ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

超大跨桥梁强震动力响应下岸坡稳定性分析

杜兆萌, 刘天翔, 程强, 雷航, 王丰

杜兆萌,刘天翔,程强,等. 超大跨桥梁强震动力响应下岸坡稳定性分析[J]. 中国地质灾害与防治学报,2025,36(2): 1-11. DOI: 10.16031/j.cnki.issn.1003-8035.202309031
引用本文: 杜兆萌,刘天翔,程强,等. 超大跨桥梁强震动力响应下岸坡稳定性分析[J]. 中国地质灾害与防治学报,2025,36(2): 1-11. DOI: 10.16031/j.cnki.issn.1003-8035.202309031
DU Zhaomeng,LIU Tianxiang,CHENG Qiang,et al. Analysis of bank slope stability under strong seismic response for super long span bridges[J]. The Chinese Journal of Geological Hazard and Control,2025,36(2): 1-11. DOI: 10.16031/j.cnki.issn.1003-8035.202309031
Citation: DU Zhaomeng,LIU Tianxiang,CHENG Qiang,et al. Analysis of bank slope stability under strong seismic response for super long span bridges[J]. The Chinese Journal of Geological Hazard and Control,2025,36(2): 1-11. DOI: 10.16031/j.cnki.issn.1003-8035.202309031

超大跨桥梁强震动力响应下岸坡稳定性分析

基金项目: 四川省交通运输科技项目(2023-A-02;2024-A-04);四川省科技计划资助(2022YFG0141);四川省公路规划勘察设计研究院有限公司科研项目(KYXM2021000049;KYXM2022000038)
详细信息
    作者简介:

    杜兆萌(1995—),女,山东东营人,地质资源与地质工程专业,硕士,工程师,主要从事地质灾害防治与特殊支挡结构设计方面的研究。E-mail:473453892@qq.com

    通讯作者:

    刘天翔(1980—),男,四川自贡人,地质工程专业,硕士,教授级高级工程师,主要从事公路地质灾害防治设计与监测预警技术方面的研究。E-mail:411495191@qq.com

  • 中图分类号: TU435

Analysis of bank slope stability under strong seismic response for super long span bridges

  • 摘要:

    在高烈度山区设计修建公路桥梁时,其中耦合多种不利条件的在强震作用下超大跨径桥梁高陡岸坡稳定性最为复杂,易形成滑移、碎屑流等岸坡失稳灾害。实际震害调查结果表明不规则地形对地震动力具有明显的放大作用,对边坡的稳定性和桥梁的安全性构成不利的影响,如何考虑复杂地形的地震动力放大效应具有重要的工程价值。以位于四川省凉山彝族自治州高烈度深切峡谷地段的主跨1200 m特大悬索桥岸坡为例,对此类超大跨径桥梁岸坡在强地震力作用下的基岩面地震危险性概率和失稳破坏模式机理进行研究,建立了含卸荷裂隙的三维坡体结构模型,采用动力时程分析方法给出了不同失稳破坏模式下岸坡上各特征点的峰值地震加速度并据此获得了修正的放大系数。基于修正的放大系数对坡体地震稳定性的拟静力计算方法进行改进,采用改进后的方法对该工点的稳定性进行了评估。结果表明:边坡遵循峰值地震水平加速度及放大系数地表最大,随着坡体深度的增大而递减,且递减速度减缓并趋于稳定的规律,且坡度变化率对此影响极大。坡度变化率大且地貌突出部位的地震响应极为强烈。大范围分布的碎块石土覆盖层、变坡率的地貌突出的浅表层、风化卸荷带内的表层风化碎裂岩体极易在地震作用下产生变形,应当加强防护。未考虑修正放大系数的地震工况计算结果偏于不安全,安全系数的计算结果减少了2%~6%。据此提出的一整套针对高烈度山区特大跨径桥梁岸坡的地质灾害风险评估方法和与考虑桥梁结构两水准抗震相适应的边坡稳定性计算方法及防护措施建议思路,为相关工程的研究与设计提供参考。

    Abstract:

    Designing and constructing highway bridges in high-intensity mountainous areas present significant challenges. The stability of high and steep bank slopes for large span bridges coupled with various unfavorable conditions under strong earthquakes is particularly complex, which is prone to formation of bank slope instability disasters such as sliding and debris flow. Investigations into earthquake damage reveal that irregular terrain has a significant amplification effect on earthquake dynamics, which has an adverse impact on the stability of slopes and the safety of bridges. Assessing the seismic dynamic amplification effect of complex terrain is of important engineering value. This study examines the bank slope of a 1200m-long suspension bridge located in the high-intensity, deep canyon region of the Liangshan Yi Autonomous Prefecture, Sichuan Province. We conduct an in-depth analysis and research on the seismic hazard probability and instability failure mode mechanisms of the bedrock surface under strong seismic forces. A three-dimensional slope structure model with unloading cracks was developed. The peak seismic acceleration of each characteristic point on the bank slope under different instability failure modes was obtained using dynamic time-history analysis method and modified amplification coefficient was derived based on these findings. Improvements were made to the static calculation method for slope seismic stability using this modified coefficient. The improved method was used to evaluate the stability of the construction site. The results indicate that the slope's peak seismic horizontal acceleration and amplification coefficient are highest at the surface and decrease with increasing slope depth, with the rate of decrease slowing and stabilizing. The rate of slope change significantly impacts this response. The seismic response is exceptionally strong in areas with high slope change rates and prominent landforms. Widely distributed fragmented rock and soil cover layers, shallow surfaces with varying slope rates, and surface weathered fragmented rock masses within weathering unloading zones are prone to deformation under seismic action, and protection should be strengthened. The calculation results of seismic conditions without considering the correction of amplification factors are unsafe, with safety factor results decreasing by 2% to 6%. A complete set of geological hazard risk assessment methods, and slope stability calculation methods, and protective measures suitable for considering the two-level seismic resistance of bridge structures are proposed based on this for the bank slopes of ultra large span bridges in high intensity mountainous areas, providing a reference for the research and design of related engineering projects in high-intensity mountainous areas.

  • 花岗岩残积土在我国东南沿海地区广泛分布,是该地区工程建设中经常遇到的土体之一[1]。花岗岩的节理发育,出露的花岗岩沿着节理经过长期的物理、化学风化作用形成残积土,其矿物成分有抗风化能力强的石英、长石,和亲水性较强的次生黏土矿物(高岭石、伊利石等),具有显著的结构性和水敏性[23]。东南沿海地区台风暴雨频发,降雨集中,受季节性气候的影响,花岗岩残积土的强度发生改变,对花岗岩残积土边坡稳定性存在较大的影响,坡体失稳破坏多以浅层失稳为主,且破坏程度随降雨强度的增大而加剧[45]。花岗岩残积土是一种非饱和的特殊土,遇水强度劣化,持续降雨下,边坡土体抗剪强度下降,重度增大,随着降雨时间的持续增加,安全系数持续减小,加速边坡失稳事件的发生[68]。经统计,仅在2014~2023年的十年间,东南沿海各省先后多次出现降雨群发性花岗岩残积土浅层滑坡的灾害事件。例如,2016年和2021年,“尼伯特”、“卢碧”台风接连登陆引起强降雨,导致福建省闽清县成为重灾区,灾害造成73人死亡、17人失踪的惨剧[9]。2019年6月,广东省龙川县出现强降雨天气,累计降雨量超过260 mm,诱发了大规模群发性滑坡,造成13人死亡,直接经济损失超10亿元[1011]。此类滑坡规模虽小,但给滑坡区内建筑、基础设施造成了极大威胁,增大了抢险及灾后治理工作的难度[1213]

    花岗岩残积土具有特殊的结构特征和矿物成分,因此土体的宏观变形与其微观结构的孔隙分布有较强的相关性。认识花岗岩残积土的微观结构特征对其宏观结构变形的影响,可以对花岗岩残积土的工程应用、地基变形和斜坡稳定性分析提供重要的理论依据[14]。针对花岗岩残积土的微观结构的研究,借助扫描电子显微镜(SEM)和压汞试验(MIP)等微观试验手段进行研究,是当前岩土工程中最有效、最直接的方法,目前已有较多关于土体内部孔隙分布特征和变形特性相关的研究[1517]。通过SEM图像,可以较直观地获得土体孔隙和土颗粒形态的结构特征,对土体的结构参数具有参考价值。根据土体微观结构特征揭示土体宏观变形及强度变化规律,可为土体微观结构变化带来的宏观影响提供参考依据[1820]。周宇[21]、安然[22]等对花岗岩残积土进行干湿循环模拟,并通过扫描电镜(SEM)测试其微观下的形态,随着干湿循环次数增加,土颗粒接触关系发生改变,土体细微观结构发生变化,在微观-细观-宏观上展现出层层递进和互馈的关系。当前SEM图像多停留在二维层面,但从三维角度分析土体微观结构,往往更为直观和准确。可先利用SEM拍摄二维图像,拍摄过程中采集土样从颗粒表面到成像表面的距离信息,进而利用GIS中用于表达地面高程起伏的数字高程模型(DEM)计算土样断面的表面形态,最终通过GIS处理、分析获得土体的三维重建与微观可视化,最终获得土体的三维特征[2324]。因此,基于SEM二维图像,在ArcGIS软件中以二维图像为底、最大灰度值为高构建颗粒三维空间,进行三维重建和可视化分析,可获得土样的孔隙率[2526]。然而,现有研究对于土体微细观结构与力学强度以及宏观坡体的稳定性的关联性仍有待进一步深化,且细观结构变化与宏观变形机制的分析不够充分。基于此,本文以福建地区花岗岩残积土为研究对象,并根据不同粒径的颗粒含量,将花岗岩残积土划分为黏性土和砂质黏性土,选取两类土体试样进行X射线衍射试验及SEM电镜扫描试验,综合分析试验结果,对比讨论两类花岗岩风化土体的微细观结构形态的差异,探讨花岗岩残积土微细观结构的差异对边坡稳定性的潜在影响。

    试验采集了两种土样(图1),一是福州市区某边坡的花岗岩残积黏性土,编号为WZ1,呈深黄色,可塑~硬塑;二是福州罗源地区花岗岩残积砂质黏性土,为花岗岩风化残积形成,将其编号为WZ2,呈灰黄色、灰白色、浅红色,具有遇水易软化、崩解等特性。上述两种土样均为原状土样,在现场采集及运输过程采取相应的防护措施,尽可能保持土的原状结构及天然含水率。其它基本物理力学性质指标通过室内土工试验获得,如表1所示。

    图  1  试验土样照片
    Figure  1.  Photos of test soil samples
    表  1  WZ1、WZ2基本物理力学性质参数
    Table  1.  Basic physical and mechanical properties of WZ1 and WZ2
    试样 密度ρ(g/m3 干密度ρd(g/m3 比重Gs 含水量ω(%) 粘聚力c(kPa) 内摩擦角φ(°)
    WZ1 1.77 1.48 2.68 19.53 39.37 26.29
    WZ2 1.37 1.19 2.46 12.92 15.62 33.33
    下载: 导出CSV 
    | 显示表格

    为了鉴定土样中的矿物成分,X射线衍射法(XRD法)是目前运用最广、最有效的方法之一。由于不同矿物的晶体微观排列构造不同,X射线在穿透不同构造的矿物晶格时会产生不同的衍射图谱[27]。试验采用福州大学测试中心的X射线衍射仪对样品的物相进行定性、定量的分析。

    扫描电子显微镜(SEM)通过二次电子信号成像获得土样在微观尺度下的表面形态,逐点扫描土样获得其微观组织结构和形貌信息,将扫描出的信息以数字的形式储存在SEM图像中,是研究土的微观结构最常用的手段之一[2, 21]。采用福州大学测试中心的Nova NanoSEM 230扫描电子显微镜(图2a),其配备的低真空高分辨模式能够实现对容易产生电荷积累的非导材料在不改变材料表面形貌的情况下在纳米尺度进行细致的表征。

    图  2  试验所用仪器照片
    Figure  2.  Photos of instruments used in the experiment

    试验采用U-1400A数码显微镜(图2b),一种连续变倍单筒显微镜,带有0.5×摄影目镜,成像清晰、立体感强、工作距离长、视野宽阔,与高清晰度的彩色CCD和电视机配套使用。

    将编号为WZ1,WZ2的土样进行X射线衍射分析,物相测试衍射结果如图3所示。

    图  3  矿物X射线衍射图谱
    Figure  3.  X-ray diffraction pattern of Minerals

    根据样品物相定量分析结果,可以看出两种试样都由多种矿物组成,WZ1土样(表2)含有较多次生黏土矿物,主要以高岭石、石英为主,含量分别为34.3%和37.0%。黏土矿物为黏粒组的主要成分,孔隙较大,透水性强,湿时可将细颗粒联结在一起;干时及保水时,粒间无联接,呈松散状,无可塑性、胀缩性。失水时因其比表面积较小,联结力减弱,导致尘土飞扬。由于高岭石含量较高,土体亲水性较强,压缩性较高,粘聚力较大,因而抗剪强度较高。

    表  2  WZ1矿物X衍射物相定量分析结果
    Table  2.  Quantitative Phase Analysis Results for WZ1 Mineral X-ray Diffraction
    矿物名称化学式含量 [%]
    Quartz(石英)SiO237.0
    Orthoclase(正长石)KSi3AlO810.9
    Albite calcian low(钠长石)(Na0.84Ca0.16)Al1.16Si2.84O811.1
    Palygorskite(坡缕石)(Mg2.074Al1.026)(Si4O10.482(OH)2(H2O)10.686.7
    Kaolinite (高岭石)Al2Si2O5(OH)434.3
    下载: 导出CSV 
    | 显示表格

    WZ2土样(表3) 主要由原生矿物组成并含有一定的次生矿物,其中,正长石含量达44.9%,石英含量占33.4%,钠长石含量占7.9%。原生矿物一般为砂粒组的主要成分,砂粒组的存在增强了土颗粒间的摩擦作用,使得WZ2土样的内摩擦角较大。相较于WZ1的土样测试,WZ2的高岭石含量较低,仅为9.0%,因此内摩擦角较WZ1大。

    表  3  WZ2矿物X衍射物相定量分析结果
    Table  3.  Quantitative Phase Analysis Results for WZ2 Mineral X-ray Diffraction
    矿物名称化学式含量[%]
    Quartz(石英)SiO233.4
    Orthoclase(正长石)KSi3AlO844.9
    Albite calcian low(钠长石)(Na0.84Ca0.16)Al1.16Si2.84O87.9
    Palygorskite(坡缕石)(Mg2.074Al1.026)(Si4O10.482(OH)2(H2O)10.684.8
    Kaolinite(高岭石)Al2Si2O5(OH)49.0
    下载: 导出CSV 
    | 显示表格

    研究获取了大量扫描图片,选取具有代表性的视野数码显微镜4幅(图4)以及SEM扫描图像8幅(图5图6)。

    图  4  数码电子显微镜图像
    Figure  4.  Digital electron microscope images
    图  5  WZ1试样SEM照片
    Figure  5.  SEM photos of WZ1 sample
    图  6  WZ2试样SEM照片
    Figure  6.  SEM photos of WZ2 sample

    从数码显微镜图片可以看出,在放大不同倍数下,WZ1矿物含有较多石英和高岭石(图4a、b),WZ2矿物含有石英和少量高岭石(图4c、d),与矿物X射线衍射物相定量分析结果相匹配。选取适当的位置对花岗岩残积土土样进行扫描,获取到不同放大倍数的试样SEM照片(图5图6),从SEM照片中可以清晰地看到土样的骨架和孔隙,以及土颗粒的形态结构特征。从中可见,土体孔隙发育,骨架较松散,无定向排列,颗粒杂乱堆积,接触点数目较少,多以点-点、边-边和边-面接触。

    为了进一步分析土体微观结构的规律,将试验所得的数码显微镜图片和SEM扫描电镜照片同以上矿物分析结合起来,对花岗岩残积土试样进行分析,从以下几个方面对试验结果进行论述。

    土体的宏观组织结构是由无数个片状黏土颗粒按照一定的形式相互堆叠而成的,构成了土体的结构强度。根据矿物分析结论和数码显微镜图像,WZ1的矿物成分主要为高岭石和石英,由SEM电镜扫描图片(图5a、b)可以看出,WZ1土样排列略为杂乱,矿物表面几乎都被呈土状集合体的高岭石覆盖,呈叠聚体结构,颗粒间的微结构呈架空状态,接触点的数目较多,石英颗粒散布于黏土矿物之间,被细粒包裹,颗粒杂乱堆积,多以点-点、边-边、边-面接触。图5c看到钠长石表面附着大量书册状高岭石,放大后的书册状高岭石(图5d)显得更加清晰。

    WZ2矿物成分主要有石英和正长石,还有少量高岭石。扫描电镜结果(图6a、b)显示,WZ2颗粒以粒状和片状为主,主要为镶嵌构造和架立构造。试样中正长石的表面及周围均已被风化产物覆盖,石英颗粒被细粒包裹,散布于黏土矿物之间。还可见球状的高岭石覆盖于正长石上。图6b-d可以看到呈针状、纤维状、棒状、纤维集合体的坡缕石。坡缕石具有很大的比表面积和吸附能力,有较好的流变性和催化性能,且有理想的胶体性能和耐热性。坡缕石的存在使得土样湿时具黏性和可塑性,干燥后缩小,不大显裂纹,被水浸泡后易崩散。从WZ2土样的SEM扫描电镜图像可以看出高岭石含量比WZ1少,因此WZ2的抗剪强度比WZ1土样高。

    WZ1,WZ2土样的孔隙都较为杂乱。WZ1(图5b、c)基本集合体有片状单元彼此重叠而成,无定向排列。结构较为松散,集合体间存在大量孔隙,孔隙的空间存在形式多为孤立孔隙和粒间孔隙,相对WZ2密而多。根据电镜扫描照片可以看出,在较小的干密度下,花岗岩残积土土体内部除小、微孔隙外,大、中孔隙也分布较多,且孔隙大小差异较大[28]。与WZ1相比,WZ2(图6b)孔隙发育且孔隙尺寸较大,构成的骨架松散,粒间孔隙呈各种形态且分布较广,因而导致了WZ2土样干密度相对较小的特征。

    对于强降雨引起的花岗岩残积土滑坡,降雨作为主要的因素,在其影响下,孔隙水持续作用,土体微观结构发生变化,孔隙水润滑、软化作用进一步导致摩擦强度降低,进而反馈至力学强度衰减,表现为边坡稳定性降低,这也一定程度上解释了降雨过程中花岗岩残积土边坡的失稳机理[29,30]

    以土的孔隙特征为着眼点,对SEM图像进行孔隙分析。选择3张较为典型的SEM扫描电镜图片,用ArcGIS软件将图片处理成3D效果图,可以更真实地反映土样的表面特征。用ArcGIS软件将SEM扫描电镜图片处理成3D效果图,该方法主要是利用图像的灰度值来表现微观结构图像中的三维信息。电镜成像过程中,灰度值表征的是电镜成像过程中成像表面与反射能量平面(即颗粒表面)之间的距离。因而,图像中的每一个像素都有一个灰度值与该距离相对应,且此灰度值与距离这二者之间呈线性关系。因此,颗粒表面的三维重建和实现可视化就可以通过GIS中的数字高程模型(DEM)将SEM图像的像素值以数字高程的形式表示出来[24, 31]图7分别为土样放大100020005000倍的土样3D效果图,图7a、b可以看出WZ1多由书册状黏土矿物组成,WZ2表面多有团粒状、纤维状矿物,书册状矿物较少。与2D图像相比,3D图像的亮度对比更加明显,图像中颗粒与孔隙之间的关系有更直观的表现,利用GIS的三维分析模块可以分析颗粒和孔隙体积的大小。在图像中亮度不一的区域,主要是由于结构面不平整。亮度较高的部位,表现为土样凸起部分,亮度较低部分,如图7 c、e中的凹入部分,是土体内部联结较弱的部位,其胶结能力较弱。与WZ1土样相比,WZ2土样3D图显示,其结构面更加平整且有规律,孔隙体积较小。

    图  7  土样放大3D效果图
    Figure  7.  Enlarged 3D rendering of soil sample

    土体的微观结构性与土体结构的力学效应相关,受力时土体的结构影响其力学行为。

    通过2000倍(图7c、d)和5000倍(图7e、f)SEM图像结果,可以看出,WZ1多由薄片状黏土矿物相互叠置而成,也有点状接触形成片架式结构。这种结构遭受外力时,单个矿物以受轴向力为主,受力较为合理,强度较高。扰动条件下,土体结构被破坏,表现为片架式结构面的“坍塌”,遭受外力的条件下,土体受力以遭受弯矩为主,强度降低。WZ2矿物成分较复杂,各矿物形状、强度不同,未扰动条件下,强度较高的矿物起到土体骨架作用,承受大部分外力,强度较高。扰动条件下,强度较高的矿物骨架受到破坏,其矿物由强度较低的矿物充填,土体强度降低,由强度低的矿物控制。它们之间的矿物组成及结构的差异决定了二者结构性破坏之后力学性质变化的差异。由此可见,土体宏观的力学性质的变化,是其微观结构变化发展的结果[22]

    组成花岗岩残积土边坡的土体在开挖卸荷、降雨入渗等外界因素的影响下,结构受到破坏,土体抵抗外部破坏的能力下降,进而导致残积土边坡稳定性也急剧下降。

    土体内的胶结物也影响土体的力学强度,土体的力学性质既与胶结物的自身特性有关,又与胶结物和土体的结合作用有关,胶结物质的存在可与土中的黏土矿物相互作用形成结构联接[32]。从WZ1的SEM电镜扫描图像看出,呈叠聚体结构的高岭石颗粒间黏聚物较多,粘聚力较大,而相较于WZ1试样的图像,WZ2试样颗粒间黏结絮状物质较少,颗粒之间联结为接触和胶结联结,黏结能力一般,这也合理解释了WZ1土样的粘聚力大于WZ2的粘聚力。在宏观上,WZ2也表现出遇水易崩解的特性。

    对SEM扫描电镜图像进行分析并结合矿物分析结果,观察花岗岩残积黏性土和花岗岩残积砂质黏性土的微观形态,从微观的角度解释花岗岩残积黏性土和花岗岩残积砂质黏性土在宏观上的工程特性,得出以下结论:

    (1)花岗岩残积黏性土中矿物成分主要以高岭石、石英为主,由于高岭石含量较高,土体亲水性较强,压缩性较高,粘聚力较大,因而抗剪强度较高。花岗岩残积砂质黏性土正长石和石英的含量较高,高岭石含量较低。砂粒组的含量较高故其内摩擦角比花岗岩残积黏性土大。

    (2)花岗岩残积黏性土中含有较高的胶结物质,与残积土中的黏土矿物,如高岭石、坡缕石等,相互作用形成花岗岩残积黏性土的结构联结,他们的作用机理主要是静电力的吸附作用。两种不同电荷的物质相互吸引,紧密联结在一起,形成了花岗岩残积土中的胶结联接,是一种牢固的水稳性联结。而相较花岗岩残积砂质黏性土中的黏土矿物含量不高,胶结物质与其形成结构联接较少。因此,花岗岩残积黏性土的胶结能力高于花岗岩残积砂质黏性土。

    (3)花岗岩残积黏性土钠长石表面附着大量的书册状高岭石,为叠聚体结构,粒间呈架空的微结构,接触点数目较多,黏结能力较强。花岗岩残积砂质黏性土大多为粒状和片状,主要为镶嵌构造和架立构造,粒间粘结絮状物质较少,黏结能力一般,宏观上表现出遇水易崩解的特性。

  • 图  1   桥梁及岸坡地貌图

    Figure  1.   Landscape map of bridge and riverbank slopes

    图  2   风化卸荷变形区岩芯特征

    Figure  2.   Characteristics of rock core in weathering and unloading deformation zone

    图  3   风化卸荷裂隙特征

    Figure  3.   characteristics of weathering unloading crack

    图  4   地震区带划分方案图

    Figure  4.   Diagram of seismic zone division plan

    图  5   计算模型分层划分和单元划分

    Figure  5.   Calculation model and unit division

    图  6   计算模型与监测点位置

    Figure  6.   Calculation model and monitoring point location

    图  7   水平方向地震动时程

    Figure  7.   Time history of horizontal ground motion

    图  8   监测点峰值地震水平加速度折线图

    Figure  8.   Peak Seismic Horizontal Acceleration at Monitoring Points

    图  9   西昌岸监测点5地震水平加速度时程曲线

    Figure  9.   Seismic horizontal acceleration time history curve of monitoring point 5 on Xichang bank

    图  10   香格里拉岸监测点5地震水平加速度时程曲线

    Figure  10.   Seismic horizontal acceleration time history curve of monitoring point 5 on Xianggelila bank

    图  11   西昌岸地质及桥梁剖面图

    Figure  11.   Geological and bridge profile of Xichang bank

    图  12   香格里拉岸地质及桥梁剖面图

    Figure  12.   Geological and bridge profile of Xianggelila bank

    图  13   西昌岸E1地震工况总位移图

    Figure  13.   Total displacement diagram of Xichang bank under E1 earthquake condition

    图  14   西昌岸E2地震工况总位移图

    Figure  14.   Total displacement diagram of Xichang bank under E2 earthquake condition

    图  15   香格里拉岸E1地震工况总位移图

    Figure  15.   Total displacement diagram of Xianggelila bank under E1 earthquake condition

    图  16   香格里拉岸E2地震工况总位移图

    Figure  16.   Total displacement diagram of Xianggelila bank under E2 earthquake condition

    图  17   西昌岸E1地震工况折减至极限状态的剪应变增量

    Figure  17.   Shear strain increment of Xichang bank under E1 earthquake condition

    图  18   西昌岸E2地震工况折减至极限状态的剪应变增量

    Figure  18.   Shear strain increment of Xichang bank under E2 earthquake condition

    图  19   香格里拉岸E1工况折减至极限状态剪应变增量

    Figure  19.   Shear strain increment and stability coefficient of Xianggelila bank under E1 earthquake condition

    图  20   香格里拉岸E2工况折减至极限状态的剪应变增量

    Figure  20.   Shear strain increment and stability coefficient of Xianggelila bank under E2 earthquake condition

    表  1   岩土体的物理力学参数

    Table  1   Physical and mechanical parameters of rock and soil

    区域 弹模
    /MPa
    泊松比 黏聚力/kPa 内摩擦角/(°) 容重/(kN·m−3
    天然 暴雨 天然 暴雨 天然 暴雨
    碎块石土 60 0.32 15 13 27 24 20 21
    卸荷带 300 0.28 120 108 42.2 38.0 24 25
    中风化岩 800 0.27 507 456. 49.9 44.9 26.5 27
    下载: 导出CSV

    表  2   监测点峰值地震水平加速度和放大系数ξ

    Table  2   Peak Seismic Horizontal Acceleration and Amplification Factor of Monitoring Points

    编号 西昌岸 香格里拉岸
    峰值地震水平加速度 ξ 峰值地震水平加速度 ξ
    1 18.779 2.61 16.249 2.26
    2 26.536 3.69 19.068 1.40
    3 21.003 2.92 14.210 1.28
    4 18.763 2.61 15.963 2.22
    5 12.581 1.75 43.467 6.04
    6 19.471 2.71 18.124 2.52
    7 18.848 2.61 13.097 1.82
    8 16.650 2.32 14.919 2.07
    9 12.434 1.80 41.169 5.72
    10 15.802 2.20 16.488 2.29
    11 13.193 1.83 12.499 1.74
    12 11.940 1.66 14.474 2.01
    13 15.797 2.20 10.257 1.43
    14 12.253 1.70 12.484 1.76
    15 10.975 1.53 9.688 1.35
    下载: 导出CSV

    表  3   考虑修正放大系数下不同工况边坡FS及稳定状态

    Table  3   FS and stable state of various conditions with considering the correction amplification factor

    岸坡 天然工况 暴雨工况 E1地震 E2地震
    FS 状态 FS 状态 FS 状态 FS 状态
    西昌 1.35 稳定 1.26 稳定 1.13 稳定 0.97 失稳
    香格里拉 1.26 稳定 1.12 稳定 1.06 基本稳定 0.98 失稳
    下载: 导出CSV

    表  4   未考虑修正放大系数下地震工况的FS及稳定状态

    Table  4   FS and stable state of seismic conditions without considering the correction amplification factor

    岸坡 E1地震 E2地震
    FS 状态 FS 状态
    西昌 1.15 稳定 0.99 失稳
    香格里拉 1.11 稳定 1.04 欠稳定
    下载: 导出CSV
  • [1] 彭建兵,崔鹏,庄建琦. 川藏铁路对工程地质提出的挑战[J]. 岩石力学与工程学报,2020,39(12):2377 − 2389. [PENG Jianbing,CUI Peng,ZHUANG Jianqi. Challenges to engineering geology of Sichuan—Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(12):2377 − 2389. (in Chinese with English abstract)]

    PENG Jianbing, CUI Peng, ZHUANG Jianqi. Challenges to engineering geology of Sichuan—Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(12): 2377 − 2389. (in Chinese with English abstract)

    [2] 袁进科,陈杰. 汶川地震公路边坡灾害分析及震后边坡灾害发育特点[J]. 公路,2020,65(5):26 − 33. [YUAN Jinke,CHEN Jie. Analysis of highway slope disaster in Wenchuan earthquake and its development characteristics after earthquake[J]. Highway,2020,65(5):26 − 33. (in Chinese with English abstract)]

    YUAN Jinke, CHEN Jie. Analysis of highway slope disaster in Wenchuan earthquake and its development characteristics after earthquake[J]. Highway, 2020, 65(5): 26 − 33. (in Chinese with English abstract)

    [3] 张伯艳,王璨,李德玉,等. 地震作用下水利水电工程边坡稳定分析研究进展[J]. 中国水利水电科学研究院学报,2018,16(3):168 − 178. [ZHANG Boyan,WANG Can,LI Deyu,et al. The research progress on seismic stability analysis of slopes in water conservancy and hydropower projects[J]. Journal of China Institute of Water Resources and Hydropower Research,2018,16(3):168 − 178. (in Chinese with English abstract)]

    ZHANG Boyan, WANG Can, LI Deyu, et al. The research progress on seismic stability analysis of slopes in water conservancy and hydropower projects[J]. Journal of China Institute of Water Resources and Hydropower Research, 2018, 16(3): 168 − 178. (in Chinese with English abstract)

    [4] 郭延辉,杨溢,高才坤,等. 云南鲁甸地震红石岩堰塞湖右岸特高边坡综合监测及变形特征分析[J]. 中国地质灾害与防治学报,2020,31(6):30 − 37. [GUO Yanhui,YANG Yi,GAO Caikun,et al. Comprehensive monitoring and deformation analysis of extra high slope on the right bank of Hongshiyan dammed lake in Ludian Earthquake[J]. The Chinese Journal of Geological Hazard and Control,2020,31(6):30 − 37. (in Chinese with English abstract)]

    GUO Yanhui, YANG Yi, GAO Caikun, et al. Comprehensive monitoring and deformation analysis of extra high slope on the right bank of Hongshiyan dammed lake in Ludian Earthquake[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(6): 30 − 37. (in Chinese with English abstract)

    [5] 胡爱国,周伟. 地震与强降雨作用下堆积体滑坡变形破坏机理及防治方案分析[J]. 中国地质灾害与防治学报,2022,33(1):27 − 34. [HU Aiguo,ZHOU Wei. Deformation and failure mechanism and analysis on prevention measures of colluction landslide under earthquake and heavy rainfall[J]. The Chinese Journal of Geological Hazard and Control,2022,33(1):27 − 34. (in Chinese with English abstract)]

    HU Aiguo, ZHOU Wei. Deformation and failure mechanism and analysis on prevention measures of colluction landslide under earthquake and heavy rainfall[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 27 − 34. (in Chinese with English abstract)

    [6] 周洪福,冯治国,石胜伟,等. 川藏铁路某特大桥成都侧岸坡工程地质特征及稳定性评价[J]. 水文地质工程地质,2021,48(5):112 − 119. [ZHOU Hongfu,FENG Zhiguo,SHI Shengwei,et al. Slope engineering geology characteristics and stability evaluation of a grand bridge to Chengdu bank on the Sichuan-Tibet Railway[J]. Hydrogeology & Engineering Geology,2021,48(5):112 − 119. (in Chinese with English abstract)]

    ZHOU Hongfu, FENG Zhiguo, SHI Shengwei, et al. Slope engineering geology characteristics and stability evaluation of a grand bridge to Chengdu bank on the Sichuan-Tibet Railway[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 112 − 119. (in Chinese with English abstract)

    [7] 刘天翔,杜兆萌,程强,等. 红层软岩高边坡的时效变形特性[J]. 科学技术与工程,2020,20(27):11315 − 11322. [LIU Tianxiang,DU Zhaomeng,CHENG Qiang,et al. Time-dependent deformation characteristics of high slope in red layer soft rock[J]. Science Technology and Engineering,2020,20(27):11315 − 11322. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-1815.2020.27.050

    LIU Tianxiang, DU Zhaomeng, CHENG Qiang, et al. Time-dependent deformation characteristics of high slope in red layer soft rock[J]. Science Technology and Engineering, 2020, 20(27): 11315 − 11322. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2020.27.050

    [8] 陈廷君,肖世国,程强,等. 泸定大渡河桥康定岸重力锚边坡长期变形与稳定性分析[J]. 工程地质学报,2019,27(3):632 − 639. [CHEN Tingjun,XIAO Shiguo,CHENG Qiang,et al. Long-term deformation and stability analysis of gravity anchorage slope on Kangding bank of Dadu River bridge in Luding[J]. Journal of Engineering Geology,2019,27(3):632 − 639. (in Chinese with English abstract)]

    CHEN Tingjun, XIAO Shiguo, CHENG Qiang, et al. Long-term deformation and stability analysis of gravity anchorage slope on Kangding bank of Dadu River bridge in Luding[J]. Journal of Engineering Geology, 2019, 27(3): 632 − 639. (in Chinese with English abstract)

    [9] 郭鸿俊,姜清辉,孙金山. 大岗山水电站右岸高边坡加固方案优化研究[J]. 人民长江,2012,43(15):16 − 19. [GUO Hongjun,JIANG Qinghui,SUN Jinshan. Optimization for reinforcement plan of right-bank high slope of Dagangshan Hydropower Station[J]. Yangtze River,2012,43(15):16 − 19. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1001-4179.2012.15.005

    GUO Hongjun, JIANG Qinghui, SUN Jinshan. Optimization for reinforcement plan of right-bank high slope of Dagangshan Hydropower Station[J]. Yangtze River, 2012, 43(15): 16 − 19. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-4179.2012.15.005

    [10] 张泽鹏,朱凤贤,黄放军,等. 复杂地质条件下高边坡加固设计与综合治理研究——以梅河高速公路某高边坡治理为例[J]. 中山大学学报(自然科学版),2006,45(4):44 − 48. [ZHANG Zepeng,ZHU Fengxian,HUANG Fangjun,et al. Research on reinforcement design and comprehensive improvement for high slopes under complicated geological conditions[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2006,45(4):44 − 48. (in Chinese with English abstract)]

    ZHANG Zepeng, ZHU Fengxian, HUANG Fangjun, et al. Research on reinforcement design and comprehensive improvement for high slopes under complicated geological conditions[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2006, 45(4): 44 − 48. (in Chinese with English abstract)

    [11] 张江伟,李小军. 地震作用下边坡稳定性分析方法[J]. 地震学报,2015,37(1):180 − 191. [ZHANG Jiangwei,LI Xiaojun. A review on the stability analysis methods of slope under seismic loading[J]. Acta Seismologica Sinica,2015,37(1):180 − 191. (in Chinese with English abstract)] DOI: 10.11939/j.issn:0253-3782.2015.01.016

    ZHANG Jiangwei, LI Xiaojun. A review on the stability analysis methods of slope under seismic loading[J]. Acta Seismologica Sinica, 2015, 37(1): 180 − 191. (in Chinese with English abstract) DOI: 10.11939/j.issn:0253-3782.2015.01.016

    [12] 崔玉龙,刘爱娟. 区域边坡地震危险性评价理论研究进展[J]. 地震工程学报,2022,44(3):518 − 526. [CUI Yulong,LIU Aijuan. Advances in the theory of seismic hazard assessment of regional slopes[J]. China Earthquake Engineering Journal,2022,44(3):518 − 526. (in Chinese with English abstract)]

    CUI Yulong, LIU Aijuan. Advances in the theory of seismic hazard assessment of regional slopes[J]. China Earthquake Engineering Journal, 2022, 44(3): 518 − 526. (in Chinese with English abstract)

    [13] 李亮,褚雪松,庞峰,等. 地震边坡稳定性分析的拟静力方法适用性探讨[J]. 世界地震工程,2012,28(2):57 − 63. [LI Liang,CHU Xuesong,PANG Feng,et al. Discussion on suitability of pseudo-static method in seismic slope stability analysis[J]. World Earthquake Engineering,2012,28(2):57 − 63. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1007-6069.2012.02.010

    LI Liang, CHU Xuesong, PANG Feng, et al. Discussion on suitability of pseudo-static method in seismic slope stability analysis[J]. World Earthquake Engineering, 2012, 28(2): 57 − 63. (in Chinese with English abstract) DOI: 10.3969/j.issn.1007-6069.2012.02.010

    [14] 郑颖人,叶海林,肖强,等. 基于全动力分析法的地震边坡与隧道稳定性分析[J]. 防灾减灾工程学报,2010,30(增刊1):279 − 285. [ZHENG Yingren,YE Hailin,XIAO Qiang,et al. Stability analysis of earthquake slope and tunnel based on full dynamic analysis method[J]. Journal of Disaster Prevention and Mitigation Engineering,2010,30(Sup 1):279 − 285. (in Chinese)]

    ZHENG Yingren, YE Hailin, XIAO Qiang, et al. Stability analysis of earthquake slope and tunnel based on full dynamic analysis method[J]. Journal of Disaster Prevention and Mitigation Engineering, 2010, 30(Sup 1): 279 − 285. (in Chinese)

    [15] 张迎宾,柳静,唐云波,等. 考虑边坡地形效应的地震动力响应分析[J]. 地震工程学报,2021,43(1):142 − 153. [ZHANG Yingbin,LIU Jing,TANG Yunbo,et al. Dynamic response analysis of seismic slopes considering topographic effect[J]. China Earthquake Engineering Journal,2021,43(1):142 − 153. (in Chinese with English abstract)]

    ZHANG Yingbin, LIU Jing, TANG Yunbo, et al. Dynamic response analysis of seismic slopes considering topographic effect[J]. China Earthquake Engineering Journal, 2021, 43(1): 142 − 153. (in Chinese with English abstract)

    [16] 王来贵,向丽,赵娜,等. 地震作用下顺倾多弱层岩质边坡动力响应[J]. 中国地质灾害与防治学报,2021,32(6):18 − 25. [WANG Laigui,XIANG Li,ZHAO Na,et al. Dynamic response of down-dip multi-weak-layer rock slope under earthquake[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):18 − 25. (in Chinese with English abstract)]

    WANG Laigui, XIANG Li, ZHAO Na, et al. Dynamic response of down-dip multi-weak-layer rock slope under earthquake[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 18 − 25. (in Chinese with English abstract)

    [17] 林峻岑,严松宏,孙纬宇,等. 三向地震作用下错距岩质边坡共振特性研究[J]. 水文地质工程地质,2023,50(2):95 − 102. [LIN Juncen,YAN Songhong,SUN Weiyu,et al. A study of the resonance characteristics of a staggered rock slope under the tri-dimension earthquake wave[J]. Hydrogeology & Engineering Geology,2023,50(2):95 − 102. (in Chinese with English abstract)]

    LIN Juncen, YAN Songhong, SUN Weiyu, et al. A study of the resonance characteristics of a staggered rock slope under the tri-dimension earthquake wave[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 95 − 102. (in Chinese with English abstract)

    [18] 李郑梁,李建春,刘波,等. 浅切割的高山峡谷复杂地形的地震动放大效应研究[J]. 工程地质学报,2021,29(1):137 − 150. [LI Zhengliang,LI Jianchun,LIU Bo,et al. Seismic motion amplification effect of shallow-cutting hill-canyon composite topography[J]. Journal of Engineering Geology,2021,29(1):137 − 150. (in Chinese with English abstract)]

    LI Zhengliang, LI Jianchun, LIU Bo, et al. Seismic motion amplification effect of shallow-cutting hill-canyon composite topography[J]. Journal of Engineering Geology, 2021, 29(1): 137 − 150. (in Chinese with English abstract)

    [19] 孙强强,薄景山,孙有为,等. 隧道结构地震反应分析研究现状[J]. 世界地震工程,2016,32(2):159 − 169. [SUN Qiangqiang,BO Jingshan,SUN Youwei,et al. A state-of-the-art review of seismic response analysis of tunnels[J]. World Earthquake Engineering,2016,32(2):159 − 169. (in Chinese with English abstract)]

    SUN Qiangqiang, BO Jingshan, SUN Youwei, et al. A state-of-the-art review of seismic response analysis of tunnels[J]. World Earthquake Engineering, 2016, 32(2): 159 − 169. (in Chinese with English abstract)

    [20] 邓鹏. 单体边坡地形的地震动力响应及其放大效应的数值分析[J]. 地震学报,2020,42(3):349 − 361. [DENG Peng. Numerical parametric study of seismic dynamic response and amplification effects of slope topography[J]. Acta Seismologica Sinica,2020,42(3):349 − 361. (in Chinese with English abstract)] DOI: 10.11939/jass.20190133

    DENG Peng. Numerical parametric study of seismic dynamic response and amplification effects of slope topography[J]. Acta Seismologica Sinica, 2020, 42(3): 349 − 361. (in Chinese with English abstract) DOI: 10.11939/jass.20190133

    [21] 门妮,孙有为,薄景山,等. 地震作用下边坡动力响应及影响因素研究[J]. 世界地震工程,2017,33(3):110 − 120. [MEN Ni,SUN Youwei,BO Jingshan,et al. Study on dynamic response and influence factors of slope under earthquake[J]. World Earthquake Engineering,2017,33(3):110 − 120. (in Chinese with English abstract)]

    MEN Ni, SUN Youwei, BO Jingshan, et al. Study on dynamic response and influence factors of slope under earthquake[J]. World Earthquake Engineering, 2017, 33(3): 110 − 120. (in Chinese with English abstract)

    [22] 张江伟,周爱红,迟明杰,等. 边坡地震响应数值模拟中最优边界范围研究[J]. 防灾减灾工程学报,2022,42(1):34 − 41. [ZHANG Jiangwei,ZHOU Aihong,CHI Mingjie,et al. Research on boundary range in seismic response simulation of slope[J]. Journal of Disaster Prevention and Mitigation Engineering,2022,42(1):34 − 41. (in Chinese with English abstract)]

    ZHANG Jiangwei, ZHOU Aihong, CHI Mingjie, et al. Research on boundary range in seismic response simulation of slope[J]. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(1): 34 − 41. (in Chinese with English abstract)

    [23] 郑颖人,叶海林,黄润秋,等. 边坡地震稳定性分析探讨[J]. 地震工程与工程振动,2010,30(2):173 − 180. [ZHENG Yingren,YE Hailin,HUANG Runqiu,et al. Study on the seismic stability analysis of a slope[J]. Journal of Earthquake Engineering and Engineering Vibration,2010,30(2):173 − 180. (in Chinese with English abstract)]

    ZHENG Yingren, YE Hailin, HUANG Runqiu, et al. Study on the seismic stability analysis of a slope[J]. Journal of Earthquake Engineering and Engineering Vibration, 2010, 30(2): 173 − 180. (in Chinese with English abstract)

图(20)  /  表(4)
计量
  • 文章访问数:  59
  • HTML全文浏览量:  16
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-20
  • 修回日期:  2024-03-04
  • 录用日期:  2024-04-22
  • 网络出版日期:  2024-06-17

目录

/

返回文章
返回