaster Pnevention and Mitigation Engineering,2005,25(3):251 − 257. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1672-2132.2005.03.004 GAO Kechang, MENG Guocai, WEI Fangqiang, et al. Analysis and counter-measure for the large-scale landslide-debris flow hazard in Dehong, Yunnan, China[J]. Journal of Disaster Pnevention and Mitigation Engineering, 2005, 25(3): 251 − 257. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-2132.2005.03.004
[14] 谢湘平,王小军,闫春岭. 漂木灾害研究现状及研究展望[J]. 山地学报,2020,38(4):552 − 560. [XIE Xiangping,WANG Xiaojun,YAN Chunling. A review of the research on woody debris related disaster and its prospect[J]. Mountain Research,2020,38(4):552 − 560. (in Chinese with English abstract)] XIE Xiangping, WANG Xiaojun, YAN Chunling. A review of the research on woody debris related disaster and its prospect[J]. Mountain Research, 2020, 38(4): 552 − 560. (in Chinese with English abstract)
[15] 黄勋,唐川. 基于数值模拟的泥石流灾害定量风险评价[J]. 地球科学进展,2016,31(10):1047 − 1055. [HUANG Xun,TANG Chuan. Quantitative risk assessment of catastrophic debris flows through numerical simulation[J]. Advances in Earth Science,2016,31(10):1047 − 1055. (in Chinese with English abstract)] HUANG Xun, TANG Chuan. Quantitative risk assessment of catastrophic debris flows through numerical simulation[J]. Advances in Earth Science, 2016, 31(10): 1047 − 1055. (in Chinese with English abstract)
[16] 杨强,王高峰,李金柱,等. 白龙江中上游泥石流形成条件与成灾模式探讨[J]. 中国地质灾害与防治学报,2022,33(6):70 − 79. [YANG Qiang,WANG Gaofeng,LI Jinzhu,et al. Formation conditions and the disaster modes of debris flows along middle and upper reaches of the Bailongjiang River Basin[J]. The Chinese Journal of Geological Hazard and Control,2022,33(6):70 − 79. (in Chinese with English abstract)] YANG Qiang, WANG Gaofeng, LI Jinzhu, et al. Formation conditions and the disaster modes of debris flows along middle and upper reaches of the Bailongjiang River Basin[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 70 − 79. (in Chinese with English abstract)
[17] 屈永平,唐川,刘洋,等. 四川省都江堰市龙池地区“8•13” 泥石流堆积扇调查和分析[J]. 水利学报,2015,46(2):197 − 207. [QU Yongping,TANG Chuan,LIU Yang,et al. Survey and analysis of the“8•13” debris flows fan in Longchi Town of Dujiangyan City,Sichuan Province[J]. Journal of Hydraulic Engineering,2015,46(2):197 − 207. (in Chinese with English abstract)] QU Yongping, TANG Chuan, LIU Yang, et al. Survey and analysis of the“8•13” debris flows fan in Longchi Town of Dujiangyan City, Sichuan Province[J]. Journal of Hydraulic Engineering, 2015, 46(2): 197 − 207. (in Chinese with English abstract)
[18] 蒋涛,崔圣华,许向宁,等. 基于遥感解译的典型强震区泥石流物源发育及演化——以四川都汶高速沿线为例[J]. 地质通报,2024,43(7):1243 − 1254. [JIANG Tao,CUI Shenghua,XU Xiangning,et al. Distribution and evolution of debris flow in a typic meizoseismal area based on remote sensing:A case study of the Sichuan Duwen expressway[J]. Geological Bulletin of China,2024,43(7):1243 − 1254. (in Chinese with English abstract)] JIANG Tao, CUI Shenghua, XU Xiangning, et al. Distribution and evolution of debris flow in a typic meizoseismal area based on remote sensing: A case study of the Sichuan Duwen expressway[J]. Geological Bulletin of China, 2024, 43(7): 1243 − 1254. (in Chinese with English abstract)
[19] 陈宁生,田树峰,张勇,等. 泥石流灾害的物源控制与高性能减灾[J]. 地学前缘,2021,28(4):337 − 348. [CHEN Ningsheng,TIAN Shufeng,ZHANG Yong,et al. Soil mass domination in debris-flow disasters and strategy for hazard mitigation[J]. Earth Science Frontiers,2021,28(4):337 − 348. (in Chinese with English abstract)] CHEN Ningsheng, TIAN Shufeng, ZHANG Yong, et al. Soil mass domination in debris-flow disasters and strategy for hazard mitigation[J]. Earth Science Frontiers, 2021, 28(4): 337 − 348. (in Chinese with English abstract)
[20] 游勇,陈兴长,柳金峰. 四川绵竹清平乡文家沟“8•13” 特大泥石流灾害[J]. 灾害学,2011,26(4):68 − 72. [YOU Yong,CHEN Xingchang LIU Jinfeng. “8•13” extra large debris flow disaster in Wenjia gully of Qingping Township,Mianzhu,Sichuan Province[J]. Journal of Catastrophology,2011,26(4):68 − 72. (in Chinese with English abstract)] YOU Yong, CHEN Xingchang LIU Jinfeng. “8•13” extra large debris flow disaster in Wenjia gully of Qingping Township, Mianzhu, Sichuan Province[J]. Journal of Catastrophology, 2011, 26(4): 68 − 72. (in Chinese with English abstract)
[21] OKAMOTO T,TAKEBAYASHI H,SANJOU M,et al. Log jam formation at bridges and the effect on floodplain flow:A flume experiment[J]. Journal of Flood Risk Management,2020,13(S1).
[22] WANG Daozheng,WANG Xingang,CHEN Xiaoqing,et al. Analysis of factors influencing the large wood transport and block-outburst in debris flow based on physical model experiment[J]. Geomorphology,2022,398:108054. DOI: 10.1016/j.geomorph.2021.108054
[23] CHEN Huayong,RUAN Hechun,CHEN Jiangang,et al. Review of investigations on hazard chains triggered by river-blocking debris flows and dam-break floods[J]. Frontiers in Earth Science,2022,10:830044. DOI: 10.3389/feart.2022.830044
[24] 郭岐山,肖建兵,关新芳. 平武县石坎河小流域震后泥石流活动特征及工程防治建议[J]. 中国地质灾害与防治学报,2018,29(3):31 − 37. [GUO Qishan,XIAO Jianbing,GUAN Xinfang. The characteristics of debris flow activities and its optimal timing for the control in Shikan River Basin,Pingwu Country[J]. The Chinese Journal of Geological Hazard and Control,2018,29(3):31 − 37. (in Chinese with English abstract)] GUO Qishan, XIAO Jianbing, GUAN Xinfang. The characteristics of debris flow activities and its optimal timing for the control in Shikan River Basin, Pingwu Country[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(3): 31 − 37. (in Chinese with English abstract)
[25] 钟燕川,郭海燕,徐金霞,等. 四川省泥石流活动与降水因子特征[J]. 水土保持研究,2018,25(6):390 − 396. [ZHONG Yanchuan,GUO Haiyan,XU Jinxia,et al. Characteristics of debris flow and precipitation in Sichuan Province[J]. Research of Soil and Water Conservation,2018,25(6):390 − 396. (in Chinese with English abstract)] ZHONG Yanchuan, GUO Haiyan, XU Jinxia, et al. Characteristics of debris flow and precipitation in Sichuan Province[J]. Research of Soil and Water Conservation, 2018, 25(6): 390 − 396. (in Chinese with English abstract)
[26] 陈宁生,崔鹏,刘中港,等. 基于黏土颗粒含量的泥石流容重计算[J]. 中国科学E辑:技术科学,2003,33(增刊1):164 − 174. [CHEN Ningsheng,CUI Peng,LIU Zhonggang,et al. Calculation of debris flow bulk density based on clay particle content[J]. Scientia Sinica (Technologica),2003,33(Sup 1):164 − 174. (in Chinese)] CHEN Ningsheng, CUI Peng, LIU Zhonggang, et al. Calculation of debris flow bulk density based on clay particle content[J]. Scientia Sinica (Technologica), 2003, 33(Sup 1): 164 − 174. (in Chinese)
[27] 中国地质灾害防治工程行业协会. 泥石流灾害防治工程勘查规范(试行):T/CAGHP 006—2018[S]. 武汉:中国地质大学出版社,2018. [China Geological Disaster Prevention Engineering Industry Association. Code for Exploration of debris flow Disaster Prevention Projects (Trial) : T/CAGHP 006-2018 [S]. Wuhan: China University of Geosciences Press, 2018.(in Chinese)] China Geological Disaster Prevention Engineering Industry Association. Code for Exploration of debris flow Disaster Prevention Projects (Trial) : T/CAGHP 006-2018 [S]. Wuhan: China University of Geosciences Press, 2018.(in Chinese)
[28] 陈德明,王兆印,何耘. 泥石流入汇对河流影响的实验研究[J]. 泥沙研究,2002(3):22 − 28. [CHEN Deming,WANG Zhaoyin,HE Yun. Experimental study on the fluvial process of debris flow discharging into a river[J]. Journal of Sediment Research,2002(3):22 − 28. (in Chinese with English abstract)] CHEN Deming, WANG Zhaoyin, HE Yun. Experimental study on the fluvial process of debris flow discharging into a river[J]. Journal of Sediment Research, 2002(3): 22 − 28. (in Chinese with English abstract)
[29] SCHMOCKER L,HAGER W H. Probability of drift blockage at bridge decks[J]. Journal of Hydraulic Engineering,2011,137(4):470 − 479. DOI: 10.1061/(ASCE)HY.1943-7900.0000319
[30] RUIZ-VILLANUEVA V,WYŻGA B,MIKUŚ P,et al. Large wood clogging during floods in a gravel-bed river:The Długopole bridge in the Czarny Dunajec River,Poland[J]. Earth Surface Processes and Landforms,2017,42(3):516 − 530. DOI: 10.1002/esp.4091
[31] RUIZ-VILLANUEVA V,BADOUX A,RICKENMANN D,et al. Impacts of a large flood along a mountain river basin:The importance of channel widening and estimating the large wood budget in the upper Emme River (Switzerland)[J]. Earth Surface Dynamics,2018,6(4):1115 − 1137. DOI: 10.5194/esurf-6-1115-2018
[32] DE CICCO P N,PARIS E,SOLARI L,et al. Bridge pier shape influence on wood accumulation:Outcomes from flume experiments and numerical modelling[J]. Journal of Flood Risk Management,2020,13(2).
[33] COMITI F,LUCÍA A,RICKENMANN D. Large wood recruitment and transport during large floods:A review[J]. Geomorphology,2016,269:23 − 39. DOI: 10.1016/j.geomorph.2016.06.016
[34] 谢湘平,韦方强,谢涛,等. 山洪中漂木在拦砂坝前堵塞堆积实验[J]. 山地学报,2014,32(2):249 − 254. [XIE Xiangping,WEI Fangqiang,XIE Tao,et al. Experiment on the clogging and deposition of woody debris flowing with torrents in front of debris dams[J]. Mountain Research,2014,32(2):249 − 254. (in Chinese with English abstract)] XIE Xiangping, WEI Fangqiang, XIE Tao, et al. Experiment on the clogging and deposition of woody debris flowing with torrents in front of debris dams[J]. Mountain Research, 2014, 32(2): 249 − 254. (in Chinese with English abstract)
[35] 谢湘平,王小军,屈新,等. 缝隙坝对携带漂木的泥石流减灾效果实验研究[J]. 工程地质学报,2020,28(6):1300 − 1310. [XIE Xiangping,WANG Xiaojun,QU Xin,et al. Experimental study on mitigation effect of slit dam to debris flow with driftwood[J]. Journal of Engineering Geology,2020,28(6):1300 − 1310. (in Chinese with English abstract)] XIE Xiangping, WANG Xiaojun, QU Xin, et al. Experimental study on mitigation effect of slit dam to debris flow with driftwood[J]. Journal of Engineering Geology, 2020, 28(6): 1300 − 1310. (in Chinese with English abstract)
-
期刊类型引用(6)
1. 王勇,邢振涛,李锁,闫勇,司甜. 基于SBAS-InSAR和光学遥感的天津市北部山区潜在滑坡识别研究. 灾害学. 2025(01): 30-35 . 百度学术
2. 谢哲,侯照方,谢杰. 基于钻探及室内试验的蒙城县地面沉降量预测. 能源技术与管理. 2025(01): 24-26 . 百度学术
3. 赵志远,葛超英,徐雯佳. 时序InSAR技术对淮扬区域地面沉降监测. 四川地质学报. 2025(01): 162-169 . 百度学术
4. 李幸丽,戴华阳,方军,张豪磊. 基于SBAS-InSAR技术的老采空区注浆充填地表变形时空分布特征分析. 中国矿业. 2024(11): 86-94 . 百度学术
5. 马恩华,李益敏,俞文轩,吕圣彬. 基于InSAR的玉溪市红塔区地面沉降时空分布特征. 人民长江. 2024(S2): 113-120 . 百度学术
6. 李松虎. 亳州市地下水超采现状及存在问题分析. 治淮. 2023(11): 7-9 . 百度学术
其他类型引用(1)