ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

花岗岩残积土的微细观结构研究

庄静茹, 林威, 简文彬, 夏昌, 黄志辉

庄静茹,林威,简文彬,等. 花岗岩残积土的微细观结构研究[J]. 中国地质灾害与防治学报,2025,36(0): 1-9. DOI: 10.16031/j.cnki.issn.1003-8035.202310018
引用本文: 庄静茹,林威,简文彬,等. 花岗岩残积土的微细观结构研究[J]. 中国地质灾害与防治学报,2025,36(0): 1-9. DOI: 10.16031/j.cnki.issn.1003-8035.202310018
ZHUANG Jingru,LIN Wei,JIAN Wenbin,et al. Study on the Microstructure of Granite Residual Soils[J]. The Chinese Journal of Geological Hazard and Control,2025,36(0): 1-9. DOI: 10.16031/j.cnki.issn.1003-8035.202310018
Citation: ZHUANG Jingru,LIN Wei,JIAN Wenbin,et al. Study on the Microstructure of Granite Residual Soils[J]. The Chinese Journal of Geological Hazard and Control,2025,36(0): 1-9. DOI: 10.16031/j.cnki.issn.1003-8035.202310018

花岗岩残积土的微细观结构研究

基金项目: 国家自然科学基金(U2005205)、浙江省第一水电建设集团技术开发项目(01612202)资助.
详细信息
    作者简介:

    庄静茹(1999—),女,硕士研究生,主要从事地质灾害防治方面的研究。E-mail:499711558@qq.com

    通讯作者:

    简文彬(1963—),男,博士,教授,主要从事岩土工程与工程地质研究。E-mail:jwb@fzu.edu.cn

  • 中图分类号: TU411.92

Study on the Microstructure of Granite Residual Soils

Funds: This work was supported by the National Natural Science Foundation of China (U2005205).
  • 摘要:

    花岗岩残积土在东南丘陵山地广泛分布,在降雨等因素作用下残积土边坡易失稳产生滑坡。花岗岩残积土按照不同粒径的颗粒含量可划分为花岗岩残积黏性土、花岗岩残积砂质黏性土和花岗岩残积砾质黏性土,因其具有较强的结构性,其微观结构的变化往往表征在宏观坡体稳定性方面。通过X射线衍射分析、SEM扫描电镜分析等手段,从微观结构层面揭示了花岗岩残积土的物质与结构性特征。结果表明,花岗岩残积黏性土的胶结能力及力学强度高于花岗岩残积砂质黏性土,土体的微观结构性质发展一定程度上决定了宏观力学性质的变化。研究结果对进一步揭示花岗岩残积土微观结构特征、变形机制及其对力学性质的影响具有理论及实际意义。

    Abstract:

    Granite residual soils pervade the hilly and mountainous regions of Southeast China, where they are susceptible to destabilization and landslides, particularly under rainfall influences. These soils are classified into three categories based on particle size distribution: cohesive, sandy cohesive, and gravel cohesive. Their structural robustness significantly influences macroscopic slope stability through microstructural alterations. Advanced analytical techniques, such as X-ray diffraction and scanning electron microscopy (SEM), have elucidated the microstructural characteristics of these soils. The empirical data reveal that the cementation capacity and mechanical strength of cohesive granite residual soils are superior to those of the sandy cohesive soil. These microstructural properties play a pivotal role in determining the changes in macroscopic mechanical behavior of the soil. This research is of both theoretical and practical importance as it enhances understanding of the microstructural features of granite residual soils, their deformation mechanisms, and their impact on mechanical properties, offering valuable insights for geotechnical applications in forecasting and mitigating slope instability.

  • 库岸滑坡是深切割高山峡谷型库岸常见的破坏形式,多集中分布于我国西南山区[1-2]。库岸滑坡由地表内外营力相互作用而形成,人类工程建设及库区水位变化则使其演化特征更为突出,通常表现为库区蓄水之后库岸下缘坡体岩层软化,从而引起上部库岸的形变破坏[3-4]。库岸滑坡受多方面因素影响,具有成因复杂、类型多样和危害巨大等特点[5-7]。在水电站库区,蓄水和泄洪等因素导致的水位变化直接影响库岸滑坡的稳定性,库岸滑坡一旦失稳会诱发一系列次生灾害,破坏区域生态系统,毁坏库区坝体和发电设施[8],严重威胁库区上下游居民生命财产安全。因此,对水电站库岸滑坡进行变形监测具有重要意义。

    常规监测手段已难以识别和监测大面积的库岸滑坡形变,相对传统的精密水准测量、全球卫星导航系统(Global Navigation Satellite System, GNSS)和光学遥感技术,合成孔径雷达干涉测量(Interferometric Synthetic Aperture Radar,InSAR)技术因其大范围、全天时、全天候、高精度和高分辨率等特点,已成功应用于库岸滑坡灾害识别监测分析中[9-11]。国内外学者利用InSAR技术在库岸滑坡灾害的应用方面做了大量研究,康亚等[8]利用三类InSAR产品和DEM数据对金沙江流域乌东德水电站段进行滑坡早期识别,成功探测到多处未知和已知的滑坡体;徐帅等利用墨兰指数对SBAS-InSAR技术获取的形变点进行空间域异常值分析和聚类处理,成功识别出三峡库区巫山—奉节段高概率潜在滑坡范围[12];王振林等[13]利用SBAS-InSAR技术提取雅砻江流域锦屏一级水电站库区左岸边坡的形变特征信息,推断出大幅水位上升是诱发滑坡复活的主要因素;朱同同等[14]结合时序InSAR技术和GPS观测值分析了降雨和蓄水对三峡库区树坪滑坡变形的影响;史绪国等[15]联合分布式目标与点目标的时序InSAR技术对三峡库区藕塘滑坡进行稳定性监测;Tantianuparp等[16]联合多种SAR数据和PS-InSAR技术对三峡巴东进行滑坡探测,并将PS点时序形变与水位时间变化进行初步相关性分析;Zhou等[17]利用时序InSAR技术发现三峡库区木鱼堡滑坡变形主要发生在水库涨落期和高水位期;Liu等[18]利用SBAS-InSAR技术对三峡巴东地区进行滑坡探测并分析季节性滑坡运动与水位变化之间的相关性,上述研究证明了时序InSAR技术在库岸滑坡监测中的可靠性,可以对水电站库岸滑坡变形进行有效分析。白鹤滩水电站地处四川和云南交界,自2021年4月开始蓄水,库区水位由660 m升至825 m,上升幅度达165 m;水电站运行期间最低水位765 m,最高水位825 m,升降水位差60 m,最大库容达256×108 m3[19-20]。库区地形起伏较大、断裂构造发育,加之蓄水引起的水位变化直接影响库岸潜在滑坡的变形趋势,对水电站基础设施和上下游居民生命财产安全造成潜在威胁[21-22]。因此,亟需对白鹤滩水电站库岸潜在滑坡进行变形分析。

    文章联合2019年7月3日至2021年7月28日的150景升降轨Sentinel-1 SAR数据集,采用SBAS-InSAR技术获取白鹤滩水电站库区雷达视线方向(Line of sight,LOS)形变时间序列,在分析地表形变时间演化规律和空间分布特征的基础上,结合无人机野外调查,分析白鹤滩水电站库岸潜在滑坡的变形特征,重点研究蓄水因素对库岸潜在滑坡变形趋势的影响。

    小基线集InSAR(Small Baseline Subset InSAR,SBAS-InSAR)技术最早由Berardino和Lanari等[23]提出,该方法通过组合数据的方式获得一系列短空间基线差分干涉图,这些差分干涉图能较好地克服空间失相关现象。SBAS-InSAR技术利用奇异值分解(SVD)法求解形变速率,将被较大空间基线分开的孤立SAR数据进行连接,进一步提高观测数据的时间采样率[23]。该方法可以有效减弱大气效应,降低相位噪声和误差[24],其基本原理及流程如下:

    假定已获取覆盖同一区域的按时间序列排序的$ N + 1 $幅SAR影像:

    $$ T = {\left[ {{T_0},{T_1}, \cdots ,{T_N}} \right]^{\rm{T}}} $$ (1)

    根据干涉组合规则,生成M幅干涉图且M应当满足:

    $$ \frac{{N + 1}}{2} \leqslant M \leqslant \frac{{N\left( {N + 1} \right)}}{2} $$ (2)

    假设以$ {t_0} $作为影像获取起始时刻且$ {t_0} $时刻影像覆盖区域位移为0,则在去除轨道误差、平地效应及地形相位的影响后,第$ i\left( {1 \leqslant i \leqslant M} \right) $幅影像某像素的干涉相位可表示为:

    $$ \Delta {\varphi _i} = {\varphi _{{t_1}}} - {\varphi _{{t_2}}} \approx \Delta {\varphi _{{i_{\rm{def}}}}} + \Delta {\varphi _{{i_{\rm{topo}}}}} + \Delta {\varphi _{{i_{\rm{atm}}}}} + \Delta {\varphi _{{i_{\rm{noise}}}}} $$ (3)
    $$ \left\{ \begin{gathered} \Delta {\varphi _{{i_{\rm{def}}}}}\left( {x,r} \right) = \frac{{4\text{π} }}{\lambda }\left[ {d\left( {{t_2}} \right) - d\left( {{t_2}} \right)} \right],i = 1,2, \cdots ,m \\ \Delta {\varphi _{{i_{\rm{topo}}}}}\left( {x,r} \right) = \frac{{4\text{π} }}{\lambda } \cdot \frac{{{B_ \bot }\Delta h}}{{r{\sin}\theta }} \\ \Delta {\varphi _{{i_{\rm{atm}}}}}\left( {x,r} \right) = {\varphi _{\rm{atm}}}\left( {{t_2}} \right) - \varphi \left( {{t_1}} \right) \\ \end{gathered} \right. $$ (4)

    式中:$ \Delta {\varphi _{{i_{\rm{def}}}}} $——斜距向形变产生的相位;

    $ \Delta {\varphi _{{i_{\rm{topo}}}}} $——地形相位;

    $ \Delta {\varphi _{{i_{\rm{atm}}}}} $——大气延迟引起的相位;

    $ \Delta {\varphi _{{i_{\rm{noise}}}}} $——相干噪声造成的相位。

    利用最小二乘或者奇异值分解(SVD)对m个解缠相位进行三维时空相位解缠即可获得不同SAR时刻对应的时序形变速率。

    本文以四川省与云南省交界白鹤滩水电站库区作为研究区域,如图1所示。研究区长约30.38 km,宽约11.65 km,总面积353.93 km2,地处横断山脉东北部、青藏高原东南边缘,区域内断裂构造发育,构造运动强烈,河谷深切,山体陡峻,地震频发[25-27]。最高海拔3556 m,最低海拔520 m,高差达3036 m,地势陡峭,致使该区存在大量滑坡、崩塌和泥石流等地质灾害隐患。

    图  1  研究区位置
    Figure  1.  Location of study area

    形变监测数据选用从欧州航天局(European Space Agency, ESA)免费下载的150景C波段Sentinel-1雷达影像(其中升轨数据50景,降轨数据100景并在每个时间点上下两景拼接),升降轨数据覆盖区域如图2所示。时间跨度为2019年7月3日至2021年7月28日,极化方式为VV,成像方式为IW,数据参数如表1所示。为提高影像轨道精度,引入POD精密定轨星历数据。使用日本宇宙航空研究开发机构(Japan Aerospace Exploration Agency,JAXA)发布的ALOS WORLD 3D 30 m空间分辨率的数字高程模型(Digital Elevation Model,DEM),用于去除地形相位影响,如图3所示。

    图  2  SAR卫星影像覆盖范围
    Figure  2.  SAR satellite image coverage
    表  1  Sentinel-1A数据参数
    Table  1.  Sentinel-1A data parameters
    轨道方向成像模式极化方式波长波段入射角/(°)
    升轨IWVV5.63C39.44
    降轨IWVV5.63C39.28
    下载: 导出CSV 
    | 显示表格
    图  3  研究区DEM
    Figure  3.  Digital elevation model of study area

    采用SBAS-InSAR技术,选取经镶嵌、配准和裁剪后的100景Sentinel-1A斜距单视复数(Single Look Complex,SLC)影像(升降轨数据各50景),根据时间基线和垂直基线最优原则,升轨和降轨数据分别以日期为20191216和20200204的影像作为超级主影像。设置时间基线阈值180d,空间基线为临界基线阈值的50%,共生成654和888对干涉像对。为抑制斑点噪声,设置多视数为1∶4,采用Minimum Cost Flow 解缠方法和Goldstein滤波方法进行干涉处理,将组合干涉对经过配准,调整删除不理想的数据后生成干涉图,研究区部分较理想的干涉图如图4所示。

    图  4  研究区部分较理想的干涉图
    注:(a)、(b)、(c)为升轨数据干涉图,(d)、(e)、(f)为降轨数据干涉图
    Figure  4.  Ideal interference patterns in the study area

    经过轨道精炼和重去平,利用最小二乘法和奇异值矩阵分解进行形变反演,然后估算和去除大气相位,得到研究区时间序列形变信息,对时序信息地理编码后获取研究区2019年7月3日至2021年7月28日LOS方向的形变结果。如图5所示,形变速率为正值表示靠近卫星,负值表示远离卫星。对比图5(a)、(b)研究区形变结果可知,降轨数据集探测的形变信息较为丰富,主要集中在库区西岸,最大LOS向形变速率−61.425 mm/a;升轨数据集仅在库区东岸部分区域形变较为明显,最大LOS向形变速率为91.426 mm/a。升降轨数据集形变信息不一致的原因是白鹤滩水电站库区两岸地形起伏较大,山势陡峭险峻,而升轨数据飞行方向大致沿东南向西北,雷达视线方向位于右侧,降轨数据则与之相反,故利用InSAR探测形变过程中阴影、叠掩和透视收缩等几何畸变现象严重。

    图  5  研究区视线向形变速率
    Figure  5.  Line-of-sight deformation rate of the study area

    对升轨和降轨数据获取的研究区形变结果进行综合解译,升轨数据库岸形变区域解译结果如图6所示,共选取库岸形变较大区域4处。结合无人机野外调查结果,发现典型潜在滑坡2处,分别用H1和H2表示;非滑坡形变区2处,分别用X1和X2表示,升轨数据详细解译结果如表2所示。

    图  6  升轨潜在滑坡解译及实地考察结果
    Figure  6.  Interpretation and field investigation results of potential landslide in ascending orbit
    表  2  升轨数据库岸形变区域解译结果列表
    Table  2.  List of interpretation results of shore deformation region in orbit lifting database
    编号形变区域名称最大形变速率/(mm·a−1形变区域类别
    H1观音岩19.846潜在滑坡
    H2鱼坝18.537潜在滑坡
    X1六城村76.259非滑坡形变
    X2半坡55.947非滑坡形变
    下载: 导出CSV 
    | 显示表格

    降轨数据库岸形变区域解译结果如图7所示,共选取库岸形变较大区域6处。结合无人机野外调查结果,发现典型潜在滑坡4处,分别用H3至H6编号;非滑坡形变区2处,分别用X3和X4表示,降轨数据详细解译结果如表3所示。

    表  3  降轨数据库岸形变区域解译结果列表
    Table  3.  List of interpretation results of shore deformation region in orbit descent database
    编号形变区域名称最大形变速率/(mm·a−1形变区域类别
    H3观音岩10.726潜在滑坡
    H4清水沟17.605潜在滑坡
    H5鱼坝19.326潜在滑坡
    H6大湾子15.888潜在滑坡
    X3六城村48.871非滑坡形变
    X4半坡61.425非滑坡形变
    下载: 导出CSV 
    | 显示表格
    图  7  降轨潜在滑坡解译及实地考察结果
    Figure  7.  Interpretation and field investigation results of potential landslide in descending orbit

    对比升轨和降轨数据解译结果可以看出,非滑坡形变区X1、X2与X3、X4分别相同,潜在滑坡H1、H2与H3、H5相互对应。另外,降轨数据还解译出除上述区域以外的潜在滑坡H4和H6,同一时间段不同轨道SAR数据集探测的形变结果能够相互对应,从侧面验证了本文InSAR结果的准确性,但受时间、空间失相干因素和几何畸变影响,升降轨形变信息有所差异,说明升降轨结合的方式能够有效弥补仅利用单一轨道识别结果不全面、不准确的缺陷,提升库岸潜在滑坡灾害识别和监测的准确性和有效性。

    结合4.1节升降轨数据集库岸潜在滑坡解译结果,本文选取H1、H2、H4和H6四处典型潜在滑坡进行变形分析,分别在各滑坡形变结果中选取特征点,引入研究区降雨数据,绘制特征点在蓄水前后的时序形变曲线,并结合无人机野外调查结果分析库岸典型潜在滑坡的变形特征。

    H1滑坡地处观音岩,位于沿江公路东岸,滑坡形变速率如图8(a)所示。滑坡整体形变速率范围为−10.726~15.433 mm/a,分别选取滑坡体上缘和下缘特征点A、B与降雨数据构建时序形变曲线如图8(b)所示,特征点A和B时序形变速率波动趋势大致相同,每年雨季形变速率较旱季明显增加。2019年10月—2020年5月形变速率减小,2021年4月后形变速率增大,同比增加约16 mm/a。

    图  8  H1潜在滑坡形变特征
    Figure  8.  H1 potential landslide deformation characteristics

    经实地勘察,该滑坡坡体上缘为自然坡体,坡体下缘已进行边坡加固,故在2019年10月至2020年5月间B点较A点形变速率变化相对稳定。受降雨因素影响,坡体在雨季滑动速率增大。2021年4月至5月,降雨量几乎为零,水电站蓄水导致库区水位上升,库岸下缘受到江水侵蚀改变坡体上下缘间的平衡关系,使该滑坡体形变量增大。

    H2滑坡地处鱼坝村,金沙江支流末端。滑坡形变速率如图9(a)所示,形变较大值处于坡体中上部,形变范围在−19.326~8.254 mm/a。在坡体两侧分别选择特征点C、D结合降雨数据构建时序形变曲线见图9(b),特征点C和D形变速率变化趋势基本一致,与降雨数据呈现一定相关性,雨旱两季形变速率差异较小。2020年1月至10月间,形变速率逐渐减小,2021年1月后形变速率振荡变化,2021年4月之后,形变速率增加值超过10 mm/a。

    图  9  H2潜在滑坡形变特征
    Figure  9.  H2 potential landslide deformation characteristics

    经野外实地调查,H2滑坡滑面自上而下呈倒“V”字形。由于隧道工程尚未完工,附近仍伴有部分工程活动,故在2020年雨季坡体滑动速率对降雨因素响应较弱,表现为形变速率逐渐减小。从图9(b)可以看出,2021年4月以后,特征点C和D形变速率相对之前有所增加,此时降雨量较小,说明蓄水导致的库区水位抬升也对远离河道的坡体产生影响。

    H4滑坡体地处清水沟,位于库区西岸。滑坡形变速率如图10(a)所示,滑坡整体形变范围为−17.605~9.012 mm/a,形变速率较大区域位于坡体中部。由图10(b)特征点与降雨数据构建的时序形变曲线可知,特征点E呈振荡变化趋势,雨旱两季形变速率差异明显。2020年8月后形变速率急剧增大,2021年4月之后形变速率相比同期增加约17 mm/a。

    图  10  H4潜在滑坡形变特征
    Figure  10.  H4 potential landslide deformation characteristics

    通过野外调查可知,H4滑坡属于临江大型冲沟,沟面呈褶皱形态,目前尚未发育为真正意义的滑坡。图10(b)时序形变曲线在2020年雨季后呈梯度下降趋势,主要原因是降水冲刷沟壑表面使冲沟坡面向下滑动。2021年4月之后相比同期形变速率明显增加,此时受降雨影响微弱,说明该滑坡体对水位变化有较强响应,原本裸露的坡体下缘遭受江水侵蚀,下缘坡体在动水压力作用下土壤结构趋向松散状态,上缘冲沟体失稳,自然产生向下形变。

    H6滑坡位于库区西岸大湾子隧道,滑动面处于隧道临江一侧,其形变速率如图11所示,整体形变速率为−15.888~16.326 mm/a, 选取滑坡体中部特征点F与降雨数据建立时序形变曲线(图11),特征点F形变速率整体呈波动趋势,在2020年雨季形变速率较旱季增速明显。2021年4月之后,形变速率缓慢增大,较同期增加约16 mm/a。

    图  11  H6潜在滑坡形变特征
    Figure  11.  H6 potential landslide deformation characteristics

    经野外实地考察,发现H6滑坡已发育且有部分滑动痕迹,在坡体顶端还发育有一定程度的裂缝(图11),所以在雨季降水冲刷坡面且沿裂缝渗入坡体改变其土体应力结构,使坡体产生较大形变。由图11可以看出,2021年4—5月间,降雨量几乎为零,但形变速率变化明显,说明该坡体对水位抬升具有较强响应,降水沿裂缝进入坡体内部,促进了破裂面的贯通,而水位抬升致使坡体下缘和滑动面软化,降低其抗剪强度,降雨和水位抬升的共同作用可能使H6滑坡进一步发育,后续应当对该滑坡进行重点监测。

    本文联合升降轨Sentinel-1 SAR数据,采用SBAS-InSAR技术并结合无人机野外调查数据,分析白鹤滩水电站库岸潜在滑坡的变形特征,得到以下结论:

    (1)白鹤滩水电站库区LOS方向形变速率为−90.959~91.426 mm/a,受蓄水因素影响,各库岸典型潜在滑坡形变速率明显加快,蓄水前后形变平均增速达10 mm/a以上;

    (2)白鹤滩水电站库岸潜在滑坡对水位变化具有较强响应,蓄水量增加是当前库岸潜在滑坡发育的关键性诱因,水位抬升之后潜在滑坡形变速率变化明显,在降雨和蓄水等因素共同作用下,白鹤滩水电站库岸潜在滑坡存在失稳风险;

    (3)降轨数据集探测的形变信息较为丰富,主要集中在库区西岸,而升轨数据集仅在库区东岸部分区域形变较为明显,故联合升降轨SAR数据能有效克服仅利用单一轨道导致的几何畸变等问题,使水电站库岸潜在滑坡变形监测更加准确、全面。

  • 图  1   试验土样照片

    Figure  1.   Photos of test soil samples

    图  2   试验所用仪器照片

    Figure  2.   Photos of instruments used in the experiment

    图  3   矿物X射线衍射图谱

    Figure  3.   X-ray diffraction pattern of Minerals

    图  4   数码电子显微镜图像

    Figure  4.   Digital electron microscope images

    图  5   WZ1试样SEM照片

    Figure  5.   SEM photos of WZ1 sample

    图  6   WZ2试样SEM照片

    Figure  6.   SEM photos of WZ2 sample

    图  7   土样放大3D效果图

    Figure  7.   Enlarged 3D rendering of soil sample

    表  1   WZ1、WZ2基本物理力学性质参数

    Table  1   Basic physical and mechanical properties of WZ1 and WZ2

    试样 密度ρ(g/m3 干密度ρd(g/m3 比重Gs 含水量ω(%) 粘聚力c(kPa) 内摩擦角φ(°)
    WZ1 1.77 1.48 2.68 19.53 39.37 26.29
    WZ2 1.37 1.19 2.46 12.92 15.62 33.33
    下载: 导出CSV

    表  2   WZ1矿物X衍射物相定量分析结果

    Table  2   Quantitative Phase Analysis Results for WZ1 Mineral X-ray Diffraction

    矿物名称化学式含量 [%]
    Quartz(石英)SiO237.0
    Orthoclase(正长石)KSi3AlO810.9
    Albite calcian low(钠长石)(Na0.84Ca0.16)Al1.16Si2.84O811.1
    Palygorskite(坡缕石)(Mg2.074Al1.026)(Si4O10.482(OH)2(H2O)10.686.7
    Kaolinite (高岭石)Al2Si2O5(OH)434.3
    下载: 导出CSV

    表  3   WZ2矿物X衍射物相定量分析结果

    Table  3   Quantitative Phase Analysis Results for WZ2 Mineral X-ray Diffraction

    矿物名称化学式含量[%]
    Quartz(石英)SiO233.4
    Orthoclase(正长石)KSi3AlO844.9
    Albite calcian low(钠长石)(Na0.84Ca0.16)Al1.16Si2.84O87.9
    Palygorskite(坡缕石)(Mg2.074Al1.026)(Si4O10.482(OH)2(H2O)10.684.8
    Kaolinite(高岭石)Al2Si2O5(OH)49.0
    下载: 导出CSV
  • [1] 吴能森. 花岗岩残积土的分类研究[J]. 岩土力学,2006,27(12):2299 − 2304. [WU Nengsen. Study on classification of granite residual soils[J]. Rock and Soil Mechanics,2006,27(12):2299 − 2304. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2006.12.041

    WU Nengsen. Study on classification of granite residual soils[J]. Rock and Soil Mechanics, 2006, 27(12): 2299 − 2304. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2006.12.041

    [2] 林威. 花岗岩残积土结构性与边坡稳定分析[D]. 福州:福州大学,2014. [LIN Wei. Structural analysis of granite residual soil and slope stability[D]. Fuzhou:Fuzhou University,2014. (in Chinese with English abstract)]

    LIN Wei. Structural analysis of granite residual soil and slope stability[D]. Fuzhou: Fuzhou University, 2014. (in Chinese with English abstract)

    [3] 汪华斌,周宇,余刚,等. 结构性花岗岩残积土三轴试验研究[J]. 岩土力学,2021,42(4):991 − 1002. [WANG Huabin,ZHOU Yu,YU Gang,et al. A triaxial test study on structural granite residual soil[J]. Rock and Soil Mechanics,2021,42(4):991 − 1002. (in Chinese with English abstract)]

    WANG Huabin, ZHOU Yu, YU Gang, et al. A triaxial test study on structural granite residual soil[J]. Rock and Soil Mechanics, 2021, 42(4): 991 − 1002. (in Chinese with English abstract)

    [4] 韦毅. 干湿循环效应下花岗岩残积土边坡土体工程特性及稳定性分析[D]. 福州:福州大学,2018. [WEI Yi. Engineering characteristics and stability analysis of granite residual soil slope under dry-wet cycle effect[D]. Fuzhou:Fuzhou University,2018. (in Chinese with English abstract)]

    WEI Yi. Engineering characteristics and stability analysis of granite residual soil slope under dry-wet cycle effect[D]. Fuzhou: Fuzhou University, 2018. (in Chinese with English abstract)

    [5] 胡华,吴轩,张越. 基于模拟试验的强降雨条件下花岗岩残积土斜坡滑塌破坏机理分析[J]. 中国地质灾害与防治学报,2021,32(5):92 − 97. [HU Hua,WU Xuan,ZHANG Yue. Experimental study on slope collapse characteristics of granite residual soil slope under heavy rainfall[J]. The Chinese Journal of Geological Hazard and Control,2021,32(5):92 − 97. (in Chinese with English abstract)]

    HU Hua, WU Xuan, ZHANG Yue. Experimental study on slope collapse characteristics of granite residual soil slope under heavy rainfall[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(5): 92 − 97. (in Chinese with English abstract)

    [6] 于佳静,陈东霞,王晖,等. 干湿循环下花岗岩残积土抗剪强度及边坡稳定性分析[J]. 厦门大学学报(自然科学版),2019,58(4):614 − 620. [YU Jiajing,CHEN Dongxia,WANG Hui,et al. Analysis of the shear strength of granite residual soil and slope stability under wetting-drying cycles[J]. Journal of Xiamen University (Natural Science),2019,58(4):614 − 620. (in Chinese with English abstract)]

    YU Jiajing, CHEN Dongxia, WANG Hui, et al. Analysis of the shear strength of granite residual soil and slope stability under wetting-drying cycles[J]. Journal of Xiamen University (Natural Science), 2019, 58(4): 614 − 620. (in Chinese with English abstract)

    [7]

    LI Songtao,NIU Yongding,WANG Baolin,et al. Influence of rainfall infiltration on stability of granite residual soil high slope[J]. Mathematical Problems in Engineering,2022,2022:1920403.

    [8] 冯文凯,贾邦中,吴义鹰,等. 低山丘陵区典型滑坡-泥石流链生灾害特征与成灾机理[J]. 中国地质灾害与防治学报,2022,33(1):35 − 44. [FENG Wenkai,JIA Bangzhong,WU Yiying,et al. Characteristics and mechanism of landslide-debris flow chain disaster in low mountain and hilly terrain[J]. The Chinese Journal of Geological Hazard and Control,2022,33(1):35 − 44. (in Chinese with English abstract)]

    FENG Wenkai, JIA Bangzhong, WU Yiying, et al. Characteristics and mechanism of landslide-debris flow chain disaster in low mountain and hilly terrain[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 35 − 44. (in Chinese with English abstract)

    [9]

    BAI Huilin,FENG Wenkai,LI Shuangquan,et al. Flow-slide characteristics and failure mechanism of shallow landslides in granite residual soil under heavy rainfall[J]. Journal of Mountain Science,2022,19(6):1541 − 1557. DOI: 10.1007/s11629-022-7315-8

    [10] 陈敬业,王钧,宫清华,等. 植被增渗效应对花岗岩残积土浅层滑坡的影响机理研究[J]. 水文地质工程地质,2023,50(3):115 − 124. [CHEN Jingye,WANG Jun,GONG Qinghua,et al. Influence mechanism of vegetation infiltration effect on shallow landslides of granite residual soil[J]. Hydrogeology & Engineering Geology,2023,50(3):115 − 124. (in Chinese with English abstract)]

    CHEN Jingye, WANG Jun, GONG Qinghua, et al. Influence mechanism of vegetation infiltration effect on shallow landslides of granite residual soil[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 115 − 124. (in Chinese with English abstract)

    [11]

    FENG Wenkai,BAI Huilin,LAN Bing,et al. Spatial–temporal distribution and failure mechanism of group-occurring landslides in Mibei village,Longchuan County,Guangdong,China[J]. Landslides,2022,19(8):1957 − 1970. DOI: 10.1007/s10346-022-01904-9

    [12] 吴善百. 广西东南部花岗岩残积土降雨型滑坡的起动机理研究[D]. 南宁:广西大学,2020. [WU Shanbai. Study on starting mechanism of rainfall landslide in granite residual soil in southeast Guangxi[D]. Nanning:Guangxi University,2020. (in Chinese with English abstract)]

    WU Shanbai. Study on starting mechanism of rainfall landslide in granite residual soil in southeast Guangxi[D]. Nanning: Guangxi University, 2020. (in Chinese with English abstract)

    [13]

    LI Xiaochao,LIU Handong,PAN Jishun,et al. Rainfall thresholds of shallow landslides in Wuyuan County of Jiangxi Province,China[J]. Open Geosciences,2020,12(1):821 − 831. DOI: 10.1515/geo-2020-0120

    [14]

    YIN Song,HUANG Jia’ning,LI Xinming,et al. Experimental study on deformation characteristics and pore characteristics variation of granite residual soil[J]. Scientific Reports,2022,12:12314. DOI: 10.1038/s41598-022-16672-8

    [15]

    GAO Qianfeng,JRAD M,HATTAB M,et al. Pore morphology,porosity,and pore size distribution in kaolinitic remolded clays under triaxial loading[J]. International Journal of Geomechanics,2020,20(6):■ − ■.

    [16]

    ZHOU Jinxuan. Preprocessing method of microstructure image of geotechnical materials[J]. Environmental Technology & Innovation,2020,19:100924.

    [17]

    LIN Peng,ZHANG Jingjing,HUANG He,et al. Strength of unsaturated granite residual soil of Shantou coastal region considering effects of seepage using modified direct shear test[J]. Indian Geotechnical Journal,2021,51(4):719 − 731. DOI: 10.1007/s40098-021-00504-z

    [18] 唐朝生,施斌,王宝军. 基于SEM土体微观结构研究中的影响因素分析[J]. 岩土工程学报,2008,30(4):560 − 565. [TANG Chaosheng,SHI Bin,WANG Baojun. Factors affecting analysis of soil microstructure using SEM[J]. Chinese Journal of Geotechnical Engineering,2008,30(4):560 − 565. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-4548.2008.04.016

    TANG Chaosheng, SHI Bin, WANG Baojun. Factors affecting analysis of soil microstructure using SEM[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 560 − 565. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-4548.2008.04.016

    [19] 汪军,徐金明,龚明权,等. 基于扫描电镜图像和微观渗流模型的云冈石窟砂岩风化特征分析[J]. 水文地质工程地质,2021,48(6):122 − 130. [WANG Jun,XU Jinming,GONG Mingquan,et al. Investigating weathering features of sandstones in the Yungang Grottoes based on SEM images and micro-scale flow model[J]. Hydrogeology & Engineering Geology,2021,48(6):122 − 130. (in Chinese with English abstract)]

    WANG Jun, XU Jinming, GONG Mingquan, et al. Investigating weathering features of sandstones in the Yungang Grottoes based on SEM images and micro-scale flow model[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 122 − 130. (in Chinese with English abstract)

    [20] 戚利荣,王家鼎,张登飞,等. 冻融循环作用下花岗岩损伤的宏微观尺度研究[J]. 水文地质工程地质,2021,48(5):65 − 73. [QI Lirong,WANG Jiading,ZHANG Dengfei,et al. A study of granite damage in the macro and microscopic scales under freezing-thawing cycles[J]. Hydrogeology & Engineering Geology,2021,48(5):65 − 73. (in Chinese with English abstract)]

    QI Lirong, WANG Jiading, ZHANG Dengfei, et al. A study of granite damage in the macro and microscopic scales under freezing-thawing cycles[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 65 − 73. (in Chinese with English abstract)

    [21] 周宇,陈东霞,于佳静,等. 干湿循环下花岗岩残积土的崩解试验与微观机理研究[J]. 长江科学院院报,2023,40(1):153 − 160. [ZHOU Yu,CHEN Dongxia,YU Jiajing,et al. Test and micro-mechanism of disintegration of granite residual soil under dry-wet cycles[J]. Journal of Yangtze River Scientific Research Institute,2023,40(1):153 − 160. (in Chinese)] DOI: 10.11988/ckyyb.20210902

    ZHOU Yu, CHEN Dongxia, YU Jiajing, et al. Test and micro-mechanism of disintegration of granite residual soil under dry-wet cycles[J]. Journal of Yangtze River Scientific Research Institute, 2023, 40(1): 153 − 160. (in Chinese) DOI: 10.11988/ckyyb.20210902

    [22] 安然,孔令伟,张先伟,等. 干湿循环效应下花岗岩残积土结构损伤的多尺度研究[J]. 岩石力学与工程学报,2023,42(3):758 − 767. [AN Ran,KONG Lingwei,ZHANG Xianwei,et al. A multi-scale study on structure damage of granite residual soil under wetting-drying environments[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(3):758 − 767. (in Chinese with English abstract)]

    AN Ran, KONG Lingwei, ZHANG Xianwei, et al. A multi-scale study on structure damage of granite residual soil under wetting-drying environments[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(3): 758 − 767. (in Chinese with English abstract)

    [23] 王宝军,施斌,刘志彬,等. 基于GIS的黏性土微观结构的分形研究[J]. 岩土工程学报,2004,26(2):244 − 247. [WANG Baojun,SHI Bin,LIU Zhibin,et al. Fractal study on microstructure of clayey soil by GIS[J]. Chinese Journal of Geotechnical Engineering,2004,26(2):244 − 247. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-4548.2004.02.018

    WANG Baojun, SHI Bin, LIU Zhibin, et al. Fractal study on microstructure of clayey soil by GIS[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(2): 244 − 247. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-4548.2004.02.018

    [24] 王宝军,施斌,蔡奕,等. 基于GIS的黏性土SEM图像三维可视化与孔隙度计算[J]. 岩土力学,2008,29(1):251 − 255. [WANG Baojun,SHI Bin,CAI Yi,et al. 3D visualization and porosity computation of clay soil SEM image by GIS[J]. Rock and Soil Mechanics,2008,29(1):251 − 255. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2008.01.047

    WANG Baojun, SHI Bin, CAI Yi, et al. 3D visualization and porosity computation of clay soil SEM image by GIS[J]. Rock and Soil Mechanics, 2008, 29(1): 251 − 255. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2008.01.047

    [25] 黄伟标,李学,宋晶,等. 滨海软土微观孔隙测定方法[J]. 科学技术与工程,2019,19(28):290 − 296. [HUANG Weibiao,LI Xue,SONG Jing,et al. Microcosmic determination method of coastal soft soil[J]. Science Technology and Engineering,2019,19(28):290 − 296. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-1815.2019.28.044

    HUANG Weibiao, LI Xue, SONG Jing, et al. Microcosmic determination method of coastal soft soil[J]. Science Technology and Engineering, 2019, 19(28): 290 − 296. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2019.28.044

    [26] 李磊,王佩,薛飞. 生化降解条件下水泥固化污泥的微观结构研究[J]. 应用基础与工程科学学报,2018,26(6):1217 − 1225. [LI Lei,WANG Pei,XUE Fei. Research on microstructure of solidified sludge using cement under biochemical degradation[J]. Journal of Basic Science and Engineering,2018,26(6):1217 − 1225. (in Chinese with English abstract)]

    LI Lei, WANG Pei, XUE Fei. Research on microstructure of solidified sludge using cement under biochemical degradation[J]. Journal of Basic Science and Engineering, 2018, 26(6): 1217 − 1225. (in Chinese with English abstract)

    [27] 严泽稷. 考虑游离氧化铁的花岗岩残积土微观结构与力学特性研究[D]. 武汉:华中科技大学,2021. [YAN Zeji. Study on microstructure and mechanical properties of granite residual soil considering free iron oxide[D]. Wuhan:Huazhong University of Science and Technology,2021. (in Chinese with English abstract)]

    YAN Zeji. Study on microstructure and mechanical properties of granite residual soil considering free iron oxide[D]. Wuhan: Huazhong University of Science and Technology, 2021. (in Chinese with English abstract)

    [28] 杨雪强,王坤,刘攀,等. 广州原状花岗岩残积土非饱和力学特性的试验研究[J]. 水利水电技术(中英文):1 − 12. [YANG Xueqiang,WANG Kun,LIU Pan,et al. Experimental Study on Unsaturated Mechanical Properties of Undisturbed Granite Residual Soil in Guangzhou[J]. Water Resources and Hydropower Engineering:1 − 12. (in Chinese with English abstract)]

    YANG Xueqiang, WANG Kun, LIU Pan, et al. Experimental Study on Unsaturated Mechanical Properties of Undisturbed Granite Residual Soil in Guangzhou[J]. Water Resources and Hydropower Engineering: 1 − 12. (in Chinese with English abstract)

    [29]

    WEI Xinsheng,FAN Wen,CHAI Xiaoqing,et al. Field and numerical investigations on triggering mechanism in typical rainfall-induced shallow landslides:A case study in the Ren River catchment,China[J]. Natural Hazards,2020,103(2):2145 − 2170. DOI: 10.1007/s11069-020-04075-9

    [30]

    MIAO Fasheng,WU Yiping,TÖRÖK Á,et al. Centrifugal model test on a riverine landslide in the Three Gorges Reservoir induced by rainfall and water level fluctuation[J]. Geoscience Frontiers,2022,13(3):101378. DOI: 10.1016/j.gsf.2022.101378

    [31] 汪灿,刘艳敏,祝艳波. SEM照片孔隙参数提取技术研究[J]. 安全与环境工程,2011,18(3):117 − 120. [WANG Can,LIU Yanmin,ZHU Yanbo. Study on using SEM photos to obtain the pore parameters of soil samples[J]. Safety and Environmental Engineering,2011,18(3):117 − 120. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-1556.2011.03.028

    WANG Can, LIU Yanmin, ZHU Yanbo. Study on using SEM photos to obtain the pore parameters of soil samples[J]. Safety and Environmental Engineering, 2011, 18(3): 117 − 120. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1556.2011.03.028

    [32] 汤连生,贺云帆,孙银磊,等. 胶结物对花岗岩残积土力学性能的影响试验研究[J]. 土木与环境工程学报(中英文),2023. [TANG Liansheng,HE Yunfan,SUN Yinlei,et al. Experimental study on the influence of cement on the mechanical strength of granite residual soil[J]. Journal of Civil and Environmental Engineering,2023. (in Chinese with English abstract)]

    TANG Liansheng, HE Yunfan, SUN Yinlei, et al. Experimental study on the influence of cement on the mechanical strength of granite residual soil[J]. Journal of Civil and Environmental Engineering, 2023. (in Chinese with English abstract)

图(7)  /  表(3)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  9
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-13
  • 修回日期:  2024-03-19
  • 录用日期:  2025-01-05
  • 网络出版日期:  2025-01-08

目录

/

返回文章
返回