Spatio-temporal differentiation of landslide after the Ms6.5 Ludian earthquake in Yunnan Province
-
摘要:
2014年8月3日云南鲁甸发生的Ms6.5级地震触发了大量滑坡,受强烈地震触发的滑坡震后恢复速度慢、恢复难度大且具有扩大复发的可能,会对道路、水体、生态环境造成长期影响,因此,探究其长时间时空分异具有必要性。以受地震影响的314 km2为研究区域,首先基于ENVI深度学习方法提取震后滑坡并编制其多时相数据清单,在此基础上,从滑坡时空分布特征、滑坡时空面积变化特征以及滑坡活动演化进行时空分异分析。结果表明:(1)地震后,滑坡数量和面积急剧增加,在随后的8 a时间内,总体呈现逐渐减少趋势,地震触发滑坡以面积小于0.01 km2的小型滑坡为主,集中分布于河谷两侧,同时距震中
2000 m、地震烈度Ⅸ级范围内分布较为明显;(2)随时间推移,震后滑坡活动率总体表现为逐渐减弱趋势,截至2022年7月,地震触发滑坡只有6.08%的滑坡仍处于活动状态,表明地震对滑坡的影响已经逐渐减弱;(3)地震后滑坡的活动演化可以分为3个阶段:滑坡强活动期(2014年8月—2016年7月)、中等活动期(2016年8月—2021年8月)、弱活动期(2021年9月—2022年7月)。Abstract:A large number of landslides were triggered by the Ms6.5 magnitude earthquake that occurred in Ludian, Yunnan Province, on August 3, 2014. Landslides triggered by strong earthquakes exhibit slow post-earthquake recovery, high recovery difficulty, and tend to recur and expand, which can have long-term impacts on roads, water bodies, and ecological environments. Therefore, it is necessary to explore their long-time spatial and temporal variability. Taking the 314 km2 area affected by the earthquake as the study area, post-earthquake landslides were first extracted and a multi-temporal data list was compiled using the ENVI deep learning method. Based on this, the spatial-temporal differentiation analysis was carried out focusing on the spatio-temporal distribution characteristics of landslides, changes in spatio-temporal area, and the evolution of landslide activities. The results show that: (1) following the earthquake, the number and area of landslides increased dramatically, gradually decreasing over the subsequent 8 years. Earthquake-triggered landslides were primarily small-scale, with an area of less than 0.01 km2, concentrated on both sides of the river valley, and distributed more prominently within 2 000 meters from the epicenter and within seismic intensity Ⅸ; (2) over time, the post-earthquake landslide activity rate generally showed a gradual weakening trend, with only 6.08% of the earthquake-triggered landslides still active as of July 2022, indicating a gradual weakening of the earthquake's impact on landslides; (3) the activity evolution of post-earthquake landslides can be divided into three phases: the period of strong landslide activity (August 2014-July 2016), the period of moderate activity (August 2016-August 2021), and the period of weak activity (September 2021-July 2022).
-
0. 引 言
近年来,中国建设开发了数十座软岩露天煤矿,在开采过程中采场及排土场均发生过一定规模的滑坡,对于采场底帮顺倾软岩边坡与顺倾软基底内排土场边坡滑坡灾害尤为严重。滑坡灾害直接影响剥采排工程的发展,造成人员伤害和设备损毁及地貌景观破坏,严重制约着露天矿的安全高效生产[1-2],边坡稳定性治理问题已成为边坡工程领域亟待解决的难题之一。
目前国内外学者们应用不同理论对其展开大量有意义的研究,成果丰硕。王东等[3]综合运用极限平衡法及数值模拟法,分析了不同压帮高度下边坡稳定性变化规律,提出了逆倾软岩边坡变形的治理措施;刘子春等[4]以扎尼河露天矿为背景,通过分析扩帮、内排压角等治理措施的基础上,提出了一种条带式开采技术的边坡治理方案;陈毓等[5]采用ANSYS对黑山露天矿内排土场边坡稳定性和破坏机理进行了分析,揭示了内排土场滑坡模式为“坐落滑移式”滑动,运用削坡治理技术来保证内排土场稳定性;唐文亮等[6]系统分析了露天矿内排土场滑坡影响因素,提出了预留煤柱的滑坡治理方法;李伟[7]揭示了阴湾排土场边坡变形破坏机理并结合数值模拟法和极限平衡法,分析了内排不同压脚方案下边坡稳定性,提出了阴湾排土场滑坡治理措施;王刚等[8]基于有限元数值模拟法和极限平衡法,分析了边坡破坏机理并对边坡进行了稳定性计算,提出了削坡减载的治理措施。软岩露天煤矿采场边坡稳定性治理最经济有效的方式是内排追踪压帮,内排土场稳定是前提,但现有方法均是单一针对采场或排土场边坡稳定性分析和治理,未能同时兼顾采场与内排土场边坡的稳定性,对工程实际的指导性不强。
本文以贺斯格乌拉南露天煤矿首采区南帮为工程背景,在兼顾采场与内排土场边坡稳定性的基础上,提出了露天煤矿顺倾软岩边坡内排追踪压帮治理工程,为深入研究顺倾软岩露天煤矿边坡稳定性治理方法提供新的参考。
1. 边坡工程地质条件分析
贺斯格乌拉南露天煤矿设计生产能力为15 Mt/a,首采区南帮地层自上而下主要发育第四系、2煤组、2煤组与3煤组间夹石、3煤组、3煤组底板和盆地基底火山岩,含煤岩系主要以泥岩为主,全区可采的有2-1、3-1煤层,第四系以粉砂质黏土为主,局部夹黄-浅灰色细砂及含砾粗砂层,岩性较差,首采区土层赋存较薄,且其地层中多赋存软弱夹层,主要以3-1、3-4煤底板弱层主,属于典型的顺倾软岩边坡,岩土体物理力学指标如表1所示,典型工程地质剖面如图1所示。
表 1 岩土体物理力学指标Table 1. Physical and mechanical parameters of rock mass岩体名称 内摩擦角/(°) 黏聚力/kPa 容重/(kN·m−3) 弹性模量/MPa 泊松比 砂岩 26.00 65 19.6 35 0.42 粉质黏土 14.06 22 19.8 46 0.38 煤 29.00 85 12.1 40 0.35 泥岩 20.00 40 19.4 75 0.36 排弃物 14.49 20 19.0 60 0.40 弱层 6.00 0 19.1 20 0.42 回填岩石 20.00 40 19.0 − − 2. 采场底帮浅层边坡二维稳定性分析
影响顺倾软岩露天煤矿采场边坡稳定性的主控因素是弱层及其暴露长度,采用追踪压帮方式治理该类边坡稳定性时,可忽略软弱夹层为底界面的切层-顺层组合滑动模式[9-10],仅考虑剪胀破坏模式。由于贺斯格乌拉南露天矿边坡体内赋存软弱夹层,主要以3-1、3-4煤底板弱层为主,顺倾角度大,岩质松软,对于此类边坡,浅部可通过平盘参数进行重新设计,深部必须利用三维效应,实现稳定性控制。可采用刚体极限平衡法中的剩余推力法对浅层边坡进行稳定性计算[11-12]。该方法的优点是可以用来计算求解给定任意边坡潜在滑面的稳定系数,并且可以考虑在复杂外力作用下的不同抗剪参数滑动岩体对边坡稳定性的影响。稳定系数求解公式为:
$$ {P_i} = \frac{{{W_i}\sin {\alpha _i}({W_i}\sin {\alpha _i}\tan {\varphi _i}) + {C_i}{L_i}}}{{{F_{\rm{s}}}}} + {\phi _i}{p_{i - 1}} $$ (1) $$ {\phi _i} = \frac{{\cos ({\alpha _{i - 1}} - {\alpha _i})\tan {\varphi _i}\sin ({\alpha _{i - 1}} - {\alpha _i})}}{{{F_{\rm{s}}}}} $$ (2) 式中:
${P_i}$ ——第$i$ 条块的剩余推力/kN;$ {W_i} $ ——第$i$ 条块的重量/(N·m−3);$\alpha_i$ ——第$i$ 条块的滑面倾角/(°);${\varphi _i}$ ——第$i$ 条块的推力传递系数;${C_i}$ ——第$i$ 条块的滑面黏聚力/kPa;${L_i}$ ——第$i$ 条块的底面长度/m;${\phi _i}$ ——第$i$ 条块的滑面摩擦角/(°);${F_{\rm{s}}}$ ——稳定性系数。依据《煤炭工业露天矿设计规范》(GB 50197―2015)[13]综合考虑贺斯格乌拉南露天煤矿首采区南帮边坡服务年限、地质条件与力学参数的可靠性、潜在滑坡危害程度等,确定安全储备系数为1.2。
由于南帮压覆大量煤层,在保证安全前提下,为实现最大限度回采压覆的煤炭资源,需要对边坡形态重新设计。本文选取典型剖面为研究对象,浅层边坡形态按照40 m运输平盘、15 m保安平盘进行设计,深部利用横采内排三维支挡效应回采采场底帮深部压覆煤炭资源。通过上述情况对浅层边坡进行了分析,边坡稳定性计算结果如图2所示。
分析图2可知,浅部边坡形态可按照40 m运输平盘、15 m保安平盘进行设计,由于弱层上部存在煤岩支挡,边坡潜在滑坡模式为以圆弧为侧界面、3-1煤底板弱层为底界面、沿边坡坡脚处剪出,此时,浅层边坡能满足安全储备系数1.2的要求。
3. 采场底帮深部边坡稳定性三维效应分析
基于浅层边坡二维稳定性分析结果可知,实现深部稳定性控制,必须借助横采工作帮与内排土场的双重支挡作用进行压煤回采,因此提出了利用横采内排三维支挡效应回采采场深部压覆煤炭资源[14]。本文借助FLAC3D数值模拟软件,分析不同降深角度和不同追踪距离条件下的边坡三维稳定性,以期获得最优的边坡空间形态参数。
(1) 模型的建立
考虑到FLAC3D建模较为复杂,采用CAD与Rhino相结合的方法,首先在CAD中对剖面进行整理,然后在Rhino软件中进行模型成体与网格划分的处理,并用Griddle将网格导出,生成精细的六面体网格模型[15 − 17],最后导入采用于FLAC3D进行数值模拟计算。为尽可能凸显边坡稳定性的三维效应,以南帮断面形态设计边坡为数值模拟对象,共计建立15种工况模型,模型如图3,追踪距离分别为50,100,200,300,400 m。为避免边界效应,在模型的底部和两侧分别施加水平和垂直位移约束,加载方式为重力加载[18]。
(2) 计算结果分析
由于计算结果过多,本文仅列举降深角度α=29°,追踪距离50,200,400 m工况下边坡位移云图(切割位置为沿模型走向中间处),如图4所示。南帮边坡三维稳定性计算结果如图5所示。
分析图4、图5可知,追踪距离50 m时,三维支挡效应显著,边坡深部位移明显小于上部,发生以圆弧为侧界面、3-1煤底板弱层为底界面的切层-顺层-剪出滑动,稳定系数大于1.2。当追踪距离大于50 m时,通过对比分析不同深部边坡角(α)条件下的数值模拟结果可知,深部边坡角对边坡稳定性系数影响较小,随着追踪距离的增加,边坡的破坏模式过渡为以圆弧为侧界面、3-1煤底板弱层为底界面的切层-顺层滑动,并且此时边坡的稳定性不满足安全储备系数1.2要求。因此,内排土场追踪距离需控制在50 m以内,深部边坡角设计为29°。
4. 内排土场压帮边坡稳定性分析与治理
露天矿内排土场边坡稳定的主控因素是软弱基底,软弱基底分为自身软弱岩土层和受外界条影响转变为软弱岩土层2种类型。排土场下沉是软弱基底内排土场失稳的特征,主要现象是含有纵向强烈挤压区,基底上部岩层隆起,地面出现滑坡等[19 − 21]。在保证采场南帮安全的前提下降深至3-1煤底板,须借助横采工作帮与内排土场的双重支挡作用,内排土场稳定是前提[22]。由于内排土场基底为3-1、3-4煤底板弱层,顺倾角度较大,按照内排土场设计参数,其稳定性无法满足安全储备系数的要求[23]。从提供基底强度角度出发,采用破坏弱层回填岩石的方式提高内排土场边坡稳定性。按照排土台阶高度24 m、平盘宽度60 m、坡面角33°对不同内排压帮标高边坡稳定性进行试算,确定内排最小压帮标高为+844水平,因此本文分析了内排基于+844水平的压帮高度下内排土场基底不同的处理方式时的边坡稳定性计算结果如图6—7所示,边坡稳定性与破坏弱层回填岩石范围关系曲线如图8所示。
分析图6—图8可知,当内排基于+844的压帮高度,内排基底3-1底板弱层完全破坏并回填岩石,破坏3-4底板弱层并回填岩石倾向长度达60 m时,内排土场及其与采场南帮复合边坡稳定性均可满足安全系数1.2要求。边坡稳定性随破坏底板弱层回填岩石范围的增大呈正指数函数规律提高,随着回填岩石范围长度的不断增加,边坡稳定性系数不断提高。采用破坏弱层回填岩石的基底处理方法,既保证了边坡的稳定又规避了过渡处理基底的生产成本。
5. 结 论
(1) 弱层暴露长度是露天矿顺倾软岩边坡稳定性的主控因素,据此提出了露天矿顺倾软岩边坡内排追踪压帮治理工程,可最大限度的安全回收边坡压覆煤炭资源。
(2) 控制采场与内排土场间的追踪距离是改善边坡稳定性的有效途径。随着追踪距离的增加,边坡破坏模式从以圆弧为侧界面、弱层为底界面的切层-顺层-剪出滑动逐渐过渡为以圆弧为侧界面、弱层为底界面的切层-顺层滑动。
(3) 内排土场及其与采场构成的复合边坡稳定性随破坏底板弱层回填岩石范围的增大呈指数函数规律提高,随着回填岩石范围长度的不断增加,边坡稳定性系数不断提高。
(4) 贺斯格乌拉南露天煤矿首采区南帮浅部边坡留设40 m运输平盘、15 m保安平盘,底帮深部边坡角29°,追踪距离控制在50 m之内时可满足安全要求;内排基底弱层完全破坏并回填岩石倾向长度60 m时可满足安全需求。
-
表 1 影像数据信息
Table 1 Image data information
日期 2014年
4月13日2014年
10月26日2015年
10月29日2016年
7月11日2017年
5月13日2018年
8月24日2019年
8月18日2020年
8月27日2021年
8月2日2022年
7月16日数据
来源资源3号
(ZY3)高分1号
(GF1)高分1号
(GF1)高分2号
(GF2)资源3号
(ZY3)高分1号
(GF1)高分2号
(GF2)高分1号
(GF1)高分2号
(GF2)高分1号B卫星
(GF1B)数量/景 1 1 1 2 1 1 1 1 4 2 分辨率/m 2.1 2 2 0.8 2.1 2 0.8 2 0.8 2 表 2 滑坡活动期分类标准
Table 2 Classification standard of landslide activity period
滑坡活动期 滑坡活动率/% 扩大滑坡面积/km2 新增滑坡面积/km2 震后滑坡强活动期 P>50 >1.5 >1 震后滑坡中等活动期 10<P≤50 >0.2且≤1.5 >0.2且≤1 震后滑坡弱活动期 P≤10 ≤0.2 ≤0.2 表 3 精度验证结果
Table 3 Accuracy verification results
区域 影像类型 Precision Recall CE OE F1 验证区域1 GF2 0.8614 0.8281 0.1386 0.1719 0.8444 验证区域2 ZY3 0.8573 0.8439 0.1427 0.1561 0.8506 验证区域3 ZY3 0.8650 0.7499 0.1350 0.2490 0.8034 验证区域4 GF2 0.8634 0.7561 0.1366 0.2439 0.8062 表 4 地震震后滑坡规模分布情况统计
Table 4 Statistical distribution of landslide scale after earthquake
2014年4月 2014年8月 2014年10月 2015年10月 2016年7月 2017年5月 2018年8月 2019年8月 2020年8月 2021年8月 2022年7月 小型滑坡/个 36 908 408 300 367 307 179 107 153 85 42 中型滑坡/个 25 64 56 37 54 37 27 25 24 9 8 大型滑坡/个 0 42 49 37 45 42 16 15 11 13 9 表 5 2014—2022年鲁甸地区降水统计
Table 5 Statistics of precipitation in Ludian area from 2014 to 2022
年份 2014 2015 2016 2017 2018 2019 2020 2021 2022 年降水量/mm 941.0 976.4 1107.1 955.4 879.7 721.9 794.5 742.2 861.4 表 6 滑坡活动面积变化及活动率统计
Table 6 Landslide activity area change and activity rate statistics
年月 恢复区域
/km2扩大面积
/km2新增面积
/km2活动面积
/km2活动率
/%2014年10月 2.81 2.08 0.80 2.88 55.78 2015年10月 3.23 1.27 0.77 2.03 39.44 2016年7月 3.41 1.52 1.10 2.63 50.98 2017年5月 3.21 1.07 0.90 1.97 38.28 2018年8月 4.20 0.73 0.50 1.23 23.79 2019年8月 4.39 0.48 0.44 0.91 17.70 2020年8月 4.27 0.36 0.44 0.80 15.48 2021年8月 4.55 0.33 0.22 0.55 10.67 2022年7月 4.50 0.20 0.11 0.31 6.08 -
[1] 黄润秋. 汶川地震地质灾害后效应分析[J]. 工程地质学报,2011,19(2):145 − 151. [HUANG Runqiu. After effect of geohazards induced by the Wenchuan earthquake[J]. Journal of Engineering Geology,2011,19(2):145 − 151. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1004-9665.2011.02.001 HUANG Runqiu. After effect of geohazards induced by the Wenchuan earthquake[J]. Journal of Engineering Geology, 2011, 19(2): 145 − 151. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2011.02.001
[2] KEEFER D K. The importance of earthquake-induced landslides to long-term slope erosion and slope-failure hazards in seismically active regions[M]//Geomorphology and Natural Hazards. Amsterdam:Elsevier,1994:265 − 284.
[3] 祁生文,许强,刘春玲,等. 汶川地震极重灾区地质背景及次生斜坡灾害空间发育规律[J]. 工程地质学报,2009,17(1):39 − 49. [QI Shengwen,XU Qiang,LIU Chunling,et al. Slope instabilities in the severest disaster areas of 5·12 Wenchuan earthquake[J]. Journal of Engineering Geology,2009,17(1):39 − 49. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1004-9665.2009.01.005 QI Shengwen, XU Qiang, LIU Chunling, et al. Slope instabilities in the severest disaster areas of 5·12 Wenchuan earthquake[J]. Journal of Engineering Geology, 2009, 17(1): 39 − 49. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2009.01.005
[4] 田颖颖,许冲,徐锡伟,等. 2014年鲁甸Ms6.5地震震前与同震滑坡空间分布规律对比分析[J]. 地震地质,2015,37(1):291 − 306. [TIAN Yingying,XU Chong,XU Xiwei,et al. Spatial distribution analysis of coseismic and pre-earthquake landslides triggered by the 2014 Ludian Ms6.5 earthquake[J]. Seismology and Geology,2015,37(1):291 − 306. (in Chinese with English abstract)] DOI: 10.3969/j.issn.0253-4967.2015.01.023 TIAN Yingying, XU Chong, XU Xiwei, et al. Spatial distribution analysis of coseismic and pre-earthquake landslides triggered by the 2014 Ludian Ms6.5 earthquake[J]. Seismology and Geology, 2015, 37(1): 291 − 306. (in Chinese with English abstract) DOI: 10.3969/j.issn.0253-4967.2015.01.023
[5] ZOU Yu,QI Shengwen,GUO Songfeng,et al. Factors controlling the spatial distribution of coseismic landslides triggered by the Mw 6.1 Ludian earthquake in China[J]. Engineering Geology,2022,296:106477. DOI: 10.1016/j.enggeo.2021.106477
[6] 韩征,方振雄,傅邦杰,等. 同震崩塌滑坡的光学遥感影像多特征融合解译方法[J]. 中国地质灾害与防治学报,2022,33(6):103 − 113. [HAN Zheng,FANG Zhenxiong,FU Bangjie,et al. Interpretation method for regional co-seismic collapses based on multi-feature fusion of optical remote sensing[J]. The Chinese Journal of Geological Hazard and Control,2022,33(6):103 − 113. ( in Chinese with English abstract] HAN Zheng, FANG Zhenxiong, FU Bangjie, et al. Interpretation method for regional co-seismic collapses based on multi-feature fusion of optical remote sensing[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 103 − 113. ( in Chinese with English abstract
[7] 许冲,田颖颖,沈玲玲,等. 2015年尼泊尔廓尔喀Mw7.8地震滑坡数据库[J]. 地震地质,2018,40(5):1115 − 1128. [XU Chong,TIAN Yingying,SHEN Lingling,et al. Database of landslides triggered by 2015 Gorkha (Nepal) Mw7.8 earthquake[J]. Seismology and Geology,2018,40(5):1115 − 1128. (in Chinese with English abstract)] XU Chong, TIAN Yingying, SHEN Lingling, et al. Database of landslides triggered by 2015 Gorkha (Nepal) Mw7.8 earthquake[J]. Seismology and Geology, 2018, 40(5): 1115 − 1128. (in Chinese with English abstract)
[8] GUO Xinyi,FU Bihong,DU Jie,et al. Monitoring and assessment for the susceptibility of landslide changes after the 2017 Ms7.0 Jiuzhaigou earthquake using the remote sensing technology[J]. Frontiers in Earth Science,2021,9:43.
[9] 杨华阳,许向宁,杨鸿发. 基于证据权法的九寨沟地震滑坡危险性评价[J]. 中国地质灾害与防治学报,2020,31(3):20 − 29. [YANG Huayang,XU Xiangning,YANG Hongfa. The Jiuzhaigou co-seismic landslide hazard assessment based on weight of evidence method[J]. The Chinese Journal of Geological Hazard and Control,2020,31(3):20 − 29. (in Chinese with English abstract)] YANG Huayang, XU Xiangning, YANG Hongfa. The Jiuzhaigou co-seismic landslide hazard assessment based on weight of evidence method[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(3): 20 − 29. (in Chinese with English abstract)
[10] 陈博,李振洪,黄武彪,等. 2022年四川泸定Mw6.6级地震诱发地质灾害空间分布及影响因素[J]. 地球科学与环境学报,2022,44(6):971 − 985. [CHEN Bo,LI Zhenhong,HUANG Wubiao,et al. Spatial distribution and influencing factors of geohazards induced by the 2022 Mw6.6 luding (Sichuan,China)earthquake[J]. Journal of Earth Sciences and Environment,2022,44(6):971 − 985. (in Chinese with English abstract)] CHEN Bo, LI Zhenhong, HUANG Wubiao, et al. Spatial distribution and influencing factors of geohazards induced by the 2022 Mw6.6 luding (Sichuan, China)earthquake[J]. Journal of Earth Sciences and Environment, 2022, 44(6): 971 − 985. (in Chinese with English abstract)
[11] 范宣梅,王欣,戴岚欣,等. 2022年Ms6.8级泸定地震诱发地质灾害特征与空间分布规律研究[J]. 工程地质学报,2022,30(5):1504 − 1516. [FAN Xuanmei,WANG Xin,DAI Lanxin,et al. Characteristics and spatial distribution pattern of Ms6.8 Luding earthquake occurred on September 5,2022[J]. Journal of Engineering Geology,2022,30(5):1504 − 1516. (in Chinese with English abstract)] FAN Xuanmei, WANG Xin, DAI Lanxin, et al. Characteristics and spatial distribution pattern of Ms6.8 Luding earthquake occurred on September 5, 2022[J]. Journal of Engineering Geology, 2022, 30(5): 1504 − 1516. (in Chinese with English abstract)
[12] 刘甲美,王涛,杜建军,等. 四川泸定Ms6.8级地震诱发崩滑灾害快速评估[J]. 水文地质工程地质,2023,50(2):84 − 94. [LIU Jiamei,WANG Tao,DU Jianjun,et al. Emergency rapid assessment of landslides induced by the Luding Ms6.8 earthquake in Sichuan of China[J]. Hydrogeology & Engineering Geology,2023,50(2):84 − 94. (in Chinese with English abstract)] LIU Jiamei, WANG Tao, DU Jianjun, et al. Emergency rapid assessment of landslides induced by the Luding Ms6.8 earthquake in Sichuan of China[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 84 − 94. (in Chinese with English abstract)
[13] 杨志华, 吴瑞安, 郭长宝, 等. 川西巴塘断裂带地质灾害效应与典型滑坡发育特征[J]. 中国地质,2022,49(2):355 − 368. [YANG Zhihua, WU Ruian, GUO Changbao, et al. Geo-hazard effects and typical landslide characteristics of the Batang fault zone in the western Sichuan[J]. Geology in China,2022,49(2):355 − 368. (in Chinese with English abstract)] YANG Zhihua, WU Ruian, GUO Changbao, et al. Geo-hazard effects and typical landslide characteristics of the Batang fault zone in the western Sichuan[J]. Geology in China, 2022, 49(2): 355 − 368. (in Chinese with English abstract)
[14] 李明威,熊江,陈明,等. 汶川震区植被恢复与同震滑坡活动性动态演化分析[J]. 水文地质工程地质,2023,50(3):182 − 192. [LI Mingwei,XIONG Jiang,CHEN Ming,et al. Vegetation restoration and dynamic evolution analysis of landslide activity in the Wenchuan Earthquake area[J]. Hydrogeology & Engineering Geology,2023,50(3):182 − 192. (in Chinese with English abstract)] LI Mingwei, XIONG Jiang, CHEN Ming, et al. Vegetation restoration and dynamic evolution analysis of landslide activity in the Wenchuan Earthquake area[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 182 − 192. (in Chinese with English abstract)
[15] 龙玉洁,李为乐,黄润秋,等. 汶川地震震后10 a绵远河流域滑坡遥感自动提取与演化趋势分析[J]. 武汉大学学报(信息科学版),2020,45(11):1792 − 1800. [LONG Yujie,LI Weile,HUANG Runqiu,et al. Automatic extraction and evolution trend analysis of landslides in Mianyuan River Basin in the 10 years after Wenchuan earthquake[J]. Geomatics and Information Science of Wuhan University,2020,45(11):1792 − 1800. (in Chinese with English abstract)] LONG Yujie, LI Weile, HUANG Runqiu, et al. Automatic extraction and evolution trend analysis of landslides in Mianyuan River Basin in the 10 years after Wenchuan earthquake[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1792 − 1800. (in Chinese with English abstract)
[16] LIN Ching weei,LIU Shouheng,LEE Senyuan,et al. Impacts of the Chi-Chi earthquake on subsequent rainfall-induced landslides in central Taiwan[J]. Engineering Geology,2006,86(2):87 − 101.
[17] SHAFIQUE M. Spatial and temporal evolution of co-seismic landslides after the 2005 Kashmir earthquake[J]. Geomorphology,2020,362:107228. DOI: 10.1016/j.geomorph.2020.107228
[18] CHEN Ming,TANG Chuan,XIONG Jiang,et al. The long-term evolution of landslide activity near the epicentral area of the 2008 Wenchuan earthquake in China[J]. Geomorphology,2020,367:107317. DOI: 10.1016/j.geomorph.2020.107317
[19] 许冲,徐锡伟,沈玲玲,等. 2014年鲁甸Ms6.5地震触发滑坡编录及其对一些地震参数的指示[J]. 地震地质,2014,36(4):1186 − 1203. [XU Chong,XU Xiwei,SHEN Lingling,et al. Inventory of landslides triggered by the 2014 Ms6.5 Ludian earthquake and its implications on several earthquake parameters[J]. Seismology and Geology,2014,36(4):1186 − 1203. (in Chinese with English abstract)] DOI: 10.3969/j.issn.0253-4967.2014.04.020 XU Chong, XU Xiwei, SHEN Lingling, et al. Inventory of landslides triggered by the 2014 Ms6.5 Ludian earthquake and its implications on several earthquake parameters[J]. Seismology and Geology, 2014, 36(4): 1186 − 1203. (in Chinese with English abstract) DOI: 10.3969/j.issn.0253-4967.2014.04.020
[20] 张鹏飞. 地震滑坡的遥感影像自动提取研究[D]. 北京:中国地震局地质研究所,2021. [ZHANG Pengfei. Research on automatic extraction of remote sensing images of co-seismic landslides[D]. Beijing:Institute of Geology,China Earthquake Administration,2021. (in Chinese with English abstract)] ZHANG Pengfei. Research on automatic extraction of remote sensing images of co-seismic landslides[D]. Beijing: Institute of Geology, China Earthquake Administration, 2021. (in Chinese with English abstract)
[21] YANG Ruilin,ZHANG Feng,XIA Junshi,et al. Landslide extraction using mask R-CNN with background-enhancement method[J]. Remote Sensing,2022,14(9):2206. DOI: 10.3390/rs14092206
[22] 蒋涛,崔圣华,冉耀. 开挖和降雨耦合诱发滑坡机理分析——以四川万源前进广场滑坡为例[J]. 中国地质灾害与防治学报,2023,34(3):20 − 30. [JIANG Tao,CUI Shenghua,RAN Yao. Analysis of landslide mechanism induced by excavation and rainfall:A case study of the Qianjin square landslide in Wanyuan City,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(3):20 − 30. ( in Chinese with English abstract] JIANG Tao, CUI Shenghua, RAN Yao. Analysis of landslide mechanism induced by excavation and rainfall: A case study of the Qianjin square landslide in Wanyuan City, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(3): 20 − 30. ( in Chinese with English abstract
[23] 胡爱国,周伟. 地震与强降雨作用下堆积体滑坡变形破坏机理及防治方案分析[J]. 中国地质灾害与防治学报,2022,33(1):27 − 34. [HU Aiguo,ZHOU Wei. Deformation and failure mechanism and analysis on prevention measures of colluction landslide under earthquake and heavy rainfall[J]. The Chinese Journal of Geological Hazard and Control,2022,33(1):27 − 34. ( in Chinese with English abstract] HU Aiguo, ZHOU Wei. Deformation and failure mechanism and analysis on prevention measures of colluction landslide under earthquake and heavy rainfall[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 27 − 34. ( in Chinese with English abstract
[24] HE Xiangli,XU Chong,QI Wenwen,et al. Landslides triggered by the 2020 Qiaojia Mw5.1 earthquake,Yunnan,China:distribution,influence factors and tectonic significance[J]. Journal of Earth Science,2021,32(5):1056 − 1068. DOI: 10.1007/s12583-021-1492-1
[25] 明小娜,周洋,钟玉盛,等. 2017年云南鲁甸Ms4.9地震房屋震害特征与烈度评定[J]. 地震研究,2017,40(2):295 − 302. [MING Xiaona,ZHOU Yang,ZHONG Yusheng,et al. Building damage characteristics and earthquake intensity evaluation of the Ludian Ms4.9 earthquake in 2017[J]. Journal of Seismological Research,2017,40(2):295 − 302. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0666.2017.02.017 MING Xiaona, ZHOU Yang, ZHONG Yusheng, et al. Building damage characteristics and earthquake intensity evaluation of the Ludian Ms4.9 earthquake in 2017[J]. Journal of Seismological Research, 2017, 40(2): 295 − 302. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0666.2017.02.017
-
期刊类型引用(1)
1. 管少杰,吕进国,王康,张砚力. 露天矿下伏采空区距坡脚水平距离对边坡稳定性的影响. 工矿自动化. 2025(02): 113-120 . 百度学术
其他类型引用(0)