ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

机载LiDAR技术在我国滑坡研究中的应用与展望

郁鹏飞, 杨志华, 付宗堂, 邵慰慰, 王希营

郁鹏飞,杨志华,付宗堂,等. 机载LiDAR技术在我国滑坡研究中的应用与展望[J]. 中国地质灾害与防治学报,2024,35(0): 1-12. DOI: 10.16031/j.cnki.issn.1003-8035.202310043
引用本文: 郁鹏飞,杨志华,付宗堂,等. 机载LiDAR技术在我国滑坡研究中的应用与展望[J]. 中国地质灾害与防治学报,2024,35(0): 1-12. DOI: 10.16031/j.cnki.issn.1003-8035.202310043
YU Pengfei,YANG Zhihua,FU Zongtang,et al. Application and prospects of airborne LiDAR technology in landslide research in China[J]. The Chinese Journal of Geological Hazard and Control,2024,35(0): 1-12. DOI: 10.16031/j.cnki.issn.1003-8035.202310043
Citation: YU Pengfei,YANG Zhihua,FU Zongtang,et al. Application and prospects of airborne LiDAR technology in landslide research in China[J]. The Chinese Journal of Geological Hazard and Control,2024,35(0): 1-12. DOI: 10.16031/j.cnki.issn.1003-8035.202310043

机载LiDAR技术在我国滑坡研究中的应用与展望

基金项目: 国家自然科学基金项目(42277180);资源与环境信息系统国家重点实验室开放基金;中国地质调查局项目(DD20221816)。
详细信息
    作者简介:

    郁鹏飞(1997—),男,河北衡水人,硕士研究生,主要从事遥感地质研究工作。E-mail:zz5313528@163.com

    通讯作者:

    杨志华(1982—),男,山东潍坊人,博士,副研究员,主要从事遥感地质和地质灾害风险评估研究工作。E-mail:yangzh99@163.com

Application and prospects of airborne LiDAR technology in landslide research in China

  • 摘要:

    我国是世界上滑坡灾害最严重的国家之一。近年来发生的许多灾难性重大滑坡并不在国家地质灾害数据库内,这些滑坡具有高位发生、隐蔽性强、远程运动等特征,传统观测手段无法有效判识,给滑坡调查工作带来了极大困难。机载LiDAR是一种新型的主动式对地观测技术,具有全天候、高精度、真实三维等特点,在滑坡调查研究中发挥了重要作用。本文简要概述了机载LiDAR系统的技术原理、数据获取与处理方法,梳理总结了机载LiDAR在我国滑坡三维模型构建、滑坡识别与特征分析、滑坡形变监测等3个研究领域的一系列成果和进展,表明机载LiDAR技术能够有效获取去除植被后的真实地表三维模型,突出显示滑坡特征信息,进而准确提取滑坡形态和滑坡特征。讨论了机载LiDAR技术在滑坡研究领域需要解决的关键科学问题,目前尚未形成适用于不同类型滑坡的LiDAR点云分类技术标准,缺乏区域尺度的滑坡识别及其规律性研究。最后,总结展望了机载LiDAR技术在我国滑坡研究中的发展趋势。

    Abstract:

    China is one of the countries mostly severely affected by landslide disasters in the world. Many catastrophic large landslides in recent years are not included in the national geo-hazard database, and these landslides are characterized by high-altitude occurrence, strong concealment, and long-distance movement. Traditional observation methods are ineffective in identifying them, posing great difficulties for landslide investigation work. Airborne LiDAR is a new type of active remote sensing technology with features of all-weather, high precision, and true three-dimensional representation, playing an important role in landslide investigation and research. This paper briefly summarizes the technical principles, data acquisition, and processing methods of airborne LiDAR systems, and summarizes a series of achievements and progress in three research fields in China, including landslide 3D model construction, landslide identification and feature analysis, and landslide deformation monitoring. It demonstrates that airborne LiDAR technology can effectively acquire true surface 3D model after vegetation removal, highlight landslide feature information, and accurately extract landslide morphology and characteristics. Key scientific issues in the field of landslide research using airborne LiDAR technology are discussed.The standard of LiDAR point cloud classification suitable for different landslide types has not yet been formed, and there is a lack of regional-scale landslide identification and development law research. Finally, the development trends of landslide research based on airborne LiDAR technology are summarized and prospected.

  • 随着人类工程活动对地质环境的破坏程度不断加大,以及全球气候变化等因素的影响不断加重,滑坡灾害已严重威胁人类生命财产安全[1]。我国是世界上滑坡灾害最严重的国家之一,根据自然资源部发布的《全国地质灾害通报》,我国在2009-2019年共发生滑坡灾害约95068处[23]。调查发现,近年来发生的许多重大灾难性滑坡并不在已有的滑坡隐患点数据库内,这些滑坡往往地处高山峡谷中,具有高位启滑、隐蔽性强、远程运动、灾害链效应等特征[46],传统人工排查、卫星遥感等手段难以进行有效快速识别,需要采取新技术加强此类滑坡的调查判识。

    遥感技术在滑坡研究中已经得到广泛应用[78],遥感数据类型主要有光学影像数据、合成孔径雷达数据(SAR)和激光雷达数据(LiDAR)。光学卫星遥感技术是现阶段最常见的滑坡调查手段,通过获取多期、多尺度的光学影像,可以快速识别疑似滑坡区域,但是光学影像受天气影响较大,云雾或水汽会导致图像不准确或被遮盖。InSAR技术能够提取地表三维信息和高度变化信息,具有全天候、大范围的数据获取能力,能够远距离观测地表微小变形信息,在滑坡形变监测方面表现突出[910],但它的数据精度同样受气象、地形和地表反射率等因素的影响。LiDAR技术是当今对地观测的最新技术之一[11],根据搭载平台不同,主要分为星载、机载、地面和车载四种模式,其中机载LiDAR技术在滑坡研究中的应用最为广泛。机载LiDAR技术采用主动遥感成像方式,不受天气、光照等自然条件的限制,能够实现全天候、全天时的快速数据采集[1213]。而且,激光的多回波特性使得LiDAR技术具有一定的植被穿透能力,能够有效剔除植被影响,获取高精度的真实地面信息[1416],具备其它遥感技术无法比肩的优势。

    机载LiDAR技术正在逐渐应用到我国的滑坡研究中,并取得了一系列研究成果。本文首先简要介绍机载LiDAR技术基本原理,然后梳理总结LiDAR技术在滑坡三维模型构建、滑坡识别、滑坡动态监测三个方面的研究成果与最新发展动态,进而讨论LiDAR技术在滑坡研究领域的应用潜力、需要解决的问题,以期待更多学者认识并应用。

    机载LiDAR主要由无人机/有人机搭载平台和LiDAR系统组成。其中,有人机飞行高度高,采集范围广,但存在点云密度较低,作业人员安全隐患,成本高航等问题,无人机主要有旋翼无人机、固定翼无人机和垂直起降固定翼无人机等,适用于高山峡谷等人员难以到达的地区。LiDAR系统主要包括激光测距单元、惯性测量单元(IMU)、光学机械扫描单元和动态差分GPS定位系统(DGPS)[1718]。LiDAR通过激光发射器主动发射激光脉冲,然后通过接收器接收地面目标反射的激光回波,并准确记录激光从发射到接收所经历的时间,进而确定激光发射器与目标之间的距离[19],最后结合GPS和飞行姿态参数,解算出地面目标的三维坐标(图1)。

    图  1  机载LiDAR基本原理示意图
    Figure  1.  Basic principle schematic diagram of airborne LiDAR

    机载LiDAR数据获取与处理过程主要有4部分(图2):

    图  2  机载LiDAR数据采集与处理流程图
    Figure  2.  Flow chart of airborne LiDAR data acquisition and processing

    (1)数据获取。在充分了解测区地理地质环境的基础上,规划符合数据需求的飞行航线,然后进行作业飞行和数据采集。机载LiDAR野外采集到的原始数据包括:原始激光点云数据、原始影像数据、机载GPS数据和IMU数据等。根据观测比例尺,点云数据密度应满足内插DEM数据的需求[20],具体值见表1

    表  1  点云密度要求
    Table  1.  Summary of Point cloud density requirements
    分幅比例尺DEM格网间距/m点云密度/(点/m2
    1:5000.5≥16
    1:10001.0≥4
    1:20002.0≥1
    1:50002.5≥1
    1:10 0005.0≥0.25
    下载: 导出CSV 
    | 显示表格

    (2)点云数据预处理。联合解算地面GPS数据、机载GPS数据和IMU数据,得到具有激光扫描仪瞬时位置和姿态信息的飞行轨迹[21],然后联合飞行轨迹数据和原始激光点云数据,加入系统误差改正参数和坐标投影参数等,解算出地表三维坐标(点云数据)。

    (3)点云数据后处理。选择合适的点云滤波算法对机载LiDAR点云数据进行分类,重点分离地面点和非地面点,并根据不同需求进一步将非地面点分类为植被、建筑等。

    (4)生成成果产品。根据需求,生成数字高程模型(DEM)和数字地表模型(DSM)等符合真实地形特点的模型产品。

    传统遥感影像往往难以获取高山峡谷、植被发育地区的真实滑坡地表形态,无法准确分辨滑坡细微特征,导致实际或潜在的隐蔽性滑坡难以准确识别。机载LiDAR具有独特的技术优势,可以有效提取真实的滑坡地表数据,空间精度可达厘米级。机载LiDAR采用多次回波技术,通过发射离散型激光脉冲,接触到滑坡表面植被后,部分脉冲能量的反射信号被系统接受并记录,而剩余的脉冲能量继续“穿透”植被,直达地面[2223],经过处理后形成包含区域地物三维坐标信息的激光点云数据。点云数据的丰富程度关系到最终的成果精度,与点云密度呈正相关,研究发现,高密度植被覆盖区的激光点云密度应不低于50点/m2,才可达到较为精细的地表特征呈现效果[2425]

    在滑坡研究中,通常情况下仅需要将点云分为地面点和非地面点两类,根据实地环境情况,建立点云滤波规则,从点云数据中分离出地面点,获取真实的滑坡地面三维坐标,进而构建真实滑坡三维模型。在庞大的点云数据集中准确提取地面点,是滑坡模型构建的重中之重,为此,国内外提出了许多点云滤波算法,可大致分为基于形态学的滤波算法、基于坡度的滤波算法、基于曲面拟合的滤波算法和基于不规则三角网的滤波算法[26]。渐进加密不规则三角网滤波算法能够有效提取高坡度区域的地面点,是目前滑坡研究领域中应用最多的点云滤波算法[2627],已在Terrasolid、LiDAR360等国内外LiDAR点云处理软件中实现应用。该方法首先将点云区域分割成网格,选择每个网格中高程值最低的点作为初始地面点,网格大小的划分是基于区域内存在的最大地物类型,如建筑物。然后根据初始地面点构建不规则三角网(TIN),并进行迭代加密,在迭代过程中设置阈值判断:(1)其余点到最近三角形顶点的夹角;(2)其余点到最近三角形的距离,将满足条件的点加入TIN,一直持续到没有点符合加入条件为止[28]。在构建TIN完成后,通过对LiDAR点云数据进行插值[29],得到数据空洞点的高程,弥补数据空白区域,并辅以人工手动分类,表现更多的地表细节(冲沟、陡坎等),构建高精度DEM。图3是四川白玉格聂山滑坡光学影像和机载LiDAR DEM效果对比图。

    图  3  四川白玉格聂山滑坡光学遥感影像与机载LiDAR地形效果对比
    Figure  3.  Comparison of optical remote sensing image and airborne LiDAR DEM in Genieshan landslide, Baiyu County, Sichuan Province

    国内对点云滤波算法的研究处于探索阶段。面对国内复杂多样的地形地貌,专家学者采用不同滤波算法对同一区域进行点云数据处理,评价滤波结果的精度,积累大量实用经验,在此基础上,进一步开展滤波算法改进研究。例如,张凡等[30]提出一种布料模拟滤波算法(CSF),生成的DEM能很好表征地区连续起伏的地表状态;崔浩等[31]结合CSF与TIN,通过连续迭代获取地面点,结果表明该算法在坡度较大区域优于传统算法。总而言之,当前的点云滤波算法研究处在实验阶段,还无法投入实际生产应用中。同时,面向滑坡等特殊地貌的专项滤波算法研究较少。

    滑坡识别是机载LiDAR技术在滑坡研究领域最为广泛的应用。常规滑坡识别方法是基于光学遥感影像,结合专业人员的先验知识,提取滑坡特征信息,建立滑坡遥感解译标志[3234],通过目视解译和自动解译相结合的方法,判识出滑坡隐患点,然后进行野外实地核查。但是,由于光学遥感影像的局限性,在气象条件较差、植被覆盖较高的地区,滑坡识别存在困难。基于LiDAR的滑坡识别方法在操作过程上与常规方法并无太大区别,但相比光学遥感影像,LiDAR生成的高精度DEM可以提供更丰富的地形地貌信息,清晰反映去除植被后的真实滑坡形态。

    (1)定性的滑坡识别

    定性滑坡识别是对去除植被的高精度DEM进行三维可视化处理,选取区域典型滑坡,根据专家经验和主观判断提取滑坡特征信息,构建该地区的滑坡解译标志集(图4),如滑坡平面形态(簸箕形、舌形、梨形等)、滑坡壁、滑坡台阶、滑坡舌等地貌形态,规模较大的可见拉张裂隙、冲沟和陡坎等[3536],最终通过判断与解译标志相似的地貌特征,目前最常见的定性识别手段是生成山体阴影图。

    图  4  机载LiDAR精细地表模型展现的典型滑坡解译标志[36]
    Figure  4.  Typical landslide interpretation signs displayed by fine airborne LiDAR surface model[36]

    机载LiDAR定性滑坡识别多应用于复杂地形地貌的快速滑坡灾害调查中。在汶川地震应急响应过程中,马洪超等[37]通过机载LiDAR快速采集震后地表特征,获取的有效数据面积达500 km2,解译出唐家山堰塞湖滑坡、马堰岭古滑坡和都-汶公路滑坡等大量滑坡,为减轻地震滑坡危害提供了可靠的技术支持。在植被较为茂密的地区,机载LiDAR能够充分发挥去除地表植被的优势,可以有效识别隐蔽性滑坡灾害,发现滑坡成灾的前兆信息。例如,通过高精度LiDAR DEM制作一系列不同太阳方位角的山体阴影图,能够清晰识别出滑坡滑动范围,准确确定滑坡后缘等滑坡要素信息[38],精准呈现冲沟等滑坡局部地形地貌特征(图5);潘星等[39]使用机载LiDAR DEM构建去除植被的滑坡解译标志,提取滑坡体形态与规模、表面特征和边界特征等,与现场复核后的数据对比发现,结果极为接近。

    图  5  湖北省秭归县张家湾滑坡不同角度山体阴影图[38]
    Figure  5.  Different angle of shaing map of Zhangjiawan landslide in Zigui County, Hubei Province[38]

    山体阴影图容易受到太阳光照角等因素的影响,出现影像斜坡区阴影过重等情况,无法完整呈现机载LiDAR DEM包含的所有地表细节。为解决此类问题,王绚等[40]结合高分辨率LiDAR DEM和红色立体图(RRIM)的数据处理方法,去除光源、阴影等自然因素的干扰,采用渐变红色突出表达滑坡形态(图6);郭晨等[41]采用天空视域因子(SVF)三维可视化方法,减弱了单一光源对DEM可视化影像的不利影响,较好的展示了滑坡微小地貌。

    图  6  四川九寨沟光学影像、山体阴影图与红色立体图对比[40]
    Figure  6.  Comparison of optical image, terrain shading, and red Stereogram of Jiuzhaigou region, Sichuan province[40]

    (2)定量的滑坡识别

    定量滑坡识别是在高精度LiDAR DEM上提取精细微地形地貌参数[42],通过数字地形分析(DTA)区分滑坡体和周围地形在DEM上的差异化表现[13],定量识别滑坡要素。根据对这些滑坡地形参数的详细解读,可判断区域滑坡分布情况与发育特征。例如,通过LiDAR DEM提取地表坡度、地表粗糙度和地表起伏度等地表特征(图7),发现在同一位置出现了明显的跳跃性变化,以此准确圈定了滑坡边界[34, 39]。赖自力等[44]提出一种结合高精度LiDAR DEM和分形理论的滑坡识别方法,采用最大曲率-面积(C-A)分形提取滑坡地形特征,经验证,识别的滑坡区域与实际滑坡位置一致。基于LiDAR DEM的精确数据值,选择高程、坡度等地形因子,统计因子分级中的滑坡数量,确定滑坡发育分布规律,为滑坡灾害防治与风险评价提供数据支撑[36, 42]

    图  7  江苏省无锡市道路边坡数字地形分析图[43]
    Figure  7.  Digital terrain map of roadside slopes in Wuxi City, Jiangsu Province[43]

    融合光学遥感影像、LiDAR数据和InSAR数据等多源遥感数据,从不同角度和尺度对滑坡特征进行提取和分析,可以有效提高滑坡识别精度和效率[45]。针对复杂地形环境,提出天-空-地一体化的滑坡隐患识别“三查”体系,由高精度的光学影像、InSAR数据、机载LiDAR和地面调查复核组成,机载LiDAR技术承担了区域滑坡普查和重大滑坡隐患的详查工作[4]。基于该体系,在四川丹巴地区和九寨沟地震地区开展了滑坡调查工作,证明了机载LiDAR技术可以清晰的界定植被覆盖下的滑坡轮廓、形态和微小形变等重要滑坡识别标志,相比其他光学遥感调查技术和人工调查具有突出优势[4648]。在此基础上,孙涛[49]采用高清光学影像和LiDAR DEM构建了三维解译模型,并叠加InSAR形变监测数据等,极大地增强了LiDAR DEM的显示效果,提高了滑坡识别的效率和准确性。总而言之,机载LiDAR技术与其他遥感技术“优势互补”,在滑坡判识工作中逐步向着大区域、多层次和低成本的方向迈进。

    面对地表状态复杂的滑坡灾害,充分发挥机载LiDAR数据高精度的特点,许多学者采用机器学习等新技术,设计先进的地物识别方法,快速、准确的评估滑坡灾害范围。例如,康义凯[50]提出了一种基于Moravec算子的算法,根据高程变化特征在点云数据中提取变异点,采用变异点和原始点云分别构网的方法,分离滑坡体与原山体地形,从而自动判识滑坡体。寇蓉[51]联合LiDAR点云数据与高分辨率遥感影像作为样本,引入深度学习网络模型,融合了LiDAR点云局域空间结构的形状特征和遥感影像的光谱特征,提取更加精确的滑坡区域。

    基于LiDAR技术的滑坡动态监测需要获取多期机载LiDAR数据,在完成滑坡调查的基础上,对比不同时期DEM,获取时间序列的滑坡变形、运动数据,如滑动位移、滑移速度、表面形态等[19],分析滑坡变形发展和变形趋势,进而预测滑动时间,合理评估滑坡危险性。

    我国机载LiDAR起步较晚,同一区域的多期LiDAR数据较少,目前仅完成了一些初步的探索性研究工作。例如,刘圣伟[52]采用间隔3年的2期滑坡机载LiDAR数据,根据控制点的精确坐标,分析滑坡特征点变形情况,发现多个特征点的坡度与地表粗糙度具有明显变化,推测滑坡的主体变动趋势是东西方向。魏恋欢[53]提出高精度LiDAR DEM辅助时序SAR数据的滑坡体变形监测方法,测得某特大滑坡2年间累计滑移量和随时间变化的滑移速度(图8)。针对高海拔峡谷地形地貌环境,杨耘[54]设计了一种光学影像点云辅助LiDAR三维激光点云的滑坡群DEM重建方案,在青海龙羊峡水电站的高陡边坡滑坡群开展实验,发现多个边坡发生了不同程度的土体滑动,形变高差达50多米,改善了高陡边坡DEM重建及形变监测的精度和完整性。另外,应用LiDAR提供的高精度地表三维坐标,能够准确的测定滑坡发育体积。倪培德[55]将滑坡发生前后的LiDAR DEM相减,高程差不为零的区域即为滑坡发生区域,然后将该区域前后时期的点云从原始数据中剥离出来,相互结合以构成滑坡体,从而较准确的计算出滑坡体的体积。

    图  8  抚顺西露天矿南帮特大型滑坡坡向滑移量部分示意图[53]
    Figure  8.  Schematic diagram of the slope slip part of the Nanbang super-large landslide in Fushun West open-pit mine[53]

    (1)我国西部高山峡谷区地形地貌极为复杂,人员难以临近现场进行滑坡调查,不能及时有效的提取地表特征,而机载LiDAR技术具有远程快速获取地表信息的能力,经过众多学者实验验证,能够有效的去除地表植被的影响,获取真实的地表三维数字模型,未来可以在此类复杂环境中投入更多应用。但到目前为止,尚未有学者提出面对滑坡地形地貌的LiDAR滤波参数标准,适用于不同类型滑坡的LiDAR点云分类技术方法的相关研究尚不成熟。

    (2)高精度LiDAR DEM包含丰富的几何信息、纹理信息,利用多种数学方法开展滑坡地形的精细化参数特征研究,是当前我国滑坡判识的主要研究方向之一。但由于机载雷达的覆盖面积有限,目前的相关研究成果多针对典型滑坡案例或小区域滑坡识别,缺乏大区域尺度的滑坡识别及规律性研究。

    (3)机载LiDAR技术在获取地表信息方面也具有局限性,一是受无人机等搭载平台续航限制,当前机载LiDAR技术难以满足大区域、大范围的数据采集作业,二是LiDAR产品质量受到固有的点云数据降噪、抽稀、内插和多期配准等问题的较大影响[56]。未来,可以通过融合LiDAR与光学遥感、SAR等多源、多平台数据,发挥每种数据源的自身优势,进一步提高滑坡三维模型精度。

    (4)LiDAR高分辨率DEM可以提供丰富的学习样本,采用与深度学习结合的方法自动提取滑坡体,并基于学习结果对其他区域滑坡隐患进行自动识别,可极大的提高滑坡识别的工作效率和准确率,是滑坡识别自动化、智能化的趋势和发展方向。

    梳理总结了机载LiDAR技术在我国滑坡研究中的应用现状,提出了需要解决的科学问题和下一步研究思路,期望推进机载LiDAR技术在滑坡研究的广泛应用。

    (1)机载LiDAR技术受环境影响小,可以远程快速采集地面信息,有效去除植被、建筑物等非真实地表信息,获取真实的滑坡地表三维模型,为滑坡判识和特征分析提供了极为有效的技术支撑。

    (2)机载LiDAR获取“裸地表”高精度DEM数据,通过数字地形分析,能够显著突出滑坡特征信息,构建准确的滑坡三维解译标志,计算滑坡完整形态参数,有助于深入分析滑坡形变过程和形成机理。

    (3)相对于卫星平台,受搭载平台(无人机)影响,机载LiDAR的数据采集范围较小,在大区域、大范围的滑坡识别研究中的应用较少,更适用于小区域的滑坡灾害快速应急调查研究。LiDAR点云数据处理的专业性要求较高,需要进一步发展简便易用的数据处理软件。

    (4)作为一种新型技术,机载LiDAR在滑坡研究领域还有很多发展空间。随着LiDAR技术向高精度、高密度和高分辨率发展的同时,提高设备性能,使其可以在高海拔、大范围区域发挥优势;设计适用于斜坡面的点云数据处理算法,加强LiDAR、光学遥感、SAR等多源遥感数据融合,提高滑坡参数计算精度和判识准确率。

  • 图  1   机载LiDAR基本原理示意图

    Figure  1.   Basic principle schematic diagram of airborne LiDAR

    图  2   机载LiDAR数据采集与处理流程图

    Figure  2.   Flow chart of airborne LiDAR data acquisition and processing

    图  3   四川白玉格聂山滑坡光学遥感影像与机载LiDAR地形效果对比

    Figure  3.   Comparison of optical remote sensing image and airborne LiDAR DEM in Genieshan landslide, Baiyu County, Sichuan Province

    图  4   机载LiDAR精细地表模型展现的典型滑坡解译标志[36]

    Figure  4.   Typical landslide interpretation signs displayed by fine airborne LiDAR surface model[36]

    图  5   湖北省秭归县张家湾滑坡不同角度山体阴影图[38]

    Figure  5.   Different angle of shaing map of Zhangjiawan landslide in Zigui County, Hubei Province[38]

    图  6   四川九寨沟光学影像、山体阴影图与红色立体图对比[40]

    Figure  6.   Comparison of optical image, terrain shading, and red Stereogram of Jiuzhaigou region, Sichuan province[40]

    图  7   江苏省无锡市道路边坡数字地形分析图[43]

    Figure  7.   Digital terrain map of roadside slopes in Wuxi City, Jiangsu Province[43]

    图  8   抚顺西露天矿南帮特大型滑坡坡向滑移量部分示意图[53]

    Figure  8.   Schematic diagram of the slope slip part of the Nanbang super-large landslide in Fushun West open-pit mine[53]

    表  1   点云密度要求

    Table  1   Summary of Point cloud density requirements

    分幅比例尺DEM格网间距/m点云密度/(点/m2
    1:5000.5≥16
    1:10001.0≥4
    1:20002.0≥1
    1:50002.5≥1
    1:10 0005.0≥0.25
    下载: 导出CSV
  • [1] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报,2007,26(3):433 − 454. [HUANG Runqiu. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(3):433 − 454. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-6915.2007.03.001

    HUANG Runqiu. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 433 − 454. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2007.03.001

    [2] 薛凯喜,胡艳香,邹玉亮,等. 近十年中国地质灾害时空发育规律分析[J]. 中国地质灾害与防治学报,2016,27(3):90 − 97. [XUE Kaixi,HU Yanxiang,ZOU Yuliang,et al. Temporal-spatial distribution discipline of geological disaster in China in recent ten years[J]. The Chinese Journal of Geological Hazard and Control,2016,27(3):90 − 97. (in Chinese with English abstract)]

    XUE Kaixi, HU Yanxiang, ZOU Yuliang, et al. Temporal-spatial distribution discipline of geological disaster in China in recent ten years[J]. The Chinese Journal of Geological Hazard and Control, 2016, 27(3): 90 − 97. (in Chinese with English abstract)

    [3] 梁高,张晓蕾,凌雪,等. 2009—2019年我国地质灾害时空特征分析[J]. 防灾减灾学报,2021,37(3):58 − 64. [LIANG Gao,ZHANG Xiaolei,LING Xue,et al. Analysis of temporal-spatial characteristics of geological disasters in China from 2009 to 2019[J]. Journal of Disaster Prevention and Reduction,2021,37(3):58 − 64. (in Chinese with English abstract)]

    LIANG Gao, ZHANG Xiaolei, LING Xue, et al. Analysis of temporal-spatial characteristics of geological disasters in China from 2009 to 2019[J]. Journal of Disaster Prevention and Reduction, 2021, 37(3): 58 − 64. (in Chinese with English abstract)

    [4] 许强,董秀军,李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报(信息科学版),2019,44(7):957 − 966. [XU Qiang,DONG Xiujun,LI Weile. Integrated space-air-ground early detection,monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University,2019,44(7):957 − 966. (in Chinese with English abstract)]

    XU Qiang, DONG Xiujun, LI Weile. Integrated space-air-ground early detection, monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 957 − 966. (in Chinese with English abstract)

    [5] 秦宇龙,吴建亮,詹涵钰,等. 川西甘孜地区活动断裂与地质灾害分布相关性探讨[J]. 地质力学学报,2021,27(3):463 − 474. [QIN Yulong,WU Jianliang,ZHAN Hanyu,et al. Discussion on the correlation between active fault and geological disaster distribution in the Ganzi area,western Sichuan Province,China[J]. Journal of Geomechanics,2021,27(3):463 − 474. (in Chinese with English abstract)]

    QIN Yulong, WU Jianliang, ZHAN Hanyu, et al. Discussion on the correlation between active fault and geological disaster distribution in the Ganzi area, western Sichuan Province, China[J]. Journal of Geomechanics, 2021, 27(3): 463 − 474. (in Chinese with English abstract)

    [6] 高浩源,高杨,殷跃平,等. 青藏高原高位远程滑坡动力学研究的新问题[J]. 地质力学学报,2022,28(6):1090 − 1103. [GAO Haoyuan,GAO Yang,YIN Yueping,et al. New scientific issues in the study of high-elevation and long-runout landslide dynamics in the Qinghai-Tibet Plateau[J]. Journal of Geomechanics,2022,28(6):1090 − 1103. (in Chinese with English abstract)]

    GAO Haoyuan, GAO Yang, YIN Yueping, et al. New scientific issues in the study of high-elevation and long-runout landslide dynamics in the Qinghai-Tibet Plateau[J]. Journal of Geomechanics, 2022, 28(6): 1090 − 1103. (in Chinese with English abstract)

    [7] 石菊松,吴树仁,石玲. 遥感在滑坡灾害研究中的应用进展[J]. 地质论评,2008,54(4):505 − 514. [SHI Jusong,WU Shuren,SHI Ling. Remote sensing for landslide study:an overview[J]. Geological Review,2008,54(4):505 − 514. (in Chinese with English abstract)]

    SHI Jusong, WU Shuren, SHI Ling. Remote sensing for landslide study: an overview[J]. Geological Review, 2008, 54(4): 505 − 514. (in Chinese with English abstract)

    [8] 王彦超. 基于多源遥感的滑坡隐患识别方法研究与应用——以牛栏江流域为例[D]. 北京:应急管理部国家自然灾害防治研究院,2022. [WANG Yanchao. Research and application of potential landslide hazard identification method based on multi-source remote sensing[D]. Beijing:National Institute of Natural Disaster Prevention and Control,Ministry of Emergency Management,2022. (in Chinese with English abstract)]

    WANG Yanchao. Research and application of potential landslide hazard identification method based on multi-source remote sensing[D]. Beijing: National Institute of Natural Disaster Prevention and Control, Ministry of Emergency Management, 2022. (in Chinese with English abstract)

    [9] 李德仁,周月琴,马洪超. 卫星雷达干涉测量原理与应用[J]. 测绘科学,2000,25(1):9 − 12. [LI Deren,ZHOU Yueqin,MA Hongchao. Principles and applications of interferometry SAR[J]. Developments in Surveying and Mapping,2000,25(1):9 − 12. (in Chinese with English abstract)]

    LI Deren, ZHOU Yueqin, MA Hongchao. Principles and applications of interferometry SAR[J]. Developments in Surveying and Mapping, 2000, 25(1): 9 − 12. (in Chinese with English abstract)

    [10] 朱怡飞,姚鑫,姚磊华,等. 基于InSAR和光学遥感的贵州鬃岭采煤滑坡识别与危险性评价[J]. 地质力学学报,2022,28(2):268 − 280. [ZHU Yifei,YAO Xin,YAO Leihua,et al. Identification and risk assessment of coal mining-induced landslides in Guizhou Province by InSAR and optical remote sensing[J]. Journal of Geomechanics,2022,28(2):268 − 280. (in Chinese with English abstract)]

    ZHU Yifei, YAO Xin, YAO Leihua, et al. Identification and risk assessment of coal mining-induced landslides in Guizhou Province by InSAR and optical remote sensing[J]. Journal of Geomechanics, 2022, 28(2): 268 − 280. (in Chinese with English abstract)

    [11]

    JOYCE K E,SAMSONOV S V,LEVICK S R,et al. Mapping and monitoring geological hazards using optical,LiDAR,and synthetic aperture RADAR image data[J]. Natural Hazards,2014,73(2):137 − 163. DOI: 10.1007/s11069-014-1122-7

    [12]

    JABOYEDOFF M,OPPIKOFER T,ABELLÁN A,et al. Use of LIDAR in landslide investigations:a review[J]. Natural Hazards,2012,61(1):5 − 28. DOI: 10.1007/s11069-010-9634-2

    [13] 马玉林,吴华,张文海. 遥感技术在滑坡识别中的应用探讨[J]. 科技创新与应用,2022,12(3):142 − 145. [MA Yulin,WU Hua,ZHANG Wenhai. Discussion on application of remote sensing technology in landslide identification[J]. Technology Innovation and Application,2022,12(3):142 − 145. (in Chinese)]

    MA Yulin, WU Hua, ZHANG Wenhai. Discussion on application of remote sensing technology in landslide identification[J]. Technology Innovation and Application, 2022, 12(3): 142 − 145. (in Chinese)

    [14]

    KIRSCHBAUM D,STANLEY T,ZHOU Yaping. Spatial and temporal analysis of a global landslide catalog[J]. Geomorphology,2015,249:4 − 15. DOI: 10.1016/j.geomorph.2015.03.016

    [15] 许强,陆会燕,李为乐,等. 滑坡隐患类型与对应识别方法[J]. 武汉大学学报(信息科学版),2022,47(3):377 − 387. [XU Qiang,LU Huiyan,LI Weile,et al. Types of potential landslide and corresponding identification technologies[J]. Geomatics and Information Science of Wuhan University,2022,47(3):377 − 387. (in Chinese with English abstract)]

    XU Qiang, LU Huiyan, LI Weile, et al. Types of potential landslide and corresponding identification technologies[J]. Geomatics and Information Science of Wuhan University, 2022, 47(3): 377 − 387. (in Chinese with English abstract)

    [16] 党杰,董吉,何松标,等. 机载LiDAR与地面三维激光扫描在贵州水城独家寨崩塌地质灾害风险调查中的应用[J]. 中国地质灾害与防治学报,2022,33(4):106 − 113. [DANG Jie,DONG Ji,HE Songbiao,et al. Application of airborne LiDAR and ground 3D laser scanning in geological hazard risk investigation of Dujiazhai collapse in Shuicheng,Guizhou[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):106 − 113. (in Chinese with English abstract)]

    DANG Jie, DONG Ji, HE Songbiao, et al. Application of airborne LiDAR and ground 3D laser scanning in geological hazard risk investigation of Dujiazhai collapse in Shuicheng, Guizhou[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 106 − 113. (in Chinese with English abstract)

    [17] 江刚武,王鑫,刘建辉. 机载激光雷达数据处理与应用[M]. 北京:中国原子能出版社,2021. [JIANG Gangwu,WANG Xin,LIU Jianhui. Airborne LiDAR data processing and application[M]. Beijing:China Atomic Energy Publishing Media Co. ,Ltd. ,2021. (in Chinese with English abstract)]

    JIANG Gangwu, WANG Xin, LIU Jianhui. Airborne LiDAR data processing and application[M]. Beijing: China Atomic Energy Publishing Media Co. , Ltd. , 2021. (in Chinese with English abstract)

    [18] 王丽英. 机载LiDAR数据误差处理理论与方法[M]. 北京:测绘出版社,2013. [WANG Liying. Theory and methods of error processing for airborne LiDAR data[M]. Beijing:Sino Maps Press,2013. (in Chinese with English abstract)]

    WANG Liying. Theory and methods of error processing for airborne LiDAR data[M]. Beijing: Sino Maps Press, 2013. (in Chinese with English abstract)

    [19] 马晓雪,吴中海,李家存. LiDAR技术在地质环境中的主要应用与展望[J]. 地质力学学报,2016,22(1):93 − 103. [MA Xiaoxue,WU Zhonghai,LI Jiacun. Li Dar technology and its application and prospect in geological environment[J]. Journal of Geomechanics,2016,22(1):93 − 103. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1006-6616.2016.01.010

    MA Xiaoxue, WU Zhonghai, LI Jiacun. Li Dar technology and its application and prospect in geological environment[J]. Journal of Geomechanics, 2016, 22(1): 93 − 103. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-6616.2016.01.010

    [20] 国家测绘地理信息局. 机载激光雷达数据获取技术规范:CH/T 8024—2011[S]. 北京:测绘出版社,2012. [Specifications for Data Acquisition of Airborne LIDAR:CH/T 8024—2011[S]. Beijing:Sino Maps Press,2012. (in Chinese)]

    Specifications for Data Acquisition of Airborne LIDAR: CH/T 8024—2011[S]. Beijing: Sino Maps Press, 2012. (in Chinese)

    [21] 肖春蕾,郭兆成,郑雄伟,等. 机载LiDAR技术在地质调查领域中的几个典型应用[J]. 国土资源遥感,2016,28(1):136 − 143. [XIAO Chunlei,GUO Zhaocheng,ZHENG Xiongwei,et al. Typical applications of airborne Li DAR technique in geological investigation[J]. Remote Sensing for Land & Resources,2016,28(1):136 − 143. (in Chinese with English abstract)]

    XIAO Chunlei, GUO Zhaocheng, ZHENG Xiongwei, et al. Typical applications of airborne Li DAR technique in geological investigation[J]. Remote Sensing for Land & Resources, 2016, 28(1): 136 − 143. (in Chinese with English abstract)

    [22] 佘金星,程多祥,刘飞,等. 机载激光雷达技术在地质灾害调查中的应用——以四川九寨沟7.0级地震为例[J]. 中国地震,2018,34(3):435 − 444. [SHE Jinxing,CHENG Duoxiang,LIU Fei,et al. Application of airborne LiDAR technology in geological disaster investigation:Taking the Jiuzhaigou MS7.0 earthquake in Sichuan Province as an example[J]. Earthquake Research in China,2018,34(3):435 − 444. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1001-4683.2018.03.005

    SHE Jinxing, CHENG Duoxiang, LIU Fei, et al. Application of airborne LiDAR technology in geological disaster investigation: Taking the Jiuzhaigou MS7.0 earthquake in Sichuan Province as an example[J]. Earthquake Research in China, 2018, 34(3): 435 − 444. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-4683.2018.03.005

    [23] 刘世振,邓建华,冯国正,等. 机载LiDAR在山区型河道地形测绘中的适用性研究[J]. 人民长江,2021,52(1):108 − 113. [LIU Shizhen,DENG Jianhua,FENG Guozheng,et al. Applicability of airborne LiDAR in topographic mapping of mountainous river[J]. Yangtze River,2021,52(1):108 − 113. (in Chinese with English abstract)]

    LIU Shizhen, DENG Jianhua, FENG Guozheng, et al. Applicability of airborne LiDAR in topographic mapping of mountainous river[J]. Yangtze River, 2021, 52(1): 108 − 113. (in Chinese with English abstract)

    [24] 赖旭东,刘雨杉,李咏旭,等. 机载激光雷达点云密度特征应用现状及进展[J]. 地理空间信息,2018,16(12):1 − 5. [LAI Xudong,LIU Yushan,LI Yongxu,et al. Application and progress of point cloud density feature of LiDAR[J]. Geospatial Information,2018,16(12):1 − 5. (in Chinese with English abstract)]

    LAI Xudong, LIU Yushan, LI Yongxu, et al. Application and progress of point cloud density feature of LiDAR[J]. Geospatial Information, 2018, 16(12): 1 − 5. (in Chinese with English abstract)

    [25] 梁京涛,赵聪,马志刚. 多源遥感技术在地质灾害早期识别应用中的问题探讨——以西南山区为例[J]. 中国地质调查,2022,9(4):92 − 101. [LIANG Jingtao,ZHAO Cong,MA Zhigang. Application discussion on early identification of geohazards based on multi-source remote sensing technology:A case study on mountainous areas of southwestern China[J]. Geological Survey of China,2022,9(4):92 − 101. (in Chinese with English abstract)]

    LIANG Jingtao, ZHAO Cong, MA Zhigang. Application discussion on early identification of geohazards based on multi-source remote sensing technology: A case study on mountainous areas of southwestern China[J]. Geological Survey of China, 2022, 9(4): 92 − 101. (in Chinese with English abstract)

    [26] 李豆,李朋飞,穆兴民,等. 机载LiDAR测量复杂地形中滤波算法的比较研究[J]. 水土保持研究,2021,28(4):171 − 178. [LI Dou,LI Pengfei,MU Xingmin,et al. Accuracy of airborne LiDAR point cloud filtering for areas with complex terrain[J]. Research of Soil and Water Conservation,2021,28(4):171 − 178. (in Chinese with English abstract)]

    LI Dou, LI Pengfei, MU Xingmin, et al. Accuracy of airborne LiDAR point cloud filtering for areas with complex terrain[J]. Research of Soil and Water Conservation, 2021, 28(4): 171 − 178. (in Chinese with English abstract)

    [27]

    AXELSSON P. DEM Generation from Laser Scanner Data Using adaptive TIN Models[J]. International Archives of Photogrammetry and Remote Sensing,2000,23(B4):110 − 117.

    [28] 惠振阳,程朋根,官云兰,等. 机载LiDAR点云滤波综述[J]. 激光与光电子学进展,2018,55(6):060001. [HUI Zhenyang,CHENG Penggen,GUAN Yunlan,et al. Review on airborne LiDAR point cloud filtering[J]. Laser & Optoelectronics Progress,2018,55(6):060001. (in Chinese with English abstract)]

    HUI Zhenyang, CHENG Penggen, GUAN Yunlan, et al. Review on airborne LiDAR point cloud filtering[J]. Laser & Optoelectronics Progress, 2018, 55(6): 060001. (in Chinese with English abstract)

    [29] 贝祎轩,陈传法,王鑫,等. 机载LiDAR点云密度和插值方法对DEM及地表粗糙度精度影响分析[J]. 地球信息科学学报,2023,25(2):265 − 276. [BEI Yixuan,CHEN Chuanfa,WANG Xin,et al. Effects of airborne LiDAR point cloud density and interpolation methods on the accuracy of DEM and surface roughness[J]. Journal of Geo-Information Science,2023,25(2):265 − 276. (in Chinese with English abstract)] DOI: 10.12082/dqxxkx.2023.220486

    BEI Yixuan, CHEN Chuanfa, WANG Xin, et al. Effects of airborne LiDAR point cloud density and interpolation methods on the accuracy of DEM and surface roughness[J]. Journal of Geo-Information Science, 2023, 25(2): 265 − 276. (in Chinese with English abstract) DOI: 10.12082/dqxxkx.2023.220486

    [30] 张凡,李华山,江涛. 基于布模拟算法在LiDAR点云中生成数字高程模型[J]. 激光与光电子学进展,2020,57(13):130104. [ZHANG Fan,LI Huashan,JIANG Tao. Digital elevation model generation in LiDAR point cloud based on cloth simulation algorithm[J]. Laser & Optoelectronics Progress,2020,57(13):130104. (in Chinese with English abstract)]

    ZHANG Fan, LI Huashan, JIANG Tao. Digital elevation model generation in LiDAR point cloud based on cloth simulation algorithm[J]. Laser & Optoelectronics Progress, 2020, 57(13): 130104. (in Chinese with English abstract)

    [31] 崔浩,高飞,余敏,等. 结合CSF和TIN的机载LiDAR点云滤波算法[J]. 合肥工业大学学报(自然科学版),2022,45(5):644 − 648. [CUI Hao,GAO Fei,YU Min,et al. Airborne LiDAR point cloud filtering algorithm combining CSF and TIN[J]. Journal of Hefei University of Technology (Natural Science),2022,45(5):644 − 648. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1003-5060.2022.05.011

    CUI Hao, GAO Fei, YU Min, et al. Airborne LiDAR point cloud filtering algorithm combining CSF and TIN[J]. Journal of Hefei University of Technology (Natural Science), 2022, 45(5): 644 − 648. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-5060.2022.05.011

    [32] 江涛. 遥感影像解译标志库的建立和应用[J]. 地理空间信息,2010,8(5):31 − 33. [JIANG Tao. Construction and application of the visual interpretation bank of remote sensing image[J]. Geospatial Information,2010,8(5):31 − 33. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1672-4623.2010.05.011

    JIANG Tao. Construction and application of the visual interpretation bank of remote sensing image[J]. Geospatial Information, 2010, 8(5): 31 − 33. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-4623.2010.05.011

    [33] 童立强,郭兆成. 典型滑坡遥感影像特征研究[J]. 国土资源遥感,2013,25(1):86 − 92. [TONG Liqiang,GUO Zhaocheng. A study of remote sensing image features of typical landslides[J]. Remote Sensing for Land & Resources,2013,25(1):86 − 92. (in Chinese with English abstract)]

    TONG Liqiang, GUO Zhaocheng. A study of remote sensing image features of typical landslides[J]. Remote Sensing for Land & Resources, 2013, 25(1): 86 − 92. (in Chinese with English abstract)

    [34] 陈晓宁,吴满意,温建兵,等. 遥感解译标志建立思路研究[J]. 测绘与空间地理信息,2017,40(2):35 − 37. [CHEN Xiaoning,WU Manyi,WEN Jianbing,et al. Research on the establishment of remote sensing interpretation marks[J]. Geomatics & Spatial Information Technology,2017,40(2):35 − 37. (in Chinese with English abstract)]

    CHEN Xiaoning, WU Manyi, WEN Jianbing, et al. Research on the establishment of remote sensing interpretation marks[J]. Geomatics & Spatial Information Technology, 2017, 40(2): 35 − 37. (in Chinese with English abstract)

    [35] 黄逢,徐许雄. 机载激光雷达技术在高隐蔽性地质灾害隐患早期识别中的应用[J]. 北京测绘,2022,36(7):909 − 914. [HUANG Feng,XU Xuxiong. Application of LiDAR technology in early identification of hidden geological disasters[J]. Beijing Surveying and Mapping,2022,36(7):909 − 914. (in Chinese with English abstract)]

    HUANG Feng, XU Xuxiong. Application of LiDAR technology in early identification of hidden geological disasters[J]. Beijing Surveying and Mapping, 2022, 36(7): 909 − 914. (in Chinese with English abstract)

    [36] 魏旭,彭志忠,刘兴臣,等. 泸石高速公路沿线历史地震诱发滑坡遥感调查及发育分布规律[J]. 地质科技通报,2024,43(2):386 − 396. [WEI Xu,PENG Zhizhong,LIU Xingchen,et al. Remote sensing investigation and development distribution of historical earthquake-induced landslides along Lushi Expressway[J]. Bulletin of Geological Science and Technology,2024,43(2):386 − 396. (in Chinese with English abstract)]

    WEI Xu, PENG Zhizhong, LIU Xingchen, et al. Remote sensing investigation and development distribution of historical earthquake-induced landslides along Lushi Expressway[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 386 − 396. (in Chinese with English abstract)

    [37] 马洪超,姚春静,张生德. 机载激光雷达在汶川地震应急响应中的若干关键问题探讨[J]. 遥感学报,2008,12(6):925 − 932. [MA Hongchao,YAO Chunjing,ZHANG Shengde. Some Technical Issues of Airborne LIDAR System Applied to Wenchuan Earthquake Relief works[J]. Journal of Remote Sensing,2008,12(6):925 − 932. (in Chinese with English abstract)]

    MA Hongchao, YAO Chunjing, ZHANG Shengde. Some Technical Issues of Airborne LIDAR System Applied to Wenchuan Earthquake Relief works[J]. Journal of Remote Sensing, 2008, 12(6): 925 − 932. (in Chinese with English abstract)

    [38] 杜磊,陈洁,李敏敏,等. 机载激光雷达技术在滑坡调查中的应用——以三峡库区张家湾滑坡为例[J]. 国土资源遥感,2019,31(1):180 − 186. [DU Lei,CHEN Jie,LI Minmin,et al. The application of airborne LiDAR technology to landslide survey:a case study of Zhangjiawan Village landslides in Three Gorges Reservoir area[J]. Remote Sensing for Land & Resources,2019,31(1):180 − 186. (in Chinese with English abstract)]

    DU Lei, CHEN Jie, LI Minmin, et al. The application of airborne LiDAR technology to landslide survey: a case study of Zhangjiawan Village landslides in Three Gorges Reservoir area[J]. Remote Sensing for Land & Resources, 2019, 31(1): 180 − 186. (in Chinese with English abstract)

    [39] 潘星,佘金星,董秀军,等. 基于机载LiDAR遥感技术的滑坡早期识别研究——以深圳盐田区为例[J]. 测绘,2020,43(6):243 − 247. [PAN Xing,SHE Jinxing,DONG Xiujun,et al. Early recognition of landslide hazards by airborne LiDAR technology:A case study of Yantian district,Shenzhen[J]. Surveying and Mapping,2020,43(6):243 − 247. (in Chinese with English abstract)]

    PAN Xing, SHE Jinxing, DONG Xiujun, et al. Early recognition of landslide hazards by airborne LiDAR technology: A case study of Yantian district, Shenzhen[J]. Surveying and Mapping, 2020, 43(6): 243 − 247. (in Chinese with English abstract)

    [40] 王绚,范宣梅,杨帆,等. 植被茂密山区地质灾害遥感解译方法研究[J]. 武汉大学学报(信息科学版),2020,45(11):1771 − 1781. [WANG Xuan,FAN Xuanmei,YANG Fan,et al. Remote sensing interpretation method of geological hazards in lush mountainous area[J]. Geomatics and Information Science of Wuhan University,2020,45(11):1771 − 1781. (in Chinese with English abstract)]

    WANG Xuan, FAN Xuanmei, YANG Fan, et al. Remote sensing interpretation method of geological hazards in lush mountainous area[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1771 − 1781. (in Chinese with English abstract)

    [41] 郭晨,许强,董秀军,等. 基于SVF地形可视化方法的滑坡识别——以四川省丹巴县城典型滑坡为例[J]. 成都理工大学学报(自然科学版),2021,48(6):705 − 713. [GUO Chen,XU Qiang,DONG Xiujun,et al. Landslide recognition based on SVF terrain visualization method:a case study of a typical landslide in Danba,Sichuan,China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2021,48(6):705 − 713. (in Chinese with English abstract)]

    GUO Chen, XU Qiang, DONG Xiujun, et al. Landslide recognition based on SVF terrain visualization method: a case study of a typical landslide in Danba, Sichuan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2021, 48(6): 705 − 713. (in Chinese with English abstract)

    [42] 李显巨. 基于LiDAR技术的复杂地质环境区滑坡识别研究[D]. 武汉:中国地质大学,2012. [LI Xianju. Research of the landslide recognition based on LiDAR technology in the complex geological environment area[D]. Wuhan:China University of Geosciences,2012. (in Chinese with English abstract)]

    LI Xianju. Research of the landslide recognition based on LiDAR technology in the complex geological environment area[D]. Wuhan: China University of Geosciences, 2012. (in Chinese with English abstract)

    [43] 彭艺伟,董琦,田冲,等. 基于机载激光雷达的地质灾害识别关键技术及应用研究[J]. 安全与环境工程,2021,28(6):100 − 108. [PENG Yiwei,DONG Qi,TIAN Chong,et al. Research on key technologies and application of geological hazard identification based on airborne LiDAR[J]. Safety and Environmental Engineering,2021,28(6):100 − 108. (in Chinese with English abstract)]

    PENG Yiwei, DONG Qi, TIAN Chong, et al. Research on key technologies and application of geological hazard identification based on airborne LiDAR[J]. Safety and Environmental Engineering, 2021, 28(6): 100 − 108. (in Chinese with English abstract)

    [44] 赖自力,陈建平,向杰,等. 分形理论和LiDAR数据的滑坡识别[J]. 测绘科学,2018,43(6):112 − 117. [LAI Zili,CHEN Jianping,XIANG Jie,et al. Landslide extraction based on fractal theory and LiDAR data[J]. Science of Surveying and Mapping,2018,43(6):112 − 117. (in Chinese with English abstract)]

    LAI Zili, CHEN Jianping, XIANG Jie, et al. Landslide extraction based on fractal theory and LiDAR data[J]. Science of Surveying and Mapping, 2018, 43(6): 112 − 117. (in Chinese with English abstract)

    [45] 吴昊. 许强:构建新“三查”体系,创新地灾防治新机制[N]. 中国矿业报,2018,10(3). [WU Hao. Xu Qiang:Constructing a new ‘three-check’ system and innovating a new mechanism for disaster prevention and control[N]. China Mining Daily,2018,10(3). (in Chinese with English abstract)]

    WU Hao. Xu Qiang: Constructing a new ‘three-check’ system and innovating a new mechanism for disaster prevention and control[N]. China Mining Daily, 2018, 10(3). (in Chinese with English abstract)

    [46] 佘金星,周兴霞,刘飞,等. 丹巴地质灾害隐患早期识别关键技术研究[J]. 测绘,2019,42(6):243 − 247. [SHE Jinxing,ZHOU Xingxia,LIU Fei,et al. Study on the key technology of early identification of geological hazards in Danba[J]. Surveying and Mapping,2019,42(6):243 − 247. (in Chinese with English abstract)]

    SHE Jinxing, ZHOU Xingxia, LIU Fei, et al. Study on the key technology of early identification of geological hazards in Danba[J]. Surveying and Mapping, 2019, 42(6): 243 − 247. (in Chinese with English abstract)

    [47] 佘金星,许强,杨武年,等. 九寨沟地震地质灾害隐患早期识别与分析研究[J]. 工程地质学报,2023,31(1):207 − 216. [SHE Jinxing,XU Qiang,YANG Wunian,et al. Early identification and analysis of earthquake and geological hazards in Jiuzhaigou[J]. Journal of Engineering Geology,2023,31(1):207 − 216. (in Chinese with English abstract)]

    SHE Jinxing, XU Qiang, YANG Wunian, et al. Early identification and analysis of earthquake and geological hazards in Jiuzhaigou[J]. Journal of Engineering Geology, 2023, 31(1): 207 − 216. (in Chinese with English abstract)

    [48] 付豪,李为乐,陆会燕,等. 基于“三查” 体系的丹巴县滑坡隐患早期识别与监测[J]. 武汉大学学报(信息科学版),2024,49(5):734 − 746. [FU Hao,LI Weile,LU Huiyan,et al. Early detection and monitoring of potential landslides in Danba County based on the space-air-ground investigation system[J]. Geomatics and Information Science of Wuhan University,2024,49(5):734 − 746. (in Chinese with English abstract)]

    FU Hao, LI Weile, LU Huiyan, et al. Early detection and monitoring of potential landslides in Danba County based on the space-air-ground investigation system[J]. Geomatics and Information Science of Wuhan University, 2024, 49(5): 734 − 746. (in Chinese with English abstract)

    [49] 孙涛. 滑坡隐患机载LiDAR增强显示与识别方法研究[D]. 成都:成都理工大学,2021. [SUN Tao. Research on the method for airborne LiDAR enhanced visualization and identification of potential landslide[D]. Chengdu:Chengdu University of Technology,2021. (in Chinese with English abstract)]

    SUN Tao. Research on the method for airborne LiDAR enhanced visualization and identification of potential landslide[D]. Chengdu: Chengdu University of Technology, 2021. (in Chinese with English abstract)

    [50] 康义凯. 机载LiDAR技术在地质灾害监测中的应用研究[J]. 测绘与空间地理信息,2017,40(9):117 − 119. [KANG Yikai. Application of airborne LiDAR technology in geological disaster monitoring[J]. Geomatics & Spatial Information Technology,2017,40(9):117 − 119. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1672-5867.2017.09.031

    KANG Yikai. Application of airborne LiDAR technology in geological disaster monitoring[J]. Geomatics & Spatial Information Technology, 2017, 40(9): 117 − 119. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-5867.2017.09.031

    [51] 寇蓉. 基于高分辨率遥感影像与LiDAR点云数据的滑坡提取[D]. 武汉:武汉大学,2020. [KOU Rong. Landslide extraction using high resolution remote sensing imagery and LiDAR data [D]. Wuhan:Wuhan University,2020. (in Chinese with English abstract)]

    KOU Rong. Landslide extraction using high resolution remote sensing imagery and LiDAR data [D]. Wuhan: Wuhan University, 2020. (in Chinese with English abstract)

    [52] 刘圣伟,郭大海,陈伟涛,等. 机载激光雷达技术在长江三峡工程库区滑坡灾害调查和监测中的应用研究[J]. 中国地质,2012,39(2):507 − 517. [LIU Shengwei,GUO Dahai,CHEN Weitao,et al. The application of airborne lidar technology in landslide investigation and monitoring of Three Gorges Reservoir Area[J]. Geology in China,2012,39(2):507 − 517. (in Chinese with English abstract)]

    LIU Shengwei, GUO Dahai, CHEN Weitao, et al. The application of airborne lidar technology in landslide investigation and monitoring of Three Gorges Reservoir Area[J]. Geology in China, 2012, 39(2): 507 − 517. (in Chinese with English abstract)

    [53] 魏恋欢,刘善军,杨天鸿,等. 联合LiDAR DEM与时序SAR数据的露天矿特大型滑坡监测[J]. 东北大学学报(自然科学版),2021,42(12):1753 − 1760. [WEI Lianhuan,LIU Shanjun,YANG Tianhong,et al. Collaborative monitoring of open pit mine induced large scale landslide with LiDAR DEM and time series SAR data[J]. Journal of Northeastern University (Natural Science),2021,42(12):1753 − 1760. (in Chinese with English abstract)]

    WEI Lianhuan, LIU Shanjun, YANG Tianhong, et al. Collaborative monitoring of open pit mine induced large scale landslide with LiDAR DEM and time series SAR data[J]. Journal of Northeastern University (Natural Science), 2021, 42(12): 1753 − 1760. (in Chinese with English abstract)

    [54] 杨耘,江万成,任超锋,等. 倾斜影像辅助的无人机载LiDAR高陡边坡形变监测[J]. 红外与激光工程,2023,52(2):3788/IRLA20220373. [YANG Yun,JIANG Wancheng,REN Chaofeng,et al. Deformation monitoring of high and steep slopes with UAV LiDAR technology assisted by oblique images[J]. Infrared and Laser Engineering,2023,52(2):3788/IRLA20220373. (in Chinese with English abstract)]

    YANG Yun, JIANG Wancheng, REN Chaofeng, et al. Deformation monitoring of high and steep slopes with UAV LiDAR technology assisted by oblique images[J]. Infrared and Laser Engineering, 2023, 52(2): 3788/IRLA20220373. (in Chinese with English abstract)

    [55] 倪培德. 基于机载LiDAR点云的滑坡体体积计算方法研究[J]. 勘察科学技术,2021(1):32 − 36. [NI Peide. Research on calculation method of landslide volume based on airborne LiDAR point cloud[J]. Site Investigation Science and Technology,2021(1):32 − 36. (in Chinese with English abstract)]

    NI Peide. Research on calculation method of landslide volume based on airborne LiDAR point cloud[J]. Site Investigation Science and Technology, 2021(1): 32 − 36. (in Chinese with English abstract)

    [56] 张勤,赵超英,陈雪蓉. 多源遥感地质灾害早期识别技术进展与发展趋势[J]. 测绘学报,2022,51(6):885 − 896. [ZHANG Qin,ZHAO Chaoying,CHEN Xuerong. Technical progress and development trend of geological hazards early identification with multi-source remote sensing[J]. Acta Geodaetica et Cartographica Sinica,2022,51(6):885 − 896. (in Chinese with English abstract)]

    ZHANG Qin, ZHAO Chaoying, CHEN Xuerong. Technical progress and development trend of geological hazards early identification with multi-source remote sensing[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 885 − 896. (in Chinese with English abstract)

图(8)  /  表(1)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  28
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-30
  • 修回日期:  2024-01-25
  • 录用日期:  2024-05-26
  • 网络出版日期:  2024-06-17

目录

/

返回文章
返回