ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

无人机技术在超高陡边坡危岩体半自动识别中的应用

程雨柯, 李亚虎, 夏金梧, 侯赠, 陈娜

程雨柯,李亚虎,夏金梧,等. 无人机技术在超高陡边坡危岩体半自动识别中的应用[J]. 中国地质灾害与防治学报,2024,35(1): 143-154. DOI: 10.16031/j.cnki.issn.1003-8035.202310028
引用本文: 程雨柯,李亚虎,夏金梧,等. 无人机技术在超高陡边坡危岩体半自动识别中的应用[J]. 中国地质灾害与防治学报,2024,35(1): 143-154. DOI: 10.16031/j.cnki.issn.1003-8035.202310028
CHENG Yuke,LI Yahu,XIA Jinwu,et al. Application UAV technology semi-automatic identification dangerous rock masses on ultra-high steep slopes[J]. The Chinese Journal of Geological Hazard and Control,2024,35(1): 143-154. DOI: 10.16031/j.cnki.issn.1003-8035.202310028
Citation: CHENG Yuke,LI Yahu,XIA Jinwu,et al. Application UAV technology semi-automatic identification dangerous rock masses on ultra-high steep slopes[J]. The Chinese Journal of Geological Hazard and Control,2024,35(1): 143-154. DOI: 10.16031/j.cnki.issn.1003-8035.202310028

无人机技术在超高陡边坡危岩体半自动识别中的应用

基金项目: 国家自然科学基金项目(52009038);新疆和田玉龙喀什水利枢纽工程专项科研实验(YLKS-SW-2022-016);爆破工程湖北省重点实验室开放基金(BL2021-21)
详细信息
    作者简介:

    程雨柯(1999—),男,湖北仙桃人,土木水利专业,硕士研究生,主要从事岩质边坡危险特征地质勘察研究。E-mail:cyk173628720392022@163.com

    通讯作者:

    陈 娜(1989—),女,博士,副教授,硕士生导师,主要从事边坡安全防控、土木建筑的智能监测与检测、三维模型重构等智能土木方向的研究。E-mail:cn_research@hbut.edu.cn

  • 中图分类号: P642.22

Application UAV technology semi-automatic identification dangerous rock masses on ultra-high steep slopes

  • 摘要:

    在新疆山区开展危岩体勘察时,由于工程区存在复杂且陡峭的山体,传统人工勘察危岩体的方案往往受限。为了有效地提高危岩体调查的效率与自动化程度,本研究提出了一种基于无人机的高陡边坡危岩体半自动勘察技术。将无人机贴近摄影测量技术与精确的仿地飞行路线规划相结合,获取超高边坡精确三维点云模型;应用CloudCompare软件点云剖分工具结合危岩体突出于边坡表面的形态特征对异型滑移式块体进行语义分割;并通过分析异型滑移式块体的三维特征,实现对危岩体的定性分析。将上述理论方法应用于玉龙喀什水利工程左岸超高边坡坝址,在试验区提取出了4块危岩体。所有危岩体稳定性系数(K)均低于0.9,平均体积均在2000 m3左右,最大高差在7~11 m。危岩体的空间位置分布和三维特征与现场人工勘测的基本一致。试验表明,结合危岩体特征的高精度边坡点云模型能有效识别危岩体,提高调查效率并解决人工数据模糊的问题,对高陡边坡的危岩体评估具有实际应用价值。

    Abstract:

    In the mountainous regions of Xinjiang, traditional manual survey methods for dangerous rock masses are often restricted by the complex and steep terrain. To improve the efficiency and automation of dangerous rock masses surveys, this study proposes a semi-automatic technique using unmanned aerial vehicle (UAV) for high and steep slopes. This methodology integrates close-range photogrammetry with precise terrain-following flight path planning to generate accurate 3D point cloud models of ultra-high steep slopes. Considering the distinctive shapes of dangerous rock masses protruding from the slope surfaces, this research leveraged CloudCompare software's point cloud segmentation tool to perform semantic segmentation of these profiled blocks. Furthermore, a qualitative assessment of dangerous rock masses is achieved through an analysis of their three-dimensional features. This methodology was applied to the ultra-high slope dam site on the left bank of the Yulong Kashi Hydropower Project. In the test area, four dangerous rock masses were identified (all with stability coefficients lower than 0.9, average around 2000 m³ in volume, with height differences ranging from 7-11m), aligning closely with manual field surveys. The research shows that high-precision slope point cloud models, integrated with rock body characteristics, can effectively detect dangerous rock masses, enhance survey efficiency, and mitigate the inaccuracies associated with manual data collection. This approach holds significant practical value for assessing dangerous rock masses on ultra-high steep slopes.

  • 近年来,中国建设开发了数十座软岩露天煤矿,在开采过程中采场及排土场均发生过一定规模的滑坡,对于采场底帮顺倾软岩边坡与顺倾软基底内排土场边坡滑坡灾害尤为严重。滑坡灾害直接影响剥采排工程的发展,造成人员伤害和设备损毁及地貌景观破坏,严重制约着露天矿的安全高效生产[1-2],边坡稳定性治理问题已成为边坡工程领域亟待解决的难题之一。

    目前国内外学者们应用不同理论对其展开大量有意义的研究,成果丰硕。王东等[3]综合运用极限平衡法及数值模拟法,分析了不同压帮高度下边坡稳定性变化规律,提出了逆倾软岩边坡变形的治理措施;刘子春等[4]以扎尼河露天矿为背景,通过分析扩帮、内排压角等治理措施的基础上,提出了一种条带式开采技术的边坡治理方案;陈毓等[5]采用ANSYS对黑山露天矿内排土场边坡稳定性和破坏机理进行了分析,揭示了内排土场滑坡模式为“坐落滑移式”滑动,运用削坡治理技术来保证内排土场稳定性;唐文亮等[6]系统分析了露天矿内排土场滑坡影响因素,提出了预留煤柱的滑坡治理方法;李伟[7]揭示了阴湾排土场边坡变形破坏机理并结合数值模拟法和极限平衡法,分析了内排不同压脚方案下边坡稳定性,提出了阴湾排土场滑坡治理措施;王刚等[8]基于有限元数值模拟法和极限平衡法,分析了边坡破坏机理并对边坡进行了稳定性计算,提出了削坡减载的治理措施。软岩露天煤矿采场边坡稳定性治理最经济有效的方式是内排追踪压帮,内排土场稳定是前提,但现有方法均是单一针对采场或排土场边坡稳定性分析和治理,未能同时兼顾采场与内排土场边坡的稳定性,对工程实际的指导性不强。

    本文以贺斯格乌拉南露天煤矿首采区南帮为工程背景,在兼顾采场与内排土场边坡稳定性的基础上,提出了露天煤矿顺倾软岩边坡内排追踪压帮治理工程,为深入研究顺倾软岩露天煤矿边坡稳定性治理方法提供新的参考。

    贺斯格乌拉南露天煤矿设计生产能力为15 Mt/a,首采区南帮地层自上而下主要发育第四系、2煤组、2煤组与3煤组间夹石、3煤组、3煤组底板和盆地基底火山岩,含煤岩系主要以泥岩为主,全区可采的有2-1、3-1煤层,第四系以粉砂质黏土为主,局部夹黄-浅灰色细砂及含砾粗砂层,岩性较差,首采区土层赋存较薄,且其地层中多赋存软弱夹层,主要以3-1、3-4煤底板弱层主,属于典型的顺倾软岩边坡,岩土体物理力学指标如表1所示,典型工程地质剖面如图1所示。

    表  1  岩土体物理力学指标
    Table  1.  Physical and mechanical parameters of rock mass
    岩体名称内摩擦角/(°)黏聚力/kPa容重/(kN·m−3弹性模量/MPa泊松比
    砂岩26.006519.6350.42
    粉质黏土14.062219.8460.38
    29.008512.1400.35
    泥岩20.004019.4750.36
    排弃物14.492019.0600.40
    弱层6.00019.1200.42
    回填岩石20.004019.0
    下载: 导出CSV 
    | 显示表格
    图  1  典型工程地质剖面图
    Figure  1.  Typical geological cross-section profile of the sliding area

    影响顺倾软岩露天煤矿采场边坡稳定性的主控因素是弱层及其暴露长度,采用追踪压帮方式治理该类边坡稳定性时,可忽略软弱夹层为底界面的切层-顺层组合滑动模式[9-10],仅考虑剪胀破坏模式。由于贺斯格乌拉南露天矿边坡体内赋存软弱夹层,主要以3-1、3-4煤底板弱层为主,顺倾角度大,岩质松软,对于此类边坡,浅部可通过平盘参数进行重新设计,深部必须利用三维效应,实现稳定性控制。可采用刚体极限平衡法中的剩余推力法对浅层边坡进行稳定性计算[11-12]。该方法的优点是可以用来计算求解给定任意边坡潜在滑面的稳定系数,并且可以考虑在复杂外力作用下的不同抗剪参数滑动岩体对边坡稳定性的影响。稳定系数求解公式为:

    $$ {P_i} = \frac{{{W_i}\sin {\alpha _i}({W_i}\sin {\alpha _i}\tan {\varphi _i}) + {C_i}{L_i}}}{{{F_{\rm{s}}}}} + {\phi _i}{p_{i - 1}} $$ (1)
    $$ {\phi _i} = \frac{{\cos ({\alpha _{i - 1}} - {\alpha _i})\tan {\varphi _i}\sin ({\alpha _{i - 1}} - {\alpha _i})}}{{{F_{\rm{s}}}}} $$ (2)

    式中:${P_i}$——第$i$条块的剩余推力/kN;

    $ {W_i} $——第$i$条块的重量/(N·m−3);

    $\alpha_i$——第$i$条块的滑面倾角/(°);

    ${\varphi _i}$——第$i$条块的推力传递系数;

    ${C_i}$——第$i$条块的滑面黏聚力/kPa;

    ${L_i}$——第$i$条块的底面长度/m;

    ${\phi _i}$——第$i$条块的滑面摩擦角/(°);

    ${F_{\rm{s}}}$——稳定性系数。

    依据《煤炭工业露天矿设计规范》(GB 50197―2015)[13]综合考虑贺斯格乌拉南露天煤矿首采区南帮边坡服务年限、地质条件与力学参数的可靠性、潜在滑坡危害程度等,确定安全储备系数为1.2。

    由于南帮压覆大量煤层,在保证安全前提下,为实现最大限度回采压覆的煤炭资源,需要对边坡形态重新设计。本文选取典型剖面为研究对象,浅层边坡形态按照40 m运输平盘、15 m保安平盘进行设计,深部利用横采内排三维支挡效应回采采场底帮深部压覆煤炭资源。通过上述情况对浅层边坡进行了分析,边坡稳定性计算结果如图2所示。

    图  2  浅层边二维坡稳定性计算结果
    Figure  2.  Calculation results of two-dimensional slope stability of the shallow side

    分析图2可知,浅部边坡形态可按照40 m运输平盘、15 m保安平盘进行设计,由于弱层上部存在煤岩支挡,边坡潜在滑坡模式为以圆弧为侧界面、3-1煤底板弱层为底界面、沿边坡坡脚处剪出,此时,浅层边坡能满足安全储备系数1.2的要求。

    基于浅层边坡二维稳定性分析结果可知,实现深部稳定性控制,必须借助横采工作帮与内排土场的双重支挡作用进行压煤回采,因此提出了利用横采内排三维支挡效应回采采场深部压覆煤炭资源[14]。本文借助FLAC3D数值模拟软件,分析不同降深角度和不同追踪距离条件下的边坡三维稳定性,以期获得最优的边坡空间形态参数。

    (1) 模型的建立

    考虑到FLAC3D建模较为复杂,采用CAD与Rhino相结合的方法,首先在CAD中对剖面进行整理,然后在Rhino软件中进行模型成体与网格划分的处理,并用Griddle将网格导出,生成精细的六面体网格模型[1517],最后导入采用于FLAC3D进行数值模拟计算。为尽可能凸显边坡稳定性的三维效应,以南帮断面形态设计边坡为数值模拟对象,共计建立15种工况模型,模型如图3,追踪距离分别为50,100,200,300,400 m。为避免边界效应,在模型的底部和两侧分别施加水平和垂直位移约束,加载方式为重力加载[18]

    图  3  三维数值模拟模型
    Figure  3.  Three-dimensional numerical simulation model

    (2) 计算结果分析

    由于计算结果过多,本文仅列举降深角度α=29°,追踪距离50,200,400 m工况下边坡位移云图(切割位置为沿模型走向中间处),如图4所示。南帮边坡三维稳定性计算结果如图5所示。

    图  4  数值模拟结果
    Figure  4.  Numerical simulation results at different tracking distance
    图  5  追踪距离与边坡稳定系数的关系曲线
    Figure  5.  Relationship curve between tracking distance and slope stability coefficient

    分析图4图5可知,追踪距离50 m时,三维支挡效应显著,边坡深部位移明显小于上部,发生以圆弧为侧界面、3-1煤底板弱层为底界面的切层-顺层-剪出滑动,稳定系数大于1.2。当追踪距离大于50 m时,通过对比分析不同深部边坡角(α)条件下的数值模拟结果可知,深部边坡角对边坡稳定性系数影响较小,随着追踪距离的增加,边坡的破坏模式过渡为以圆弧为侧界面、3-1煤底板弱层为底界面的切层-顺层滑动,并且此时边坡的稳定性不满足安全储备系数1.2要求。因此,内排土场追踪距离需控制在50 m以内,深部边坡角设计为29°。

    露天矿内排土场边坡稳定的主控因素是软弱基底,软弱基底分为自身软弱岩土层和受外界条影响转变为软弱岩土层2种类型。排土场下沉是软弱基底内排土场失稳的特征,主要现象是含有纵向强烈挤压区,基底上部岩层隆起,地面出现滑坡等[1921]。在保证采场南帮安全的前提下降深至3-1煤底板,须借助横采工作帮与内排土场的双重支挡作用,内排土场稳定是前提[22]。由于内排土场基底为3-1、3-4煤底板弱层,顺倾角度较大,按照内排土场设计参数,其稳定性无法满足安全储备系数的要求[23]。从提供基底强度角度出发,采用破坏弱层回填岩石的方式提高内排土场边坡稳定性。按照排土台阶高度24 m、平盘宽度60 m、坡面角33°对不同内排压帮标高边坡稳定性进行试算,确定内排最小压帮标高为+844水平,因此本文分析了内排基于+844水平的压帮高度下内排土场基底不同的处理方式时的边坡稳定性计算结果如图67所示,边坡稳定性与破坏弱层回填岩石范围关系曲线如图8所示。

    图  6  3-1煤层内排基底不同处理方式下边坡稳定性计算结果
    Figure  6.  Calculation results of slope stability under different treatment methods of inner row basement (3-1)

    分析图6图8可知,当内排基于+844的压帮高度,内排基底3-1底板弱层完全破坏并回填岩石,破坏3-4底板弱层并回填岩石倾向长度达60 m时,内排土场及其与采场南帮复合边坡稳定性均可满足安全系数1.2要求。边坡稳定性随破坏底板弱层回填岩石范围的增大呈正指数函数规律提高,随着回填岩石范围长度的不断增加,边坡稳定性系数不断提高。采用破坏弱层回填岩石的基底处理方法,既保证了边坡的稳定又规避了过渡处理基底的生产成本。

    图  7  3-4煤层内排基底不同处理方式下边坡稳定性计算结果
    Figure  7.  Calculation results of slope stability under different treatment methods of inner row basement (3-4)
    图  8  边坡稳定性与破坏弱层回填岩石范围关系曲线
    Figure  8.  Relationship curve between slope stability and the extent of backfill rocks in the weak layer

    (1) 弱层暴露长度是露天矿顺倾软岩边坡稳定性的主控因素,据此提出了露天矿顺倾软岩边坡内排追踪压帮治理工程,可最大限度的安全回收边坡压覆煤炭资源。

    (2) 控制采场与内排土场间的追踪距离是改善边坡稳定性的有效途径。随着追踪距离的增加,边坡破坏模式从以圆弧为侧界面、弱层为底界面的切层-顺层-剪出滑动逐渐过渡为以圆弧为侧界面、弱层为底界面的切层-顺层滑动。

    (3) 内排土场及其与采场构成的复合边坡稳定性随破坏底板弱层回填岩石范围的增大呈指数函数规律提高,随着回填岩石范围长度的不断增加,边坡稳定性系数不断提高。

    (4) 贺斯格乌拉南露天煤矿首采区南帮浅部边坡留设40 m运输平盘、15 m保安平盘,底帮深部边坡角29°,追踪距离控制在50 m之内时可满足安全要求;内排基底弱层完全破坏并回填岩石倾向长度60 m时可满足安全需求。

  • 图  1   试验区三维地形概览

    Figure  1.   Three-dimensional terrain overview of the test area

    图  2   人工对左岸边坡的典型危岩体的初步调查

    注:(a)为试验区三维地形;(b)为试验区左岸边坡;(c)为左岸边坡样本区;(d)为人工调查的典型危岩体。

    Figure  2.   Preliminary investigation of typical dangerous rock masses on the left bank slope by manual methods

    图  3   研究技术方法

    Figure  3.   Research technical scheme

    图  4   无人机设备

    Figure  4.   UAV equipment

    图  5   第一张正射影照片路线规划(分辨率2.5 cm)

    Figure  5.   Route planning of the first orthophoto photograph (resolution 2.5 cm)

    图  6   精细的仿地飞行路线规划

    Figure  6.   Detailed terrain-following flight path planning

    图  7   无人机三维模型建模并生成点云模型

    注:(a)为构造三角网TIN;(b)为生成模型白膜;(c)为模型纹理映射;(d)LAS点云格式转换

    Figure  7.   UAV three-dimensional modeling and point cloud model generation

    图  8   边界点云密度与密度变化率

    Figure  8.   Boundary point cloud density and density change rate

    图  9   异型滑移式块体的后壁平面提取

    Figure  9.   Extraction of the rear wall plane of profiled block

    图  10   异型滑移式块体的后壁面积与块体体积计算

    Figure  10.   Calculation for the rear wall area and block volume ofprofiled block

    图  11   异型滑移式块体的后壁倾角与最大高差计算

    Figure  11.   Calculation of the rear wall inclination angle and maximum height difference of profiled blocks

    图  12   左岸整体点云,左岸样本区区域

    Figure  12.   Overall point cloud on the left bank and sample area on the left bank

    图  13   异型滑移式块体点云模型提取

    Figure  13.   Point cloud model extraction of profiled blocks

    图  14   异型滑移式块体下采样

    Figure  14.   Downsampling of profiled block

    图  15   依据点云密度提取的异型滑移式块体后壁平面边缘点云

    Figure  15.   Edge point cloud of the rear wall plane of profiled blocks extracted based on point cloud density

    图  16   最小二乘法的后壁平面拟合

    Figure  16.   Rear wall plane fitting using the least square method

    图  17   异型滑移式块体L1的后壁平面和点云投影

    Figure  17.   Rear wall plane and point cloud projection of profiled block L1

    图  18   Alpha Shape算法分别计算异型滑移式块体的后壁面积与体积

    Figure  18.   Alpha Shape algorithm for separate calculation of the rear wall area and volume of profiled block

    表  1   单平面滑动岩体稳定性评价

    Table  1   Stability evaluation of single-plane sliding rock mass

    稳定性系数 稳定性分级
    $ K\geqslant 1.15 $ 稳定
    $ 1.05\leqslant K < 1.15 $ 基本稳定
    $ 1.00\leqslant K < 1.05 $ 欠稳定
    $ K < 1.00 $ 不稳定
    下载: 导出CSV

    表  2   水电工程危险岩体规模分级

    Table  2   Scale classification of dangerous rock mass in hydropower projects

    评价依据 小型 中型 大型 超大型
    体积/m3 $ V\leqslant 100 $ $ 100\leqslant V < 1\;000 $ $ 1000\leqslant V < 1\;0000 $ $ 10\;000\leqslant V $
    下载: 导出CSV

    表  3   异形滑移式块体特征数据统计

    Table  3   Statistical analysis of characteristic data for profiled blocks

    块体编号 后壁倾角/(°) 后壁面积/m2 块体体积/m3 最大高差/m
    L1 50.35 728.15 1712.30 7.65
    L2 45.58 835.53 2398.60 10.60
    L3 40.42 842.94 2299.47 9.48
    L4 26.23 706.89 3294.37 14.53
    L5 46.61 886.78 1690.18 7.71
    下载: 导出CSV

    表  4   异形滑移式块体物理力学参数

    Table  4   Physical and mechanical parameters of profiled block

    参数 块体重度/(kN·m−3 结构面黏聚力/MPa 结构面内摩擦角/(°)
    取值 25.8 0.100 35
    下载: 导出CSV

    表  5   危险岩体稳定系数的计算与定性

    Table  5   Calculation and qualitative characterization of stability coefficient of dangerous rock mass

    块体编号 稳定性系数 稳定性分析 块体性质
    L1 0.58 不稳定
    L2 0.69 不稳定
    L3 0.82 不稳定
    L4 1.42 稳定
    L5 0.66 不稳定
    下载: 导出CSV

    表  6   危险岩体与岩体体积评价

    Table  6   dangerous rock mass and rock massvolume evaluation

    危岩体编号 危岩体体积/m3 危岩体体积评价
    L1 1712.30 大型
    L2 2398.60 大型
    L3 2299.47 大型
    L5 1690.18 大型
    下载: 导出CSV
  • [1] 黄发明, 石雨, 欧阳慰平, 等. 基于证据权和卡方自动交互检测决策树的滑坡易发性预测[J]. 土木与环境工程学报(中英文),2022,44(5):16 − 28. [HUANG Faming, SHI Yu, OUYANG Weiping, et al. Landslide susceptibility prediction modeling based on weight of evidence and Chi-square automatic interactive detection decision tree[J]. Journal of Civil and Environmental Engineering,2022,44(5):16 − 28. (in Chinese with English abstract)]

    HUANG Faming, SHI Yu, OUYANG Weiping, et al. Landslide susceptibility prediction modeling based on weight of evidence and Chi-square automatic interactive detection decision tree[J]. Journal of Civil and Environmental Engineering, 2022, 445): 1628. (in Chinese with English abstract)

    [2] 赵树兴. 基于FLAC和极限平衡法的边坡稳定性分析[J]. 市政技术,2021,39(7):35 − 39. [ZHAO Shuxing. Slope stability analysis based on FLAC and limit equilibrium method[J]. Municipal Engineering Technology,2021,39(7):35 − 39. (in Chinese with English abstract)]

    ZHAO Shuxing. Slope stability analysis based on FLAC and limit equilibrium method[J]. Municipal Engineering Technology, 2021, 397): 3539. (in Chinese with English abstract)

    [3] 傅宏易, 刘远征. 激光测距仪在MATLAB辅助下的危岩体调查应用[J]. 科技通报,2021,37(1):34 − 38. [FU Hongyi, LIU Yuanzheng. Application of laser rangefinder in dangerous rock mass survey assisted by MATLAB[J]. Bulletin of Science and Technology,2021,37(1):34 − 38. (in Chinese with English abstract)]

    FU Hongyi, LIU Yuanzheng. Application of laser rangefinder in dangerous rock mass survey assisted by MATLAB[J]. Bulletin of Science and Technology, 2021, 371): 3438. (in Chinese with English abstract)

    [4]

    DUAN Shuqian,FENG Xiating,JIANG Quan,et al. In situ observation of failure mechanisms controlled by rock masses with weak interlayer zones in large underground cavern excavations under high geostress[J]. Rock Mechanics and Rock Engineering,2017,50(9):2465 − 2493. DOI: 10.1007/s00603-017-1249-4

    [5]

    WANG Xueliang,FRATTINI P,STEAD D,et al. Dynamic rockfall risk analysis[J]. Engineering Geology,2020,272:105622. DOI: 10.1016/j.enggeo.2020.105622

    [6] 陈文宝, 王立明, 张宏伟, 等. 基于ABAQUS的边坡稳定性分析[J]. 市政技术,2017,35(4):177 − 180. [CHEN Wenbao, WANG Liming, ZHANG Hongwei, et al. Slope stability analysis based on ABAQUS[J]. Municipal Engineering Technology,2017,35(4):177 − 180. (in Chinese with English abstract)]

    CHEN Wenbao, WANG Liming, ZHANG Hongwei, et al. Slope stability analysis based on ABAQUS[J]. Municipal Engineering Technology, 2017, 354): 177180. (in Chinese with English abstract)

    [7]

    BITENC M,KIEFFER D S,KHOSHELHAM K. Range versus surface denoising of terrestrial laser scanning data for rock discontinuity roughness estimation[J]. Rock Mechanics and Rock Engineering,2019,52(9):3103 − 3117. DOI: 10.1007/s00603-019-01755-2

    [8]

    SALVINI R,FRANCIONI M,RICCUCCI S,et al. Photogrammetry and laser scanning for analyzing slope stability and rock fall runout along the Domodossola–Iselle railway,the Italian Alps[J]. Geomorphology,2013,185:110 − 122. DOI: 10.1016/j.geomorph.2012.12.020

    [9]

    KUMHÁLOVÁ J,KUMHÁLA F,NOVÁK P,et al. Airborne laser scanning data as a source of field topographical characteristics[J]. Plant,Soil and Environment,2013,59(9):423 − 431.

    [10] 康尘云. 基于倾斜摄影的高位危岩特征获取和稳定性评价——以重庆万州观音山危岩带为例[J]. 中国地质灾害与防治学报,2022,33(5):66 − 75. [KANG Chenyun. Feature acquisition and stability evaluation of high dangerous rock mass based on oblique photography: a case study at Guanyinshan in Wanzhou, Chongqing Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(5):66 − 75. (in Chinese with English abstract)]

    KANG Chenyun. Feature acquisition and stability evaluation of high dangerous rock mass based on oblique photography: a case study at Guanyinshan in Wanzhou, Chongqing Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 335): 6675. (in Chinese with English abstract)

    [11]

    NIETHAMMER U,JAMES M R,ROTHMUND S,et al. UAV-based remote sensing of the Super-Sauze landslide:evaluation and results[J]. Engineering Geology,2012,128:2 − 11. DOI: 10.1016/j.enggeo.2011.03.012

    [12]

    RIQUELME A,TOMÁS R,CANO M,et al. Automatic mapping of discontinuity persistence on rock masses using 3D point clouds[J]. Rock Mechanics and Rock Engineering,2018,51(10):3005 − 3028. DOI: 10.1007/s00603-018-1519-9

    [13]

    ZEYBEK M,ŞANLıOĞLU İ. Point cloud filtering on UAV based point cloud[J]. Measurement,2019,133:99 − 111. DOI: 10.1016/j.measurement.2018.10.013

    [14] 赵婷婷, 高文娟, 李志林, 等. 实景三维技术在“8•8” 九寨沟地震地质灾害快速调查中的应用[J]. 中国地质灾害与防治学报,2023,34(3):93 − 99. [ZHAO Tingting, GAO Wenjuan, LI Zhilin, et al. Application of real-scene 3D technology in the rapid survey of geological disasters after the “8•8” Jiuzhaigou earthquake[J]. The Chinese Journal of Geological Hazard and Control,2023,34(3):93 − 99. (in Chinese with English abstract)]

    ZHAO Tingting, GAO Wenjuan, LI Zhilin, et al. Application of real-scene 3D technology in the rapid survey of geological disasters after the “8•8” Jiuzhaigou earthquake[J]. The Chinese Journal of Geological Hazard and Control, 2023, 343): 9399. (in Chinese with English abstract)

    [15] 梁京涛, 成余粮, 王军, 等. 基于无人机遥感技术的汶川震区典型高位泥石流动态监测——以绵竹市文家沟泥石流为例[J]. 中国地质灾害与防治学报,2013,24(3):54 − 61. [LIANG Jingtao, CHENG Yuliang, WANG Jun, et al. Monitoring of a typical high position debris flow dynamic change in Wenchuan earehquake areas with unmanned aerial vehicles case study of Wenjiagou debris flows in Mianzhu County[J]. The Chinese Journal of Geological Hazard and Control,2013,24(3):54 − 61. (in Chinese with English abstract)]

    LIANG Jingtao, CHENG Yuliang, WANG Jun, et al. Monitoring of a typical high position debris flow dynamic change in Wenchuan earehquake areas with unmanned aerial vehicles case study of Wenjiagou debris flows in Mianzhu County[J]. The Chinese Journal of Geological Hazard and Control, 2013, 243): 5461. (in Chinese with English abstract)

    [16] 黄发明, 陈佳武, 唐志鹏, 等. 不同空间分辨率和训练测试集比例下的滑坡易发性预测不确定性[J]. 岩石力学与工程学报,2021,40(6):1155 − 1169. [HUANG Faming, CHEN Jiawu, TANG Zhipeng, et al. Uncertainties of landslide susceptibility prediction due to different spatial resolutions and different proportions of training and testing datasets[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(6):1155 − 1169. (in Chinese with English abstract)]

    HUANG Faming, CHEN Jiawu, TANG Zhipeng, et al. Uncertainties of landslide susceptibility prediction due to different spatial resolutions and different proportions of training and testing datasets[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 406): 11551169. (in Chinese with English abstract)

    [17]

    NICHOLSON L,MERTES J. Thickness estimation of supraglacial debris above ice cliff exposures using a high-resolution digital surface model derived from terrestrial photography[J]. Journal of Glaciology,2017,63(242):989 − 998. DOI: 10.1017/jog.2017.68

    [18] 王明辉, 曹熙平, 谯立家. 危岩体精细调查与崩塌过程三维场景模拟——以西南某水电站高边坡为例[J]. 中国地质灾害与防治学报,2023,34(6):86 − 96. [WANG Minghui, CAO Xiping, QIAO Lijia. Comprehensive analysis of hazardous rock mass and simulation of potential rockfall processes using 3D terrain model: a case study of the high cut slope near damsite of a hydropower station in Southern China[J]. The Chinese Journal of Geological Hazard and Control,2023,34(6):86 − 96. (in Chinese with English abstract)]

    WANG Minghui, CAO Xiping, QIAO Lijia. Comprehensive analysis of hazardous rock mass and simulation of potential rockfall processes using 3D terrain model: a case study of the high cut slope near damsite of a hydropower station in Southern China[J]. The Chinese Journal of Geological Hazard and Control, 2023, 346): 8696. (in Chinese with English abstract)

    [19] 党杰, 董吉, 何松标, 等. 机载LiDAR与地面三维激光扫描在贵州水城独家寨崩塌地质灾害风险调查中的应用[J]. 中国地质灾害与防治学报,2022,33(4):106 − 113. [DANG Jie, DONG Ji, HE Songbiao, et al. Application of airborne LiDAR and ground 3D laser scanning in geological hazard risk investigation of Dujiazhai collapse in Shuicheng, Guizhou[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):106 − 113. (in Chinese with English abstract)]

    DANG Jie, DONG Ji, HE Songbiao, et al. Application of airborne LiDAR and ground 3D laser scanning in geological hazard risk investigation of Dujiazhai collapse in Shuicheng, Guizhou[J]. The Chinese Journal of Geological Hazard and Control, 2022, 334): 106113. (in Chinese with English abstract)

    [20]

    RABATEL A,DELINE P,JAILLET S,et al. Rock falls in high-alpine rock walls quantified by terrestrial lidar measurements:a case study in the Mont Blanc Area[J]. Geophysical Research Letters,2008,35(10):L10502.

    [21]

    BAR N,KOSTADINOVSKI M,TUCKER M,et al. Rapid and robust slope failure appraisal using aerial photogrammetry and 3D slope stability models[J]. International Journal of Mining Science and Technology,2020,30(5):651 − 658. DOI: 10.1016/j.ijmst.2020.05.013

    [22]

    CARA S,FIORI M,MATZUZZI C. Assessment of landscape by photogrammetry proximity uav survey technique:a case study of an abandoned mine site in the Furtei Area (Sardinia-Italy)[J]. 2013.

    [23]

    HAVAEJ M,COGGAN J,STEAD D,et al. A combined remote sensing–numerical modelling approach to the stability analysis of delabole slate quarry,cornwall,UK[J]. Rock Mechanics and Rock Engineering,2016,49(4):1227 − 1245. DOI: 10.1007/s00603-015-0805-z

    [24] 杜源, 王纯, 张勤, 等. 顾及黄土滑坡灾害状态特征的实时GNSS滤波算法[J]. 武汉大学学报(信息科学版),2023,48(7):1216 − 1222. [DU Yuan, WANG Chun, ZHANG Qin, et al. Real-time GNSS filtering algorithm considering state characteristics of loess landslide hazards[J]. Geomatics and Information Science of Wuhan University,2023,48(7):1216 − 1222. (in Chinese with English abstract)]

    DU Yuan, WANG Chun, ZHANG Qin, et al. Real-time GNSS filtering algorithm considering state characteristics of loess landslide hazards[J]. Geomatics and Information Science of Wuhan University, 2023, 487): 12161222. (in Chinese with English abstract)

    [25]

    ALI S,LIU Dong,FU Qiang,et al. Improving the resolution of GRACE data for spatio-temporal groundwater storage assessment[J]. Remote Sensing,2021,13(17):3513. DOI: 10.3390/rs13173513

    [26]

    YANG Boxiong,ALI F,ZHOU Bo,et al. A novel approach of efficient 3D reconstruction for real scene using unmanned aerial vehicle oblique photogrammetry with five cameras[J]. Computers and Electrical Engineering,2022,99:107804. DOI: 10.1016/j.compeleceng.2022.107804

    [27]

    INAM O,QURESHI M,LARAIB Z,et al. GPU accelerated Cartesian GRAPPA reconstruction using CUDA[J]. Journal of Magnetic Resonance,2022,337:107175. DOI: 10.1016/j.jmr.2022.107175

    [28] 黄发明, 殷坤龙, 蒋水华, 等. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报,2018,37(1):156 − 167. [HUANG Faming, YIN Kunlong, JIANG Shuihua, et al. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(1):156 − 167. (in Chinese with English abstract)]

    HUANG Faming, YIN Kunlong, JIANG Shuihua, et al. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 371): 156167. (in Chinese with English abstract)

    [29] 武永彩. 基于LiDAR点云的电力线自适应密度聚类提取[J]. 工程勘察,2023,51(5):52 − 56. [WU Yongcai. Adaptive density clustering for extracting power line based on LiDAR point clouds[J]. Geotechnical Investigation & Surveying,2023,51(5):52 − 56. (in Chinese with English abstract)]

    WU Yongcai. Adaptive density clustering for extracting power line based on LiDAR point clouds[J]. Geotechnical Investigation & Surveying, 2023, 515): 5256. (in Chinese with English abstract)

    [30] 王道杰, 陈倍, 孙健辉. 机载LiDAR点云密度对DEM精度的影响[J]. 测绘通报,2022(5):140 − 144. [WANG Daojie, CHEN Bei, SUN Jianhui. Study on the effects of point density on DEM accuracy of airborne LiDAR[J]. Bulletin of Surveying and Mapping,2022(5):140 − 144. (in Chinese with English abstract)]

    WANG Daojie, CHEN Bei, SUN Jianhui. Study on the effects of point density on DEM accuracy of airborne LiDAR[J]. Bulletin of Surveying and Mapping, 20225): 140144. (in Chinese with English abstract)

    [31]

    MAYR A,RUTZINGER M,BREMER M,et al. Object-based classification of terrestrial laser scanning point clouds for landslide monitoring[J]. The Photogrammetric Record,2017,32(160):377 − 397. DOI: 10.1111/phor.12215

    [32]

    GOLDMAN R N. AREA OF PLANAR POLYGONS AND VOLUME OF POLYHEDRA[J]. Graphics Gems II,1991:170 − 171.

    [33]

    WANG Binbin,XIE Jiacheng,WANG Xuewen,et al. A new method for measuring the attitude and straightness of hydraulic support groups based on point clouds[J]. Arabian Journal for Science and Engineering,2021,46(12):11739 − 11757. DOI: 10.1007/s13369-021-05689-2

    [34]

    LATO M,KEMENY J,HARRAP R M,et al. Rock bench:establishing a common repository and standards for assessing rockmass characteristics using LiDAR and photogrammetry[J]. Computers & Geosciences,2013,50:106 − 114.

    [35]

    WANG Luqi,YIN Yueping,HUANG Bolin,et al. Damage evolution and stability analysis of the Jianchuandong Dangerous Rock Mass in the Three Gorges Reservoir Area[J]. Engineering Geology,2020,265:105439. DOI: 10.1016/j.enggeo.2019.105439

    [36]

    WU Wenlong,LIU Xiliang,GUO Jiaqi,et al. Upper limit analysis of stability of the water-resistant rock mass of a Karst tunnel face considering the seepage force[J]. Bulletin of Engineering Geology and the Environment,2021,80(7):5813 − 5830. DOI: 10.1007/s10064-021-02283-6

    [37]

    TAO Zhigang,FAN Fangzheng,YANG Xiaojie,et al. Prediction of deep rock mass quality and spatial distribution law of open-pit gold mine based on 3D geological modeling[J]. Geotechnical and Geological Engineering,2021,39(4):3221 − 3238. DOI: 10.1007/s10706-021-01690-6

  • 期刊类型引用(1)

    1. 管少杰,吕进国,王康,张砚力. 露天矿下伏采空区距坡脚水平距离对边坡稳定性的影响. 工矿自动化. 2025(02): 113-120 . 百度学术

    其他类型引用(0)

图(18)  /  表(6)
计量
  • 文章访问数:  163
  • HTML全文浏览量:  36
  • PDF下载量:  114
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-10-20
  • 修回日期:  2024-01-07
  • 网络出版日期:  2024-01-22
  • 刊出日期:  2024-01-31

目录

/

返回文章
返回