ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

花岗岩残积土的微细观结构研究

庄静茹, 林威, 简文彬, 夏昌, 黄志辉

庄静茹,林威,简文彬,等. 花岗岩残积土的微细观结构研究[J]. 中国地质灾害与防治学报,2025,36(0): 1-9. DOI: 10.16031/j.cnki.issn.1003-8035.202310018
引用本文: 庄静茹,林威,简文彬,等. 花岗岩残积土的微细观结构研究[J]. 中国地质灾害与防治学报,2025,36(0): 1-9. DOI: 10.16031/j.cnki.issn.1003-8035.202310018
ZHUANG Jingru,LIN Wei,JIAN Wenbin,et al. Study on the Microstructure of Granite Residual Soils[J]. The Chinese Journal of Geological Hazard and Control,2025,36(0): 1-9. DOI: 10.16031/j.cnki.issn.1003-8035.202310018
Citation: ZHUANG Jingru,LIN Wei,JIAN Wenbin,et al. Study on the Microstructure of Granite Residual Soils[J]. The Chinese Journal of Geological Hazard and Control,2025,36(0): 1-9. DOI: 10.16031/j.cnki.issn.1003-8035.202310018

花岗岩残积土的微细观结构研究

基金项目: 国家自然科学基金(U2005205)、浙江省第一水电建设集团技术开发项目(01612202)资助.
详细信息
    作者简介:

    庄静茹(1999—),女,硕士研究生,主要从事地质灾害防治方面的研究。E-mail:499711558@qq.com

    通讯作者:

    简文彬(1963—),男,博士,教授,主要从事岩土工程与工程地质研究。E-mail:jwb@fzu.edu.cn

  • 中图分类号: TU411.92

Study on the Microstructure of Granite Residual Soils

Funds: This work was supported by the National Natural Science Foundation of China (U2005205).
  • 摘要:

    花岗岩残积土在东南丘陵山地广泛分布,在降雨等因素作用下残积土边坡易失稳产生滑坡。花岗岩残积土按照不同粒径的颗粒含量可划分为花岗岩残积黏性土、花岗岩残积砂质黏性土和花岗岩残积砾质黏性土,因其具有较强的结构性,其微观结构的变化往往表征在宏观坡体稳定性方面。通过X射线衍射分析、SEM扫描电镜分析等手段,从微观结构层面揭示了花岗岩残积土的物质与结构性特征。结果表明,花岗岩残积黏性土的胶结能力及力学强度高于花岗岩残积砂质黏性土,土体的微观结构性质发展一定程度上决定了宏观力学性质的变化。研究结果对进一步揭示花岗岩残积土微观结构特征、变形机制及其对力学性质的影响具有理论及实际意义。

    Abstract:

    Granite residual soils pervade the hilly and mountainous regions of Southeast China, where they are susceptible to destabilization and landslides, particularly under rainfall influences. These soils are classified into three categories based on particle size distribution: cohesive, sandy cohesive, and gravel cohesive. Their structural robustness significantly influences macroscopic slope stability through microstructural alterations. Advanced analytical techniques, such as X-ray diffraction and scanning electron microscopy (SEM), have elucidated the microstructural characteristics of these soils. The empirical data reveal that the cementation capacity and mechanical strength of cohesive granite residual soils are superior to those of the sandy cohesive soil. These microstructural properties play a pivotal role in determining the changes in macroscopic mechanical behavior of the soil. This research is of both theoretical and practical importance as it enhances understanding of the microstructural features of granite residual soils, their deformation mechanisms, and their impact on mechanical properties, offering valuable insights for geotechnical applications in forecasting and mitigating slope instability.

  • 花岗岩残积土在我国东南沿海地区广泛分布,是该地区工程建设中经常遇到的土体之一[1]。花岗岩的节理发育,出露的花岗岩沿着节理经过长期的物理、化学风化作用形成残积土,其矿物成分有抗风化能力强的石英、长石,和亲水性较强的次生黏土矿物(高岭石、伊利石等),具有显著的结构性和水敏性[23]。东南沿海地区台风暴雨频发,降雨集中,受季节性气候的影响,花岗岩残积土的强度发生改变,对花岗岩残积土边坡稳定性存在较大的影响,坡体失稳破坏多以浅层失稳为主,且破坏程度随降雨强度的增大而加剧[45]。花岗岩残积土是一种非饱和的特殊土,遇水强度劣化,持续降雨下,边坡土体抗剪强度下降,重度增大,随着降雨时间的持续增加,安全系数持续减小,加速边坡失稳事件的发生[68]。经统计,仅在2014~2023年的十年间,东南沿海各省先后多次出现降雨群发性花岗岩残积土浅层滑坡的灾害事件。例如,2016年和2021年,“尼伯特”、“卢碧”台风接连登陆引起强降雨,导致福建省闽清县成为重灾区,灾害造成73人死亡、17人失踪的惨剧[9]。2019年6月,广东省龙川县出现强降雨天气,累计降雨量超过260 mm,诱发了大规模群发性滑坡,造成13人死亡,直接经济损失超10亿元[1011]。此类滑坡规模虽小,但给滑坡区内建筑、基础设施造成了极大威胁,增大了抢险及灾后治理工作的难度[1213]

    花岗岩残积土具有特殊的结构特征和矿物成分,因此土体的宏观变形与其微观结构的孔隙分布有较强的相关性。认识花岗岩残积土的微观结构特征对其宏观结构变形的影响,可以对花岗岩残积土的工程应用、地基变形和斜坡稳定性分析提供重要的理论依据[14]。针对花岗岩残积土的微观结构的研究,借助扫描电子显微镜(SEM)和压汞试验(MIP)等微观试验手段进行研究,是当前岩土工程中最有效、最直接的方法,目前已有较多关于土体内部孔隙分布特征和变形特性相关的研究[1517]。通过SEM图像,可以较直观地获得土体孔隙和土颗粒形态的结构特征,对土体的结构参数具有参考价值。根据土体微观结构特征揭示土体宏观变形及强度变化规律,可为土体微观结构变化带来的宏观影响提供参考依据[1820]。周宇[21]、安然[22]等对花岗岩残积土进行干湿循环模拟,并通过扫描电镜(SEM)测试其微观下的形态,随着干湿循环次数增加,土颗粒接触关系发生改变,土体细微观结构发生变化,在微观-细观-宏观上展现出层层递进和互馈的关系。当前SEM图像多停留在二维层面,但从三维角度分析土体微观结构,往往更为直观和准确。可先利用SEM拍摄二维图像,拍摄过程中采集土样从颗粒表面到成像表面的距离信息,进而利用GIS中用于表达地面高程起伏的数字高程模型(DEM)计算土样断面的表面形态,最终通过GIS处理、分析获得土体的三维重建与微观可视化,最终获得土体的三维特征[2324]。因此,基于SEM二维图像,在ArcGIS软件中以二维图像为底、最大灰度值为高构建颗粒三维空间,进行三维重建和可视化分析,可获得土样的孔隙率[2526]。然而,现有研究对于土体微细观结构与力学强度以及宏观坡体的稳定性的关联性仍有待进一步深化,且细观结构变化与宏观变形机制的分析不够充分。基于此,本文以福建地区花岗岩残积土为研究对象,并根据不同粒径的颗粒含量,将花岗岩残积土划分为黏性土和砂质黏性土,选取两类土体试样进行X射线衍射试验及SEM电镜扫描试验,综合分析试验结果,对比讨论两类花岗岩风化土体的微细观结构形态的差异,探讨花岗岩残积土微细观结构的差异对边坡稳定性的潜在影响。

    试验采集了两种土样(图1),一是福州市区某边坡的花岗岩残积黏性土,编号为WZ1,呈深黄色,可塑~硬塑;二是福州罗源地区花岗岩残积砂质黏性土,为花岗岩风化残积形成,将其编号为WZ2,呈灰黄色、灰白色、浅红色,具有遇水易软化、崩解等特性。上述两种土样均为原状土样,在现场采集及运输过程采取相应的防护措施,尽可能保持土的原状结构及天然含水率。其它基本物理力学性质指标通过室内土工试验获得,如表1所示。

    图  1  试验土样照片
    Figure  1.  Photos of test soil samples
    表  1  WZ1、WZ2基本物理力学性质参数
    Table  1.  Basic physical and mechanical properties of WZ1 and WZ2
    试样 密度ρ(g/m3 干密度ρd(g/m3 比重Gs 含水量ω(%) 粘聚力c(kPa) 内摩擦角φ(°)
    WZ1 1.77 1.48 2.68 19.53 39.37 26.29
    WZ2 1.37 1.19 2.46 12.92 15.62 33.33
    下载: 导出CSV 
    | 显示表格

    为了鉴定土样中的矿物成分,X射线衍射法(XRD法)是目前运用最广、最有效的方法之一。由于不同矿物的晶体微观排列构造不同,X射线在穿透不同构造的矿物晶格时会产生不同的衍射图谱[27]。试验采用福州大学测试中心的X射线衍射仪对样品的物相进行定性、定量的分析。

    扫描电子显微镜(SEM)通过二次电子信号成像获得土样在微观尺度下的表面形态,逐点扫描土样获得其微观组织结构和形貌信息,将扫描出的信息以数字的形式储存在SEM图像中,是研究土的微观结构最常用的手段之一[2, 21]。采用福州大学测试中心的Nova NanoSEM 230扫描电子显微镜(图2a),其配备的低真空高分辨模式能够实现对容易产生电荷积累的非导材料在不改变材料表面形貌的情况下在纳米尺度进行细致的表征。

    图  2  试验所用仪器照片
    Figure  2.  Photos of instruments used in the experiment

    试验采用U-1400A数码显微镜(图2b),一种连续变倍单筒显微镜,带有0.5×摄影目镜,成像清晰、立体感强、工作距离长、视野宽阔,与高清晰度的彩色CCD和电视机配套使用。

    将编号为WZ1,WZ2的土样进行X射线衍射分析,物相测试衍射结果如图3所示。

    图  3  矿物X射线衍射图谱
    Figure  3.  X-ray diffraction pattern of Minerals

    根据样品物相定量分析结果,可以看出两种试样都由多种矿物组成,WZ1土样(表2)含有较多次生黏土矿物,主要以高岭石、石英为主,含量分别为34.3%和37.0%。黏土矿物为黏粒组的主要成分,孔隙较大,透水性强,湿时可将细颗粒联结在一起;干时及保水时,粒间无联接,呈松散状,无可塑性、胀缩性。失水时因其比表面积较小,联结力减弱,导致尘土飞扬。由于高岭石含量较高,土体亲水性较强,压缩性较高,粘聚力较大,因而抗剪强度较高。

    表  2  WZ1矿物X衍射物相定量分析结果
    Table  2.  Quantitative Phase Analysis Results for WZ1 Mineral X-ray Diffraction
    矿物名称化学式含量 [%]
    Quartz(石英)SiO237.0
    Orthoclase(正长石)KSi3AlO810.9
    Albite calcian low(钠长石)(Na0.84Ca0.16)Al1.16Si2.84O811.1
    Palygorskite(坡缕石)(Mg2.074Al1.026)(Si4O10.482(OH)2(H2O)10.686.7
    Kaolinite (高岭石)Al2Si2O5(OH)434.3
    下载: 导出CSV 
    | 显示表格

    WZ2土样(表3) 主要由原生矿物组成并含有一定的次生矿物,其中,正长石含量达44.9%,石英含量占33.4%,钠长石含量占7.9%。原生矿物一般为砂粒组的主要成分,砂粒组的存在增强了土颗粒间的摩擦作用,使得WZ2土样的内摩擦角较大。相较于WZ1的土样测试,WZ2的高岭石含量较低,仅为9.0%,因此内摩擦角较WZ1大。

    表  3  WZ2矿物X衍射物相定量分析结果
    Table  3.  Quantitative Phase Analysis Results for WZ2 Mineral X-ray Diffraction
    矿物名称化学式含量[%]
    Quartz(石英)SiO233.4
    Orthoclase(正长石)KSi3AlO844.9
    Albite calcian low(钠长石)(Na0.84Ca0.16)Al1.16Si2.84O87.9
    Palygorskite(坡缕石)(Mg2.074Al1.026)(Si4O10.482(OH)2(H2O)10.684.8
    Kaolinite(高岭石)Al2Si2O5(OH)49.0
    下载: 导出CSV 
    | 显示表格

    研究获取了大量扫描图片,选取具有代表性的视野数码显微镜4幅(图4)以及SEM扫描图像8幅(图5图6)。

    图  4  数码电子显微镜图像
    Figure  4.  Digital electron microscope images
    图  5  WZ1试样SEM照片
    Figure  5.  SEM photos of WZ1 sample
    图  6  WZ2试样SEM照片
    Figure  6.  SEM photos of WZ2 sample

    从数码显微镜图片可以看出,在放大不同倍数下,WZ1矿物含有较多石英和高岭石(图4a、b),WZ2矿物含有石英和少量高岭石(图4c、d),与矿物X射线衍射物相定量分析结果相匹配。选取适当的位置对花岗岩残积土土样进行扫描,获取到不同放大倍数的试样SEM照片(图5图6),从SEM照片中可以清晰地看到土样的骨架和孔隙,以及土颗粒的形态结构特征。从中可见,土体孔隙发育,骨架较松散,无定向排列,颗粒杂乱堆积,接触点数目较少,多以点-点、边-边和边-面接触。

    为了进一步分析土体微观结构的规律,将试验所得的数码显微镜图片和SEM扫描电镜照片同以上矿物分析结合起来,对花岗岩残积土试样进行分析,从以下几个方面对试验结果进行论述。

    土体的宏观组织结构是由无数个片状黏土颗粒按照一定的形式相互堆叠而成的,构成了土体的结构强度。根据矿物分析结论和数码显微镜图像,WZ1的矿物成分主要为高岭石和石英,由SEM电镜扫描图片(图5a、b)可以看出,WZ1土样排列略为杂乱,矿物表面几乎都被呈土状集合体的高岭石覆盖,呈叠聚体结构,颗粒间的微结构呈架空状态,接触点的数目较多,石英颗粒散布于黏土矿物之间,被细粒包裹,颗粒杂乱堆积,多以点-点、边-边、边-面接触。图5c看到钠长石表面附着大量书册状高岭石,放大后的书册状高岭石(图5d)显得更加清晰。

    WZ2矿物成分主要有石英和正长石,还有少量高岭石。扫描电镜结果(图6a、b)显示,WZ2颗粒以粒状和片状为主,主要为镶嵌构造和架立构造。试样中正长石的表面及周围均已被风化产物覆盖,石英颗粒被细粒包裹,散布于黏土矿物之间。还可见球状的高岭石覆盖于正长石上。图6b-d可以看到呈针状、纤维状、棒状、纤维集合体的坡缕石。坡缕石具有很大的比表面积和吸附能力,有较好的流变性和催化性能,且有理想的胶体性能和耐热性。坡缕石的存在使得土样湿时具黏性和可塑性,干燥后缩小,不大显裂纹,被水浸泡后易崩散。从WZ2土样的SEM扫描电镜图像可以看出高岭石含量比WZ1少,因此WZ2的抗剪强度比WZ1土样高。

    WZ1,WZ2土样的孔隙都较为杂乱。WZ1(图5b、c)基本集合体有片状单元彼此重叠而成,无定向排列。结构较为松散,集合体间存在大量孔隙,孔隙的空间存在形式多为孤立孔隙和粒间孔隙,相对WZ2密而多。根据电镜扫描照片可以看出,在较小的干密度下,花岗岩残积土土体内部除小、微孔隙外,大、中孔隙也分布较多,且孔隙大小差异较大[28]。与WZ1相比,WZ2(图6b)孔隙发育且孔隙尺寸较大,构成的骨架松散,粒间孔隙呈各种形态且分布较广,因而导致了WZ2土样干密度相对较小的特征。

    对于强降雨引起的花岗岩残积土滑坡,降雨作为主要的因素,在其影响下,孔隙水持续作用,土体微观结构发生变化,孔隙水润滑、软化作用进一步导致摩擦强度降低,进而反馈至力学强度衰减,表现为边坡稳定性降低,这也一定程度上解释了降雨过程中花岗岩残积土边坡的失稳机理[29,30]

    以土的孔隙特征为着眼点,对SEM图像进行孔隙分析。选择3张较为典型的SEM扫描电镜图片,用ArcGIS软件将图片处理成3D效果图,可以更真实地反映土样的表面特征。用ArcGIS软件将SEM扫描电镜图片处理成3D效果图,该方法主要是利用图像的灰度值来表现微观结构图像中的三维信息。电镜成像过程中,灰度值表征的是电镜成像过程中成像表面与反射能量平面(即颗粒表面)之间的距离。因而,图像中的每一个像素都有一个灰度值与该距离相对应,且此灰度值与距离这二者之间呈线性关系。因此,颗粒表面的三维重建和实现可视化就可以通过GIS中的数字高程模型(DEM)将SEM图像的像素值以数字高程的形式表示出来[24, 31]图7分别为土样放大100020005000倍的土样3D效果图,图7a、b可以看出WZ1多由书册状黏土矿物组成,WZ2表面多有团粒状、纤维状矿物,书册状矿物较少。与2D图像相比,3D图像的亮度对比更加明显,图像中颗粒与孔隙之间的关系有更直观的表现,利用GIS的三维分析模块可以分析颗粒和孔隙体积的大小。在图像中亮度不一的区域,主要是由于结构面不平整。亮度较高的部位,表现为土样凸起部分,亮度较低部分,如图7 c、e中的凹入部分,是土体内部联结较弱的部位,其胶结能力较弱。与WZ1土样相比,WZ2土样3D图显示,其结构面更加平整且有规律,孔隙体积较小。

    图  7  土样放大3D效果图
    Figure  7.  Enlarged 3D rendering of soil sample

    土体的微观结构性与土体结构的力学效应相关,受力时土体的结构影响其力学行为。

    通过2000倍(图7c、d)和5000倍(图7e、f)SEM图像结果,可以看出,WZ1多由薄片状黏土矿物相互叠置而成,也有点状接触形成片架式结构。这种结构遭受外力时,单个矿物以受轴向力为主,受力较为合理,强度较高。扰动条件下,土体结构被破坏,表现为片架式结构面的“坍塌”,遭受外力的条件下,土体受力以遭受弯矩为主,强度降低。WZ2矿物成分较复杂,各矿物形状、强度不同,未扰动条件下,强度较高的矿物起到土体骨架作用,承受大部分外力,强度较高。扰动条件下,强度较高的矿物骨架受到破坏,其矿物由强度较低的矿物充填,土体强度降低,由强度低的矿物控制。它们之间的矿物组成及结构的差异决定了二者结构性破坏之后力学性质变化的差异。由此可见,土体宏观的力学性质的变化,是其微观结构变化发展的结果[22]

    组成花岗岩残积土边坡的土体在开挖卸荷、降雨入渗等外界因素的影响下,结构受到破坏,土体抵抗外部破坏的能力下降,进而导致残积土边坡稳定性也急剧下降。

    土体内的胶结物也影响土体的力学强度,土体的力学性质既与胶结物的自身特性有关,又与胶结物和土体的结合作用有关,胶结物质的存在可与土中的黏土矿物相互作用形成结构联接[32]。从WZ1的SEM电镜扫描图像看出,呈叠聚体结构的高岭石颗粒间黏聚物较多,粘聚力较大,而相较于WZ1试样的图像,WZ2试样颗粒间黏结絮状物质较少,颗粒之间联结为接触和胶结联结,黏结能力一般,这也合理解释了WZ1土样的粘聚力大于WZ2的粘聚力。在宏观上,WZ2也表现出遇水易崩解的特性。

    对SEM扫描电镜图像进行分析并结合矿物分析结果,观察花岗岩残积黏性土和花岗岩残积砂质黏性土的微观形态,从微观的角度解释花岗岩残积黏性土和花岗岩残积砂质黏性土在宏观上的工程特性,得出以下结论:

    (1)花岗岩残积黏性土中矿物成分主要以高岭石、石英为主,由于高岭石含量较高,土体亲水性较强,压缩性较高,粘聚力较大,因而抗剪强度较高。花岗岩残积砂质黏性土正长石和石英的含量较高,高岭石含量较低。砂粒组的含量较高故其内摩擦角比花岗岩残积黏性土大。

    (2)花岗岩残积黏性土中含有较高的胶结物质,与残积土中的黏土矿物,如高岭石、坡缕石等,相互作用形成花岗岩残积黏性土的结构联结,他们的作用机理主要是静电力的吸附作用。两种不同电荷的物质相互吸引,紧密联结在一起,形成了花岗岩残积土中的胶结联接,是一种牢固的水稳性联结。而相较花岗岩残积砂质黏性土中的黏土矿物含量不高,胶结物质与其形成结构联接较少。因此,花岗岩残积黏性土的胶结能力高于花岗岩残积砂质黏性土。

    (3)花岗岩残积黏性土钠长石表面附着大量的书册状高岭石,为叠聚体结构,粒间呈架空的微结构,接触点数目较多,黏结能力较强。花岗岩残积砂质黏性土大多为粒状和片状,主要为镶嵌构造和架立构造,粒间粘结絮状物质较少,黏结能力一般,宏观上表现出遇水易崩解的特性。

  • 图  1   试验土样照片

    Figure  1.   Photos of test soil samples

    图  2   试验所用仪器照片

    Figure  2.   Photos of instruments used in the experiment

    图  3   矿物X射线衍射图谱

    Figure  3.   X-ray diffraction pattern of Minerals

    图  4   数码电子显微镜图像

    Figure  4.   Digital electron microscope images

    图  5   WZ1试样SEM照片

    Figure  5.   SEM photos of WZ1 sample

    图  6   WZ2试样SEM照片

    Figure  6.   SEM photos of WZ2 sample

    图  7   土样放大3D效果图

    Figure  7.   Enlarged 3D rendering of soil sample

    表  1   WZ1、WZ2基本物理力学性质参数

    Table  1   Basic physical and mechanical properties of WZ1 and WZ2

    试样 密度ρ(g/m3 干密度ρd(g/m3 比重Gs 含水量ω(%) 粘聚力c(kPa) 内摩擦角φ(°)
    WZ1 1.77 1.48 2.68 19.53 39.37 26.29
    WZ2 1.37 1.19 2.46 12.92 15.62 33.33
    下载: 导出CSV

    表  2   WZ1矿物X衍射物相定量分析结果

    Table  2   Quantitative Phase Analysis Results for WZ1 Mineral X-ray Diffraction

    矿物名称化学式含量 [%]
    Quartz(石英)SiO237.0
    Orthoclase(正长石)KSi3AlO810.9
    Albite calcian low(钠长石)(Na0.84Ca0.16)Al1.16Si2.84O811.1
    Palygorskite(坡缕石)(Mg2.074Al1.026)(Si4O10.482(OH)2(H2O)10.686.7
    Kaolinite (高岭石)Al2Si2O5(OH)434.3
    下载: 导出CSV

    表  3   WZ2矿物X衍射物相定量分析结果

    Table  3   Quantitative Phase Analysis Results for WZ2 Mineral X-ray Diffraction

    矿物名称化学式含量[%]
    Quartz(石英)SiO233.4
    Orthoclase(正长石)KSi3AlO844.9
    Albite calcian low(钠长石)(Na0.84Ca0.16)Al1.16Si2.84O87.9
    Palygorskite(坡缕石)(Mg2.074Al1.026)(Si4O10.482(OH)2(H2O)10.684.8
    Kaolinite(高岭石)Al2Si2O5(OH)49.0
    下载: 导出CSV
  • [1] 吴能森. 花岗岩残积土的分类研究[J]. 岩土力学,2006,27(12):2299 − 2304. [WU Nengsen. Study on classification of granite residual soils[J]. Rock and Soil Mechanics,2006,27(12):2299 − 2304. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2006.12.041

    WU Nengsen. Study on classification of granite residual soils[J]. Rock and Soil Mechanics, 2006, 27(12): 2299 − 2304. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2006.12.041

    [2] 林威. 花岗岩残积土结构性与边坡稳定分析[D]. 福州:福州大学,2014. [LIN Wei. Structural analysis of granite residual soil and slope stability[D]. Fuzhou:Fuzhou University,2014. (in Chinese with English abstract)]

    LIN Wei. Structural analysis of granite residual soil and slope stability[D]. Fuzhou: Fuzhou University, 2014. (in Chinese with English abstract)

    [3] 汪华斌,周宇,余刚,等. 结构性花岗岩残积土三轴试验研究[J]. 岩土力学,2021,42(4):991 − 1002. [WANG Huabin,ZHOU Yu,YU Gang,et al. A triaxial test study on structural granite residual soil[J]. Rock and Soil Mechanics,2021,42(4):991 − 1002. (in Chinese with English abstract)]

    WANG Huabin, ZHOU Yu, YU Gang, et al. A triaxial test study on structural granite residual soil[J]. Rock and Soil Mechanics, 2021, 42(4): 991 − 1002. (in Chinese with English abstract)

    [4] 韦毅. 干湿循环效应下花岗岩残积土边坡土体工程特性及稳定性分析[D]. 福州:福州大学,2018. [WEI Yi. Engineering characteristics and stability analysis of granite residual soil slope under dry-wet cycle effect[D]. Fuzhou:Fuzhou University,2018. (in Chinese with English abstract)]

    WEI Yi. Engineering characteristics and stability analysis of granite residual soil slope under dry-wet cycle effect[D]. Fuzhou: Fuzhou University, 2018. (in Chinese with English abstract)

    [5] 胡华,吴轩,张越. 基于模拟试验的强降雨条件下花岗岩残积土斜坡滑塌破坏机理分析[J]. 中国地质灾害与防治学报,2021,32(5):92 − 97. [HU Hua,WU Xuan,ZHANG Yue. Experimental study on slope collapse characteristics of granite residual soil slope under heavy rainfall[J]. The Chinese Journal of Geological Hazard and Control,2021,32(5):92 − 97. (in Chinese with English abstract)]

    HU Hua, WU Xuan, ZHANG Yue. Experimental study on slope collapse characteristics of granite residual soil slope under heavy rainfall[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(5): 92 − 97. (in Chinese with English abstract)

    [6] 于佳静,陈东霞,王晖,等. 干湿循环下花岗岩残积土抗剪强度及边坡稳定性分析[J]. 厦门大学学报(自然科学版),2019,58(4):614 − 620. [YU Jiajing,CHEN Dongxia,WANG Hui,et al. Analysis of the shear strength of granite residual soil and slope stability under wetting-drying cycles[J]. Journal of Xiamen University (Natural Science),2019,58(4):614 − 620. (in Chinese with English abstract)]

    YU Jiajing, CHEN Dongxia, WANG Hui, et al. Analysis of the shear strength of granite residual soil and slope stability under wetting-drying cycles[J]. Journal of Xiamen University (Natural Science), 2019, 58(4): 614 − 620. (in Chinese with English abstract)

    [7]

    LI Songtao,NIU Yongding,WANG Baolin,et al. Influence of rainfall infiltration on stability of granite residual soil high slope[J]. Mathematical Problems in Engineering,2022,2022:1920403.

    [8] 冯文凯,贾邦中,吴义鹰,等. 低山丘陵区典型滑坡-泥石流链生灾害特征与成灾机理[J]. 中国地质灾害与防治学报,2022,33(1):35 − 44. [FENG Wenkai,JIA Bangzhong,WU Yiying,et al. Characteristics and mechanism of landslide-debris flow chain disaster in low mountain and hilly terrain[J]. The Chinese Journal of Geological Hazard and Control,2022,33(1):35 − 44. (in Chinese with English abstract)]

    FENG Wenkai, JIA Bangzhong, WU Yiying, et al. Characteristics and mechanism of landslide-debris flow chain disaster in low mountain and hilly terrain[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 35 − 44. (in Chinese with English abstract)

    [9]

    BAI Huilin,FENG Wenkai,LI Shuangquan,et al. Flow-slide characteristics and failure mechanism of shallow landslides in granite residual soil under heavy rainfall[J]. Journal of Mountain Science,2022,19(6):1541 − 1557. DOI: 10.1007/s11629-022-7315-8

    [10] 陈敬业,王钧,宫清华,等. 植被增渗效应对花岗岩残积土浅层滑坡的影响机理研究[J]. 水文地质工程地质,2023,50(3):115 − 124. [CHEN Jingye,WANG Jun,GONG Qinghua,et al. Influence mechanism of vegetation infiltration effect on shallow landslides of granite residual soil[J]. Hydrogeology & Engineering Geology,2023,50(3):115 − 124. (in Chinese with English abstract)]

    CHEN Jingye, WANG Jun, GONG Qinghua, et al. Influence mechanism of vegetation infiltration effect on shallow landslides of granite residual soil[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 115 − 124. (in Chinese with English abstract)

    [11]

    FENG Wenkai,BAI Huilin,LAN Bing,et al. Spatial–temporal distribution and failure mechanism of group-occurring landslides in Mibei village,Longchuan County,Guangdong,China[J]. Landslides,2022,19(8):1957 − 1970. DOI: 10.1007/s10346-022-01904-9

    [12] 吴善百. 广西东南部花岗岩残积土降雨型滑坡的起动机理研究[D]. 南宁:广西大学,2020. [WU Shanbai. Study on starting mechanism of rainfall landslide in granite residual soil in southeast Guangxi[D]. Nanning:Guangxi University,2020. (in Chinese with English abstract)]

    WU Shanbai. Study on starting mechanism of rainfall landslide in granite residual soil in southeast Guangxi[D]. Nanning: Guangxi University, 2020. (in Chinese with English abstract)

    [13]

    LI Xiaochao,LIU Handong,PAN Jishun,et al. Rainfall thresholds of shallow landslides in Wuyuan County of Jiangxi Province,China[J]. Open Geosciences,2020,12(1):821 − 831. DOI: 10.1515/geo-2020-0120

    [14]

    YIN Song,HUANG Jia’ning,LI Xinming,et al. Experimental study on deformation characteristics and pore characteristics variation of granite residual soil[J]. Scientific Reports,2022,12:12314. DOI: 10.1038/s41598-022-16672-8

    [15]

    GAO Qianfeng,JRAD M,HATTAB M,et al. Pore morphology,porosity,and pore size distribution in kaolinitic remolded clays under triaxial loading[J]. International Journal of Geomechanics,2020,20(6):■ − ■.

    [16]

    ZHOU Jinxuan. Preprocessing method of microstructure image of geotechnical materials[J]. Environmental Technology & Innovation,2020,19:100924.

    [17]

    LIN Peng,ZHANG Jingjing,HUANG He,et al. Strength of unsaturated granite residual soil of Shantou coastal region considering effects of seepage using modified direct shear test[J]. Indian Geotechnical Journal,2021,51(4):719 − 731. DOI: 10.1007/s40098-021-00504-z

    [18] 唐朝生,施斌,王宝军. 基于SEM土体微观结构研究中的影响因素分析[J]. 岩土工程学报,2008,30(4):560 − 565. [TANG Chaosheng,SHI Bin,WANG Baojun. Factors affecting analysis of soil microstructure using SEM[J]. Chinese Journal of Geotechnical Engineering,2008,30(4):560 − 565. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-4548.2008.04.016

    TANG Chaosheng, SHI Bin, WANG Baojun. Factors affecting analysis of soil microstructure using SEM[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 560 − 565. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-4548.2008.04.016

    [19] 汪军,徐金明,龚明权,等. 基于扫描电镜图像和微观渗流模型的云冈石窟砂岩风化特征分析[J]. 水文地质工程地质,2021,48(6):122 − 130. [WANG Jun,XU Jinming,GONG Mingquan,et al. Investigating weathering features of sandstones in the Yungang Grottoes based on SEM images and micro-scale flow model[J]. Hydrogeology & Engineering Geology,2021,48(6):122 − 130. (in Chinese with English abstract)]

    WANG Jun, XU Jinming, GONG Mingquan, et al. Investigating weathering features of sandstones in the Yungang Grottoes based on SEM images and micro-scale flow model[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 122 − 130. (in Chinese with English abstract)

    [20] 戚利荣,王家鼎,张登飞,等. 冻融循环作用下花岗岩损伤的宏微观尺度研究[J]. 水文地质工程地质,2021,48(5):65 − 73. [QI Lirong,WANG Jiading,ZHANG Dengfei,et al. A study of granite damage in the macro and microscopic scales under freezing-thawing cycles[J]. Hydrogeology & Engineering Geology,2021,48(5):65 − 73. (in Chinese with English abstract)]

    QI Lirong, WANG Jiading, ZHANG Dengfei, et al. A study of granite damage in the macro and microscopic scales under freezing-thawing cycles[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 65 − 73. (in Chinese with English abstract)

    [21] 周宇,陈东霞,于佳静,等. 干湿循环下花岗岩残积土的崩解试验与微观机理研究[J]. 长江科学院院报,2023,40(1):153 − 160. [ZHOU Yu,CHEN Dongxia,YU Jiajing,et al. Test and micro-mechanism of disintegration of granite residual soil under dry-wet cycles[J]. Journal of Yangtze River Scientific Research Institute,2023,40(1):153 − 160. (in Chinese)] DOI: 10.11988/ckyyb.20210902

    ZHOU Yu, CHEN Dongxia, YU Jiajing, et al. Test and micro-mechanism of disintegration of granite residual soil under dry-wet cycles[J]. Journal of Yangtze River Scientific Research Institute, 2023, 40(1): 153 − 160. (in Chinese) DOI: 10.11988/ckyyb.20210902

    [22] 安然,孔令伟,张先伟,等. 干湿循环效应下花岗岩残积土结构损伤的多尺度研究[J]. 岩石力学与工程学报,2023,42(3):758 − 767. [AN Ran,KONG Lingwei,ZHANG Xianwei,et al. A multi-scale study on structure damage of granite residual soil under wetting-drying environments[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(3):758 − 767. (in Chinese with English abstract)]

    AN Ran, KONG Lingwei, ZHANG Xianwei, et al. A multi-scale study on structure damage of granite residual soil under wetting-drying environments[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(3): 758 − 767. (in Chinese with English abstract)

    [23] 王宝军,施斌,刘志彬,等. 基于GIS的黏性土微观结构的分形研究[J]. 岩土工程学报,2004,26(2):244 − 247. [WANG Baojun,SHI Bin,LIU Zhibin,et al. Fractal study on microstructure of clayey soil by GIS[J]. Chinese Journal of Geotechnical Engineering,2004,26(2):244 − 247. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-4548.2004.02.018

    WANG Baojun, SHI Bin, LIU Zhibin, et al. Fractal study on microstructure of clayey soil by GIS[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(2): 244 − 247. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-4548.2004.02.018

    [24] 王宝军,施斌,蔡奕,等. 基于GIS的黏性土SEM图像三维可视化与孔隙度计算[J]. 岩土力学,2008,29(1):251 − 255. [WANG Baojun,SHI Bin,CAI Yi,et al. 3D visualization and porosity computation of clay soil SEM image by GIS[J]. Rock and Soil Mechanics,2008,29(1):251 − 255. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2008.01.047

    WANG Baojun, SHI Bin, CAI Yi, et al. 3D visualization and porosity computation of clay soil SEM image by GIS[J]. Rock and Soil Mechanics, 2008, 29(1): 251 − 255. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2008.01.047

    [25] 黄伟标,李学,宋晶,等. 滨海软土微观孔隙测定方法[J]. 科学技术与工程,2019,19(28):290 − 296. [HUANG Weibiao,LI Xue,SONG Jing,et al. Microcosmic determination method of coastal soft soil[J]. Science Technology and Engineering,2019,19(28):290 − 296. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-1815.2019.28.044

    HUANG Weibiao, LI Xue, SONG Jing, et al. Microcosmic determination method of coastal soft soil[J]. Science Technology and Engineering, 2019, 19(28): 290 − 296. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2019.28.044

    [26] 李磊,王佩,薛飞. 生化降解条件下水泥固化污泥的微观结构研究[J]. 应用基础与工程科学学报,2018,26(6):1217 − 1225. [LI Lei,WANG Pei,XUE Fei. Research on microstructure of solidified sludge using cement under biochemical degradation[J]. Journal of Basic Science and Engineering,2018,26(6):1217 − 1225. (in Chinese with English abstract)]

    LI Lei, WANG Pei, XUE Fei. Research on microstructure of solidified sludge using cement under biochemical degradation[J]. Journal of Basic Science and Engineering, 2018, 26(6): 1217 − 1225. (in Chinese with English abstract)

    [27] 严泽稷. 考虑游离氧化铁的花岗岩残积土微观结构与力学特性研究[D]. 武汉:华中科技大学,2021. [YAN Zeji. Study on microstructure and mechanical properties of granite residual soil considering free iron oxide[D]. Wuhan:Huazhong University of Science and Technology,2021. (in Chinese with English abstract)]

    YAN Zeji. Study on microstructure and mechanical properties of granite residual soil considering free iron oxide[D]. Wuhan: Huazhong University of Science and Technology, 2021. (in Chinese with English abstract)

    [28] 杨雪强,王坤,刘攀,等. 广州原状花岗岩残积土非饱和力学特性的试验研究[J]. 水利水电技术(中英文):1 − 12. [YANG Xueqiang,WANG Kun,LIU Pan,et al. Experimental Study on Unsaturated Mechanical Properties of Undisturbed Granite Residual Soil in Guangzhou[J]. Water Resources and Hydropower Engineering:1 − 12. (in Chinese with English abstract)]

    YANG Xueqiang, WANG Kun, LIU Pan, et al. Experimental Study on Unsaturated Mechanical Properties of Undisturbed Granite Residual Soil in Guangzhou[J]. Water Resources and Hydropower Engineering: 1 − 12. (in Chinese with English abstract)

    [29]

    WEI Xinsheng,FAN Wen,CHAI Xiaoqing,et al. Field and numerical investigations on triggering mechanism in typical rainfall-induced shallow landslides:A case study in the Ren River catchment,China[J]. Natural Hazards,2020,103(2):2145 − 2170. DOI: 10.1007/s11069-020-04075-9

    [30]

    MIAO Fasheng,WU Yiping,TÖRÖK Á,et al. Centrifugal model test on a riverine landslide in the Three Gorges Reservoir induced by rainfall and water level fluctuation[J]. Geoscience Frontiers,2022,13(3):101378. DOI: 10.1016/j.gsf.2022.101378

    [31] 汪灿,刘艳敏,祝艳波. SEM照片孔隙参数提取技术研究[J]. 安全与环境工程,2011,18(3):117 − 120. [WANG Can,LIU Yanmin,ZHU Yanbo. Study on using SEM photos to obtain the pore parameters of soil samples[J]. Safety and Environmental Engineering,2011,18(3):117 − 120. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-1556.2011.03.028

    WANG Can, LIU Yanmin, ZHU Yanbo. Study on using SEM photos to obtain the pore parameters of soil samples[J]. Safety and Environmental Engineering, 2011, 18(3): 117 − 120. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1556.2011.03.028

    [32] 汤连生,贺云帆,孙银磊,等. 胶结物对花岗岩残积土力学性能的影响试验研究[J]. 土木与环境工程学报(中英文),2023. [TANG Liansheng,HE Yunfan,SUN Yinlei,et al. Experimental study on the influence of cement on the mechanical strength of granite residual soil[J]. Journal of Civil and Environmental Engineering,2023. (in Chinese with English abstract)]

    TANG Liansheng, HE Yunfan, SUN Yinlei, et al. Experimental study on the influence of cement on the mechanical strength of granite residual soil[J]. Journal of Civil and Environmental Engineering, 2023. (in Chinese with English abstract)

图(7)  /  表(3)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  9
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-13
  • 修回日期:  2024-03-19
  • 录用日期:  2025-01-05
  • 网络出版日期:  2025-01-08

目录

/

返回文章
返回