ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

超大跨桥梁强震动力响应下岸坡稳定性分析

杜兆萌, 刘天翔, 程强, 雷航, 王丰

杜兆萌,刘天翔,程强,等. 超大跨桥梁强震动力响应下岸坡稳定性分析[J]. 中国地质灾害与防治学报,2025,36(2): 1-11. DOI: 10.16031/j.cnki.issn.1003-8035.202309031
引用本文: 杜兆萌,刘天翔,程强,等. 超大跨桥梁强震动力响应下岸坡稳定性分析[J]. 中国地质灾害与防治学报,2025,36(2): 1-11. DOI: 10.16031/j.cnki.issn.1003-8035.202309031
DU Zhaomeng,LIU Tianxiang,CHENG Qiang,et al. Analysis of bank slope stability under strong seismic response for super long span bridges[J]. The Chinese Journal of Geological Hazard and Control,2025,36(2): 1-11. DOI: 10.16031/j.cnki.issn.1003-8035.202309031
Citation: DU Zhaomeng,LIU Tianxiang,CHENG Qiang,et al. Analysis of bank slope stability under strong seismic response for super long span bridges[J]. The Chinese Journal of Geological Hazard and Control,2025,36(2): 1-11. DOI: 10.16031/j.cnki.issn.1003-8035.202309031

超大跨桥梁强震动力响应下岸坡稳定性分析

基金项目: 四川省交通运输科技项目(2023-A-02;2024-A-04);四川省科技计划资助(2022YFG0141);四川省公路规划勘察设计研究院有限公司科研项目(KYXM2021000049;KYXM2022000038)
详细信息
    作者简介:

    杜兆萌(1995—),女,山东东营人,地质资源与地质工程专业,硕士,工程师,主要从事地质灾害防治与特殊支挡结构设计方面的研究。E-mail:473453892@qq.com

    通讯作者:

    刘天翔(1980—),男,四川自贡人,地质工程专业,硕士,教授级高级工程师,主要从事公路地质灾害防治设计与监测预警技术方面的研究。E-mail:411495191@qq.com

  • 中图分类号: TU435

Analysis of bank slope stability under strong seismic response for super long span bridges

  • 摘要:

    在高烈度山区设计修建公路桥梁时,其中耦合多种不利条件的在强震作用下超大跨径桥梁高陡岸坡稳定性最为复杂,易形成滑移、碎屑流等岸坡失稳灾害。实际震害调查结果表明不规则地形对地震动力具有明显的放大作用,对边坡的稳定性和桥梁的安全性构成不利的影响,如何考虑复杂地形的地震动力放大效应具有重要的工程价值。以位于四川省凉山彝族自治州高烈度深切峡谷地段的主跨1200 m特大悬索桥岸坡为例,对此类超大跨径桥梁岸坡在强地震力作用下的基岩面地震危险性概率和失稳破坏模式机理进行研究,建立了含卸荷裂隙的三维坡体结构模型,采用动力时程分析方法给出了不同失稳破坏模式下岸坡上各特征点的峰值地震加速度并据此获得了修正的放大系数。基于修正的放大系数对坡体地震稳定性的拟静力计算方法进行改进,采用改进后的方法对该工点的稳定性进行了评估。结果表明:边坡遵循峰值地震水平加速度及放大系数地表最大,随着坡体深度的增大而递减,且递减速度减缓并趋于稳定的规律,且坡度变化率对此影响极大。坡度变化率大且地貌突出部位的地震响应极为强烈。大范围分布的碎块石土覆盖层、变坡率的地貌突出的浅表层、风化卸荷带内的表层风化碎裂岩体极易在地震作用下产生变形,应当加强防护。未考虑修正放大系数的地震工况计算结果偏于不安全,安全系数的计算结果减少了2%~6%。据此提出的一整套针对高烈度山区特大跨径桥梁岸坡的地质灾害风险评估方法和与考虑桥梁结构两水准抗震相适应的边坡稳定性计算方法及防护措施建议思路,为相关工程的研究与设计提供参考。

    Abstract:

    Designing and constructing highway bridges in high-intensity mountainous areas present significant challenges. The stability of high and steep bank slopes for large span bridges coupled with various unfavorable conditions under strong earthquakes is particularly complex, which is prone to formation of bank slope instability disasters such as sliding and debris flow. Investigations into earthquake damage reveal that irregular terrain has a significant amplification effect on earthquake dynamics, which has an adverse impact on the stability of slopes and the safety of bridges. Assessing the seismic dynamic amplification effect of complex terrain is of important engineering value. This study examines the bank slope of a 1200m-long suspension bridge located in the high-intensity, deep canyon region of the Liangshan Yi Autonomous Prefecture, Sichuan Province. We conduct an in-depth analysis and research on the seismic hazard probability and instability failure mode mechanisms of the bedrock surface under strong seismic forces. A three-dimensional slope structure model with unloading cracks was developed. The peak seismic acceleration of each characteristic point on the bank slope under different instability failure modes was obtained using dynamic time-history analysis method and modified amplification coefficient was derived based on these findings. Improvements were made to the static calculation method for slope seismic stability using this modified coefficient. The improved method was used to evaluate the stability of the construction site. The results indicate that the slope's peak seismic horizontal acceleration and amplification coefficient are highest at the surface and decrease with increasing slope depth, with the rate of decrease slowing and stabilizing. The rate of slope change significantly impacts this response. The seismic response is exceptionally strong in areas with high slope change rates and prominent landforms. Widely distributed fragmented rock and soil cover layers, shallow surfaces with varying slope rates, and surface weathered fragmented rock masses within weathering unloading zones are prone to deformation under seismic action, and protection should be strengthened. The calculation results of seismic conditions without considering the correction of amplification factors are unsafe, with safety factor results decreasing by 2% to 6%. A complete set of geological hazard risk assessment methods, and slope stability calculation methods, and protective measures suitable for considering the two-level seismic resistance of bridge structures are proposed based on this for the bank slopes of ultra large span bridges in high intensity mountainous areas, providing a reference for the research and design of related engineering projects in high-intensity mountainous areas.

  • 矿产开采诱发的地面塌陷现象十分普遍,加强对矿区地面塌陷研究已成为矿区可持续发展的重要课题之一。矿区地面塌陷与区域地质背景、矿床特征、开采方式和深度、采空区处置措施、水文地质条件等密切相关[1-2]。应城石膏矿位于湖北省云梦应城盆地的西北缘,面积约30 km2,距今已有近400年开采历史。1949年以前多为老窿开采,1960—1970年,老窿塌陷发育最多,2013—2016年,采空塌陷发育最多,早期的老窿型开采和后期的规模化开采相续形成了应城矿区地面塌陷。矿区内多处地面塌陷,表现为陷坑和地面不均匀沉降,造成道路和管线破坏、房屋开裂、农田毁坏等,对当地居民生产生活、道路和管道基础设施安全运营等造成了较大的影响。针对膏盐矿区地面塌陷,何伟等[3]根据采动岩层内冒落带、裂隙带和弯曲带的“三带”理论,结合实测资料,建立数值模型,对地下开采诱发的地表变形进行了分析。刘硕等[4] 基于Hoek-Brown 强度准则,建立数值仿真模型,结合山东肥城某石膏矿工程实践,评价了硬石膏采房群的整体稳定性。夏开宗等[5]针对采用房柱法开采石膏矿体,将石膏矿柱简化为满足西原模型的黏弹塑性体流变模型,建立了石膏矿矿柱−护顶层支撑体系的流变力学体模型,认为矿柱的塑性大变形流变特性对采空区的失稳起着至关重要的作用。陈乐求等[6]针对矿柱法开采石膏矿体,开展了石膏矿采空区充填加固技术的试验研究。刘轩廷等[7]针对充填开采法矿区,在考虑了充填体对间柱侧压作用的基础上,建立了顶板−间柱支撑体系的力学模型,探究了充填体作用下支撑体系的破坏机制。魏军才[8] 对邵东县城石膏矿老采空区地面变形的成因进行了分析,认为顶板岩性、地质构造是地面变形的基础条件,不规范开采是导致地面变形的主要诱发因素,地面不断加载及地下水动力作用加剧了地面变形的产生。郑怀昌等[9] 通过对石膏矿采空区顶板大面积冒落情况的调查,发现矿区水文地质和工程地质对顶板的冒落有很大影响,冒落也多集中于丰雨季,认为隔离矿柱对控制顶板大面积冒落及向相邻采空区扩展作用重大。章求才等[10]针对衡山石膏矿经过多年开采,于2009 年发生了大面积地面塌陷,分析了顶板破断机理及其影响因素。郑怀昌等[11]结合岩体力学的相关理论和数值模拟技术,认为石膏矿柱流变特性使其强度变低,采区扩大,石膏矿柱应力增大,诱发了石膏矿采场顶板冒落及大规模采空区顶板冒落。张向阳[12] 基于 Kachanov 蠕变损伤理论对采空区顶板的蠕变损伤过程进行了解析分析,采空区顶板的蠕变损伤断裂经历断裂孕育和裂隙扩展两个阶段。贺桂成等[13]采用FLAC3D对衡山县石膏矿闭坑前后空区引发的地面塌陷机理进行了分析,认为闭坑后矿柱不足以支承上覆围岩压力而引起采空区顶板垮落,形成垮落拱,最终在地表形成“漏斗型”塌陷区。Castellanza等[14] 针对废弃矿山遗留矿柱会受到风化作用的特性,根据膏岩试验数据拟合结果,建立风化模型对矿柱失稳时间预测。

    上述工作为膏盐矿区地面塌陷地质灾害研究奠定了较好的基础,然而,仍然存在有不足之处:对诱发石膏矿地面塌陷地质灾害成因机制的分析还存在不足,尤其是老窿对地面塌陷地质灾害影响的成因机制分析成果较少,由于不同区域的石膏矿,受膏组成矿特征、开采历史、开采方式等影响,地面塌陷地质灾害特征和成因机制具有明显的差异性,还需要结合实际情况进一步开展研究。

    为此,针对应城石膏矿区开展野外补充调查、工程地质测绘,进一步掌握矿区地质灾害的实际情况,采取内外动力多因子关联分析法和地质分析法,基于采动岩层内冒落带、裂隙带和弯曲带的“三带”理论,分析地面塌陷类型及发育分布规律,研究采空型地面塌陷地质灾害的主要影响因素,对老窿型和采空型地面塌陷的成因机制进行分析,对石膏矿风险管理和安全评估、监测预警体系构建具有一定的参考意义。

    应城市地处鄂中丘陵与江汉平原的过渡地带,整体地势为西北高,东南低,地貌类型按成因划分为河流冲积平原和丘陵两类。应城石膏矿位于湖北省云应盆地的西北缘,应城市现有10个膏矿开采区,矿区主要分布于丘陵地区,主要开采膏组为G-1—G-3、G-5和G-7—G-11,开采矿区分布如图1所示。矿区目前主要开采的含矿层位是谢家湾下含矿层和谢家湾上含矿层,谢家湾下含矿层含纤维石膏膏组五层G-1—G-5,总厚15.90~91.10 m;谢家湾上含矿层含纤维石膏膏组八层G-6—G-13,总厚23.92~181.51 m。

    图  1  矿区地形地貌及矿区分布图
    Figure  1.  The distribution map of landforms in the mining area

    应城石膏矿膏组矿体总体产状比较平缓,一般倾角为6°~8°,部分倾角近于或大于10°,与较深色的围岩接触界线较为明显,接触面较平整,极易从接触界面与围岩分开,其产状与围岩大体一致,见图2(a),局部与围岩有极微小角度斜交,见图2(b),在红色地层中,有时穿过层理插入不同围岩中,见图2(c)。

    图  2  应城市石膏矿膏组成矿特征
    Figure  2.  The characteristics of gypsum composition in Yingcheng City

    膏组矿体主要是薄层状、似层状纤维石膏矿层,厚度稳定,一般为2~25 cm,最厚可达47 cm左右,延长较远,相邻两个膏组间距8~17 m。矿体围岩以泥质粉砂岩和泥质石膏岩为主,单轴抗压强度为2.5~20.7 MPa,岩石强度较低,属软岩、极软岩。

    根据调查,应城市膏矿开采区共发育有27处地面塌陷,主要分布于城北街道办事处和杨岭镇境内(图1),规模以小—中型为主,其中小型11处,中型16处,如图3b所示。

    图  3  应城市膏矿区塌陷规模等级分布图及典型塌陷坑
    Figure  3.  The grade distribution and typical collapse pit in the mining area in Yingcheng City

    由于私人无序开采,导致矿区内留下许多废弃的井筒、巷道,截至1960年已形成大小老窿约240处,私人矿井开采面大都呈扇形展布且开采层埋深浅,一般小于100 m,由于开采深度较浅,采空区顶板变形对地面的影响较大,上覆岩体破坏后容易在地面产生塌陷坑。应城市老窿型塌陷共18处,陷坑整体呈NE向分布,与坑道展布方向基本一致,在地表多呈近圆形或不规则状,一般上大下小,上口直径2~2.5 m,大者达5 m,坑深2~3 m,大者达10 m,表现为直径大小和深度不等的陷坑单体或群体,主要发育在浅埋采空区和老窿分布范围内,如柳林村邓湾南塌陷点(图3a中CB-TX0003),为椭圆形塌陷单坑,发育在老窿周边,邹郭村黄花山水库塌陷点(图3a中CB-TX0012),为圆形单坑,地下开采深度仅35 m。

    采空型地面塌陷主要表现为地面不均匀沉陷,其变形强度较低,主要表现为地基下沉,地面房屋和道路出现开裂变形、农田毁坏等。应城市采空型塌陷共9处,其变形通常较为缓慢,但通过逐年累积,这些破坏日趋严重,部分房屋已成为危房,直接影响居民住户的居住和生产生活条件。有的裂缝贯穿墙体,严重危及房屋整体安全(图3c)。另外,区内由于不均匀地面沉降使部分农田出现倾斜,失水现象较为严重。这类变形在矿区分布十分普遍,主要出现在深埋采空区范围内或陷坑周边。

    通过调查和统计分析,应城市企业规模化开采形成采空区面积约16 km2,由于历史开采形成的老窿大约240处,应城市老窿及规模化开采采空区空间分布如图4所示,统计分析表明,下方为规模化开采采空区的老窿共128个,其中发生老窿型塌陷共18处,占比约12.5%;下方无规模化开采采空区的老窿共112个,未发生老窿型地面塌陷,说明老窿型地面塌陷与下方大范围采空区密切相关。

    图  4  地面塌陷与老窿及采空区空间分布
    Figure  4.  The spatial distribution of collapse and old holes and goaf

    通过统计分析,应城市共发育9处采空型地面塌陷,其中6处地面塌陷采深采厚比小于60,2处地面塌陷采深采厚比为60~80,1处地面塌陷采深采厚比为80~100,该处地面塌陷发育于李咀石膏矿区,虽然采深采厚比较大,推测是由于其他扰动因素的增强,或者李咀石膏矿区的开矿时间比较早,回填率较低,导致了该地面塌陷的发育(图5)。随着采深采厚比的减小,采空区地面塌陷逐渐增多,且采空型塌陷主要发育在采深采厚比小于60的区域,且采深采厚比越小,地面塌陷越容易发育,地表变形越强烈,塌陷影响越大。

    图  5  采空型地面塌陷与采深采厚比分布图
    Figure  5.  The distribution of ground collapse and mining depth to thickness ratio

    石膏矿开采工作面初次来压后,在其不断推进过程中,上覆岩体的破坏主要可分为三带:冒落带、断裂带和弯曲带。冒落带是采出空间顶板岩层在自重力作用下垮塌,堆积在采空区,形成冒落带;断裂带随着井下石膏矿采区的扩大而逐步向上发展,当到一定范围时,断裂带高度达到最大;弯曲带即弯曲下沉带,位于断裂带之上直至地表,弯曲带中的岩体移动基本上是成层的、整体性移动。

    充水型老窿塌陷下方规模化开采巷道采空区多有充填且埋深较深,下方规模化开采采空区冒裂带向上发展,但由于规模化开采采空区与老窿埋深间隔较大,冒落带、断裂带之和小于两者之间埋深间隔,规模化采空区并未与老窿连通(图6)。老窿采空后,采区内是半充填状态,或局部未充填状态,闭坑后,洞口被回填,但回填土并没有填满采区,仅填满老窿竖井,地下水通过透水的竖井回填土以及裂隙不断流入采空区,直至采空区完全饱水。采空区内的石膏层与泥岩夹层是隔水层,此时,老窿采空区内是饱水的,老窿回填后经过多年的沉积压密作用下处于相对平衡状态,老窿塌陷地表变形表现为小水坑常年积水无明显变化、周边地表无明显变形及农田无漏水现象,如图3a中CB-TX0003所示柳林村邓湾南地面塌陷点。

    图  6  充水型老窿型地面塌陷成因示意图
    Figure  6.  The genetic diagram of ground collapse with water filled old holes

    不充水型老窿塌陷下方存在规模化开采巷道采空区,且下方规模化开采采空区与老窿埋深间隔较小,冒落带、断裂带之和远大于两者之间埋深间隔,规模化采空区直接与老窿连通(图7),大都表现为老窿洞口缓慢塌陷,具有发展性。由于老窿底部与规模化采空区连通,地下水的流动带动土中的细颗粒运移,导致老窿内负压,竖井中的土体向下垮落变形,慢慢扩展到地表,表现为地表塌陷坑持续扩大。此外,由于部分膏矿企业持续对规模化开采采空区进行抽水,老窿内的积水被疏干后,连接第四系潜水层、承压含水层以及基岩裂隙水与规模化开采采空区的通道,地下水缓慢的在此通道中不断的流动,从地表通过老窿到采空区,再被抽出到地表,老窿中回填的细颗粒也不断地发生移动,导致此类塌陷,经回填后一段时间还会再次产生塌陷,如图8所示新建街社区三矿2号地面塌陷点。

    图  7  不充水型老窿型地面塌陷成因示意图
    Figure  7.  The genetic diagram of ground collapse with water unfilled old holes
    图  8  新建街社区三矿2号地面塌陷
    Figure  8.  The ground collapse No.2 in Xinjian street community

    应城石膏矿规模化开采形成的采空区,开采深度较深,这种采空区造成的塌陷一般表现为地面的不均匀沉降,弯曲带影响地表,伴随地面下沉的一些表现形式为房屋裂缝、地表裂缝变形、农田失水等现象,影响范围一般比较大,如新建街社区三矿1号地面塌陷点。

    房柱法开采导致的采空区失稳主要表现为矿柱和顶板的破坏垮落。采用房柱式采矿过程中,随着矿石不断采出和矿柱侧向应力的逐渐消减,采场上覆岩层的应力转移到矿柱上,使矿柱应力增加并产生压缩变形。当矿山企业闭坑后,由于矿柱被回采破坏导致矿柱强度降低,个别或局部矿柱破坏从而引起顶板冒落。该采场顶板及上覆岩层压应力逐渐转移到相邻矿柱,导致相邻矿柱也相继遭到破坏,顶板冒落范围进一步扩大,从而引起采空区顶板垮落并通过三带影响逐渐传递到地面,地表主要见地面沉降、隆起和建筑物开裂等,如柳林村邓湾北地面塌陷点(图9)。

    图  9  矿柱破坏型采空塌陷成因机制
    Figure  9.  The formation mechanism of goaf collapse caused by pillar failure

    长壁式充填法开采的采空区主要采用矸石充填,将开采洗选过程中产生的矸石固体废物作为骨料充填入采空区,进而改善采场围岩变形和覆岩沉降程度,有效控制地表沉陷。因此采空区充填体的充填率及其强度对上覆岩层的运动状态起着至关重要的作用,不同充填率会导致上覆岩层运移结构形态和特征都存在明显区别。当采空区充填率低时,充填体不能对顶板下沉起到支撑作用,随着采空区范围的扩大,采空区顶板逐渐垮落破碎,与采空区固体充填体相互混合形成新的支撑体,直到采空区充填体被压密实,支撑体的压缩和采空区顶板的下沉达到平衡状态。此过程中采空区顶板随开采范围的扩大发生持续破断,形成的冒落带、断裂带及弯曲带随着工作面的推进而不断向上覆岩层传递,直到这种变形发展到地面,地表主要表现为建筑物开裂、地表裂缝等,如新建街社区三矿1号地面塌陷点(图10)。

    图  10  弯曲沉降型采空塌陷成因机制
    Figure  10.  The formation mechanism of bending goaf collapse

    (1)地面塌陷主要表现两种形式:一种是塌陷坑,在地表多呈近圆形或不规则状,表现为直径大小和深度不等的陷坑单体或群体,主要发育在浅埋采空区和老窿分布范围内;另一种是地面不均匀沉陷,其变形强度较低,主要表现为地基下沉,地面房屋、道路等地物出现开裂变形、农田毁坏。

    (2)地面塌陷发育规律:老窿型地面塌陷与下方大范围采空区密切相关,当老窿下方存在规模化开采采空区且埋深较浅时,老窿与采空区连通,老窿井口附近形成地面塌陷;采空型地面塌陷的发生则受采深采厚比的影响较大,随着采深采厚比的减小,采空区地面塌陷逐渐增多,且采空型地面塌陷主要发育在采深采厚比小于60的区域。

    (3)老窿型地面塌陷包含充水型和不充水型两种类型,充水型老窿塌陷下方规模化开采巷道采空区多有充填且埋深较深,冒裂带未影响至老窿,老窿与大范围采空区不连通,塌陷后表现为小水坑常年积水且塌陷趋于稳定;不充水型老窿塌陷下方存在规模化开采巷道采空区,且由于冒裂带的影响与老窿采空区连通,塌陷后表现为地表塌陷坑持续扩大,或者人工充填后一段时间又再次塌陷,重复回填又塌陷。

    (4)采空型地面塌陷主要与矿柱破坏和充填率相关。矿柱破坏主要是矿柱在闭坑前被回采导致强度降低,局部破坏垮塌,采空区顶板垮落并通过三带影响逐渐传递到地面,主要表现为地面沉陷、隆起和建筑物开裂等;在充填率低的情况下,上覆岩土体在重力作用下,逐渐形成冒落带、断裂带以及弯曲带并随着工作面的推进而不断向上覆岩层传递,直至变形发展到地面,主要表现为建筑物开裂、地表裂缝等。

  • 图  1   桥梁及岸坡地貌图

    Figure  1.   Landscape map of bridge and riverbank slopes

    图  2   风化卸荷变形区岩芯特征

    Figure  2.   Characteristics of rock core in weathering and unloading deformation zone

    图  3   风化卸荷裂隙特征

    Figure  3.   characteristics of weathering unloading crack

    图  4   地震区带划分方案图

    Figure  4.   Diagram of seismic zone division plan

    图  5   计算模型分层划分和单元划分

    Figure  5.   Calculation model and unit division

    图  6   计算模型与监测点位置

    Figure  6.   Calculation model and monitoring point location

    图  7   水平方向地震动时程

    Figure  7.   Time history of horizontal ground motion

    图  8   监测点峰值地震水平加速度折线图

    Figure  8.   Peak Seismic Horizontal Acceleration at Monitoring Points

    图  9   西昌岸监测点5地震水平加速度时程曲线

    Figure  9.   Seismic horizontal acceleration time history curve of monitoring point 5 on Xichang bank

    图  10   香格里拉岸监测点5地震水平加速度时程曲线

    Figure  10.   Seismic horizontal acceleration time history curve of monitoring point 5 on Xianggelila bank

    图  11   西昌岸地质及桥梁剖面图

    Figure  11.   Geological and bridge profile of Xichang bank

    图  12   香格里拉岸地质及桥梁剖面图

    Figure  12.   Geological and bridge profile of Xianggelila bank

    图  13   西昌岸E1地震工况总位移图

    Figure  13.   Total displacement diagram of Xichang bank under E1 earthquake condition

    图  14   西昌岸E2地震工况总位移图

    Figure  14.   Total displacement diagram of Xichang bank under E2 earthquake condition

    图  15   香格里拉岸E1地震工况总位移图

    Figure  15.   Total displacement diagram of Xianggelila bank under E1 earthquake condition

    图  16   香格里拉岸E2地震工况总位移图

    Figure  16.   Total displacement diagram of Xianggelila bank under E2 earthquake condition

    图  17   西昌岸E1地震工况折减至极限状态的剪应变增量

    Figure  17.   Shear strain increment of Xichang bank under E1 earthquake condition

    图  18   西昌岸E2地震工况折减至极限状态的剪应变增量

    Figure  18.   Shear strain increment of Xichang bank under E2 earthquake condition

    图  19   香格里拉岸E1工况折减至极限状态剪应变增量

    Figure  19.   Shear strain increment and stability coefficient of Xianggelila bank under E1 earthquake condition

    图  20   香格里拉岸E2工况折减至极限状态的剪应变增量

    Figure  20.   Shear strain increment and stability coefficient of Xianggelila bank under E2 earthquake condition

    表  1   岩土体的物理力学参数

    Table  1   Physical and mechanical parameters of rock and soil

    区域 弹模
    /MPa
    泊松比 黏聚力/kPa 内摩擦角/(°) 容重/(kN·m−3
    天然 暴雨 天然 暴雨 天然 暴雨
    碎块石土 60 0.32 15 13 27 24 20 21
    卸荷带 300 0.28 120 108 42.2 38.0 24 25
    中风化岩 800 0.27 507 456. 49.9 44.9 26.5 27
    下载: 导出CSV

    表  2   监测点峰值地震水平加速度和放大系数ξ

    Table  2   Peak Seismic Horizontal Acceleration and Amplification Factor of Monitoring Points

    编号 西昌岸 香格里拉岸
    峰值地震水平加速度 ξ 峰值地震水平加速度 ξ
    1 18.779 2.61 16.249 2.26
    2 26.536 3.69 19.068 1.40
    3 21.003 2.92 14.210 1.28
    4 18.763 2.61 15.963 2.22
    5 12.581 1.75 43.467 6.04
    6 19.471 2.71 18.124 2.52
    7 18.848 2.61 13.097 1.82
    8 16.650 2.32 14.919 2.07
    9 12.434 1.80 41.169 5.72
    10 15.802 2.20 16.488 2.29
    11 13.193 1.83 12.499 1.74
    12 11.940 1.66 14.474 2.01
    13 15.797 2.20 10.257 1.43
    14 12.253 1.70 12.484 1.76
    15 10.975 1.53 9.688 1.35
    下载: 导出CSV

    表  3   考虑修正放大系数下不同工况边坡FS及稳定状态

    Table  3   FS and stable state of various conditions with considering the correction amplification factor

    岸坡 天然工况 暴雨工况 E1地震 E2地震
    FS 状态 FS 状态 FS 状态 FS 状态
    西昌 1.35 稳定 1.26 稳定 1.13 稳定 0.97 失稳
    香格里拉 1.26 稳定 1.12 稳定 1.06 基本稳定 0.98 失稳
    下载: 导出CSV

    表  4   未考虑修正放大系数下地震工况的FS及稳定状态

    Table  4   FS and stable state of seismic conditions without considering the correction amplification factor

    岸坡 E1地震 E2地震
    FS 状态 FS 状态
    西昌 1.15 稳定 0.99 失稳
    香格里拉 1.11 稳定 1.04 欠稳定
    下载: 导出CSV
  • [1] 彭建兵,崔鹏,庄建琦. 川藏铁路对工程地质提出的挑战[J]. 岩石力学与工程学报,2020,39(12):2377 − 2389. [PENG Jianbing,CUI Peng,ZHUANG Jianqi. Challenges to engineering geology of Sichuan—Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(12):2377 − 2389. (in Chinese with English abstract)]

    PENG Jianbing, CUI Peng, ZHUANG Jianqi. Challenges to engineering geology of Sichuan—Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(12): 2377 − 2389. (in Chinese with English abstract)

    [2] 袁进科,陈杰. 汶川地震公路边坡灾害分析及震后边坡灾害发育特点[J]. 公路,2020,65(5):26 − 33. [YUAN Jinke,CHEN Jie. Analysis of highway slope disaster in Wenchuan earthquake and its development characteristics after earthquake[J]. Highway,2020,65(5):26 − 33. (in Chinese with English abstract)]

    YUAN Jinke, CHEN Jie. Analysis of highway slope disaster in Wenchuan earthquake and its development characteristics after earthquake[J]. Highway, 2020, 65(5): 26 − 33. (in Chinese with English abstract)

    [3] 张伯艳,王璨,李德玉,等. 地震作用下水利水电工程边坡稳定分析研究进展[J]. 中国水利水电科学研究院学报,2018,16(3):168 − 178. [ZHANG Boyan,WANG Can,LI Deyu,et al. The research progress on seismic stability analysis of slopes in water conservancy and hydropower projects[J]. Journal of China Institute of Water Resources and Hydropower Research,2018,16(3):168 − 178. (in Chinese with English abstract)]

    ZHANG Boyan, WANG Can, LI Deyu, et al. The research progress on seismic stability analysis of slopes in water conservancy and hydropower projects[J]. Journal of China Institute of Water Resources and Hydropower Research, 2018, 16(3): 168 − 178. (in Chinese with English abstract)

    [4] 郭延辉,杨溢,高才坤,等. 云南鲁甸地震红石岩堰塞湖右岸特高边坡综合监测及变形特征分析[J]. 中国地质灾害与防治学报,2020,31(6):30 − 37. [GUO Yanhui,YANG Yi,GAO Caikun,et al. Comprehensive monitoring and deformation analysis of extra high slope on the right bank of Hongshiyan dammed lake in Ludian Earthquake[J]. The Chinese Journal of Geological Hazard and Control,2020,31(6):30 − 37. (in Chinese with English abstract)]

    GUO Yanhui, YANG Yi, GAO Caikun, et al. Comprehensive monitoring and deformation analysis of extra high slope on the right bank of Hongshiyan dammed lake in Ludian Earthquake[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(6): 30 − 37. (in Chinese with English abstract)

    [5] 胡爱国,周伟. 地震与强降雨作用下堆积体滑坡变形破坏机理及防治方案分析[J]. 中国地质灾害与防治学报,2022,33(1):27 − 34. [HU Aiguo,ZHOU Wei. Deformation and failure mechanism and analysis on prevention measures of colluction landslide under earthquake and heavy rainfall[J]. The Chinese Journal of Geological Hazard and Control,2022,33(1):27 − 34. (in Chinese with English abstract)]

    HU Aiguo, ZHOU Wei. Deformation and failure mechanism and analysis on prevention measures of colluction landslide under earthquake and heavy rainfall[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 27 − 34. (in Chinese with English abstract)

    [6] 周洪福,冯治国,石胜伟,等. 川藏铁路某特大桥成都侧岸坡工程地质特征及稳定性评价[J]. 水文地质工程地质,2021,48(5):112 − 119. [ZHOU Hongfu,FENG Zhiguo,SHI Shengwei,et al. Slope engineering geology characteristics and stability evaluation of a grand bridge to Chengdu bank on the Sichuan-Tibet Railway[J]. Hydrogeology & Engineering Geology,2021,48(5):112 − 119. (in Chinese with English abstract)]

    ZHOU Hongfu, FENG Zhiguo, SHI Shengwei, et al. Slope engineering geology characteristics and stability evaluation of a grand bridge to Chengdu bank on the Sichuan-Tibet Railway[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 112 − 119. (in Chinese with English abstract)

    [7] 刘天翔,杜兆萌,程强,等. 红层软岩高边坡的时效变形特性[J]. 科学技术与工程,2020,20(27):11315 − 11322. [LIU Tianxiang,DU Zhaomeng,CHENG Qiang,et al. Time-dependent deformation characteristics of high slope in red layer soft rock[J]. Science Technology and Engineering,2020,20(27):11315 − 11322. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-1815.2020.27.050

    LIU Tianxiang, DU Zhaomeng, CHENG Qiang, et al. Time-dependent deformation characteristics of high slope in red layer soft rock[J]. Science Technology and Engineering, 2020, 20(27): 11315 − 11322. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2020.27.050

    [8] 陈廷君,肖世国,程强,等. 泸定大渡河桥康定岸重力锚边坡长期变形与稳定性分析[J]. 工程地质学报,2019,27(3):632 − 639. [CHEN Tingjun,XIAO Shiguo,CHENG Qiang,et al. Long-term deformation and stability analysis of gravity anchorage slope on Kangding bank of Dadu River bridge in Luding[J]. Journal of Engineering Geology,2019,27(3):632 − 639. (in Chinese with English abstract)]

    CHEN Tingjun, XIAO Shiguo, CHENG Qiang, et al. Long-term deformation and stability analysis of gravity anchorage slope on Kangding bank of Dadu River bridge in Luding[J]. Journal of Engineering Geology, 2019, 27(3): 632 − 639. (in Chinese with English abstract)

    [9] 郭鸿俊,姜清辉,孙金山. 大岗山水电站右岸高边坡加固方案优化研究[J]. 人民长江,2012,43(15):16 − 19. [GUO Hongjun,JIANG Qinghui,SUN Jinshan. Optimization for reinforcement plan of right-bank high slope of Dagangshan Hydropower Station[J]. Yangtze River,2012,43(15):16 − 19. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1001-4179.2012.15.005

    GUO Hongjun, JIANG Qinghui, SUN Jinshan. Optimization for reinforcement plan of right-bank high slope of Dagangshan Hydropower Station[J]. Yangtze River, 2012, 43(15): 16 − 19. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-4179.2012.15.005

    [10] 张泽鹏,朱凤贤,黄放军,等. 复杂地质条件下高边坡加固设计与综合治理研究——以梅河高速公路某高边坡治理为例[J]. 中山大学学报(自然科学版),2006,45(4):44 − 48. [ZHANG Zepeng,ZHU Fengxian,HUANG Fangjun,et al. Research on reinforcement design and comprehensive improvement for high slopes under complicated geological conditions[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2006,45(4):44 − 48. (in Chinese with English abstract)]

    ZHANG Zepeng, ZHU Fengxian, HUANG Fangjun, et al. Research on reinforcement design and comprehensive improvement for high slopes under complicated geological conditions[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2006, 45(4): 44 − 48. (in Chinese with English abstract)

    [11] 张江伟,李小军. 地震作用下边坡稳定性分析方法[J]. 地震学报,2015,37(1):180 − 191. [ZHANG Jiangwei,LI Xiaojun. A review on the stability analysis methods of slope under seismic loading[J]. Acta Seismologica Sinica,2015,37(1):180 − 191. (in Chinese with English abstract)] DOI: 10.11939/j.issn:0253-3782.2015.01.016

    ZHANG Jiangwei, LI Xiaojun. A review on the stability analysis methods of slope under seismic loading[J]. Acta Seismologica Sinica, 2015, 37(1): 180 − 191. (in Chinese with English abstract) DOI: 10.11939/j.issn:0253-3782.2015.01.016

    [12] 崔玉龙,刘爱娟. 区域边坡地震危险性评价理论研究进展[J]. 地震工程学报,2022,44(3):518 − 526. [CUI Yulong,LIU Aijuan. Advances in the theory of seismic hazard assessment of regional slopes[J]. China Earthquake Engineering Journal,2022,44(3):518 − 526. (in Chinese with English abstract)]

    CUI Yulong, LIU Aijuan. Advances in the theory of seismic hazard assessment of regional slopes[J]. China Earthquake Engineering Journal, 2022, 44(3): 518 − 526. (in Chinese with English abstract)

    [13] 李亮,褚雪松,庞峰,等. 地震边坡稳定性分析的拟静力方法适用性探讨[J]. 世界地震工程,2012,28(2):57 − 63. [LI Liang,CHU Xuesong,PANG Feng,et al. Discussion on suitability of pseudo-static method in seismic slope stability analysis[J]. World Earthquake Engineering,2012,28(2):57 − 63. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1007-6069.2012.02.010

    LI Liang, CHU Xuesong, PANG Feng, et al. Discussion on suitability of pseudo-static method in seismic slope stability analysis[J]. World Earthquake Engineering, 2012, 28(2): 57 − 63. (in Chinese with English abstract) DOI: 10.3969/j.issn.1007-6069.2012.02.010

    [14] 郑颖人,叶海林,肖强,等. 基于全动力分析法的地震边坡与隧道稳定性分析[J]. 防灾减灾工程学报,2010,30(增刊1):279 − 285. [ZHENG Yingren,YE Hailin,XIAO Qiang,et al. Stability analysis of earthquake slope and tunnel based on full dynamic analysis method[J]. Journal of Disaster Prevention and Mitigation Engineering,2010,30(Sup 1):279 − 285. (in Chinese)]

    ZHENG Yingren, YE Hailin, XIAO Qiang, et al. Stability analysis of earthquake slope and tunnel based on full dynamic analysis method[J]. Journal of Disaster Prevention and Mitigation Engineering, 2010, 30(Sup 1): 279 − 285. (in Chinese)

    [15] 张迎宾,柳静,唐云波,等. 考虑边坡地形效应的地震动力响应分析[J]. 地震工程学报,2021,43(1):142 − 153. [ZHANG Yingbin,LIU Jing,TANG Yunbo,et al. Dynamic response analysis of seismic slopes considering topographic effect[J]. China Earthquake Engineering Journal,2021,43(1):142 − 153. (in Chinese with English abstract)]

    ZHANG Yingbin, LIU Jing, TANG Yunbo, et al. Dynamic response analysis of seismic slopes considering topographic effect[J]. China Earthquake Engineering Journal, 2021, 43(1): 142 − 153. (in Chinese with English abstract)

    [16] 王来贵,向丽,赵娜,等. 地震作用下顺倾多弱层岩质边坡动力响应[J]. 中国地质灾害与防治学报,2021,32(6):18 − 25. [WANG Laigui,XIANG Li,ZHAO Na,et al. Dynamic response of down-dip multi-weak-layer rock slope under earthquake[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):18 − 25. (in Chinese with English abstract)]

    WANG Laigui, XIANG Li, ZHAO Na, et al. Dynamic response of down-dip multi-weak-layer rock slope under earthquake[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 18 − 25. (in Chinese with English abstract)

    [17] 林峻岑,严松宏,孙纬宇,等. 三向地震作用下错距岩质边坡共振特性研究[J]. 水文地质工程地质,2023,50(2):95 − 102. [LIN Juncen,YAN Songhong,SUN Weiyu,et al. A study of the resonance characteristics of a staggered rock slope under the tri-dimension earthquake wave[J]. Hydrogeology & Engineering Geology,2023,50(2):95 − 102. (in Chinese with English abstract)]

    LIN Juncen, YAN Songhong, SUN Weiyu, et al. A study of the resonance characteristics of a staggered rock slope under the tri-dimension earthquake wave[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 95 − 102. (in Chinese with English abstract)

    [18] 李郑梁,李建春,刘波,等. 浅切割的高山峡谷复杂地形的地震动放大效应研究[J]. 工程地质学报,2021,29(1):137 − 150. [LI Zhengliang,LI Jianchun,LIU Bo,et al. Seismic motion amplification effect of shallow-cutting hill-canyon composite topography[J]. Journal of Engineering Geology,2021,29(1):137 − 150. (in Chinese with English abstract)]

    LI Zhengliang, LI Jianchun, LIU Bo, et al. Seismic motion amplification effect of shallow-cutting hill-canyon composite topography[J]. Journal of Engineering Geology, 2021, 29(1): 137 − 150. (in Chinese with English abstract)

    [19] 孙强强,薄景山,孙有为,等. 隧道结构地震反应分析研究现状[J]. 世界地震工程,2016,32(2):159 − 169. [SUN Qiangqiang,BO Jingshan,SUN Youwei,et al. A state-of-the-art review of seismic response analysis of tunnels[J]. World Earthquake Engineering,2016,32(2):159 − 169. (in Chinese with English abstract)]

    SUN Qiangqiang, BO Jingshan, SUN Youwei, et al. A state-of-the-art review of seismic response analysis of tunnels[J]. World Earthquake Engineering, 2016, 32(2): 159 − 169. (in Chinese with English abstract)

    [20] 邓鹏. 单体边坡地形的地震动力响应及其放大效应的数值分析[J]. 地震学报,2020,42(3):349 − 361. [DENG Peng. Numerical parametric study of seismic dynamic response and amplification effects of slope topography[J]. Acta Seismologica Sinica,2020,42(3):349 − 361. (in Chinese with English abstract)] DOI: 10.11939/jass.20190133

    DENG Peng. Numerical parametric study of seismic dynamic response and amplification effects of slope topography[J]. Acta Seismologica Sinica, 2020, 42(3): 349 − 361. (in Chinese with English abstract) DOI: 10.11939/jass.20190133

    [21] 门妮,孙有为,薄景山,等. 地震作用下边坡动力响应及影响因素研究[J]. 世界地震工程,2017,33(3):110 − 120. [MEN Ni,SUN Youwei,BO Jingshan,et al. Study on dynamic response and influence factors of slope under earthquake[J]. World Earthquake Engineering,2017,33(3):110 − 120. (in Chinese with English abstract)]

    MEN Ni, SUN Youwei, BO Jingshan, et al. Study on dynamic response and influence factors of slope under earthquake[J]. World Earthquake Engineering, 2017, 33(3): 110 − 120. (in Chinese with English abstract)

    [22] 张江伟,周爱红,迟明杰,等. 边坡地震响应数值模拟中最优边界范围研究[J]. 防灾减灾工程学报,2022,42(1):34 − 41. [ZHANG Jiangwei,ZHOU Aihong,CHI Mingjie,et al. Research on boundary range in seismic response simulation of slope[J]. Journal of Disaster Prevention and Mitigation Engineering,2022,42(1):34 − 41. (in Chinese with English abstract)]

    ZHANG Jiangwei, ZHOU Aihong, CHI Mingjie, et al. Research on boundary range in seismic response simulation of slope[J]. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(1): 34 − 41. (in Chinese with English abstract)

    [23] 郑颖人,叶海林,黄润秋,等. 边坡地震稳定性分析探讨[J]. 地震工程与工程振动,2010,30(2):173 − 180. [ZHENG Yingren,YE Hailin,HUANG Runqiu,et al. Study on the seismic stability analysis of a slope[J]. Journal of Earthquake Engineering and Engineering Vibration,2010,30(2):173 − 180. (in Chinese with English abstract)]

    ZHENG Yingren, YE Hailin, HUANG Runqiu, et al. Study on the seismic stability analysis of a slope[J]. Journal of Earthquake Engineering and Engineering Vibration, 2010, 30(2): 173 − 180. (in Chinese with English abstract)

图(20)  /  表(4)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  16
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-20
  • 修回日期:  2024-03-04
  • 录用日期:  2024-04-22
  • 网络出版日期:  2024-06-17

目录

/

返回文章
返回