ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

考虑负样本取样策略的滑坡易发性评价与区划以四川省巴中地区为例

龚学强, 席传杰, 胡卸文, 胡亚运, 周永豪, 张瑜

龚学强,席传杰,胡卸文,等. 考虑负样本取样策略的滑坡易发性评价与区划−以四川省巴中地区为例[J]. 中国地质灾害与防治学报,2025,36(1): 146-155. DOI: 10.16031/j.cnki.issn.1003-8035.202309028
引用本文: 龚学强,席传杰,胡卸文,等. 考虑负样本取样策略的滑坡易发性评价与区划−以四川省巴中地区为例[J]. 中国地质灾害与防治学报,2025,36(1): 146-155. DOI: 10.16031/j.cnki.issn.1003-8035.202309028
GONG Xueqiang,XI Chuanjie,HU Xiewen,et al. Landslide susceptibility assessment and zonation using negative sampling strategy: A case study of Bazhong area, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2025,36(1): 146-155. DOI: 10.16031/j.cnki.issn.1003-8035.202309028
Citation: GONG Xueqiang,XI Chuanjie,HU Xiewen,et al. Landslide susceptibility assessment and zonation using negative sampling strategy: A case study of Bazhong area, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2025,36(1): 146-155. DOI: 10.16031/j.cnki.issn.1003-8035.202309028

考虑负样本取样策略的滑坡易发性评价与区划——以四川省巴中地区为例

基金项目: 国家自然科学基金项目(42377170)
详细信息
    作者简介:

    龚学强(2000—),男,四川简阳人,硕士研究生,主要从事地质灾害成因与防治方面的研究。E-mail:xueqianggong.swjtu.edu.cn@my.swjtu.edu.cn

    通讯作者:

    胡卸文(1963—),男,浙江金华人,教授,主要从事工程地质、环境地质方面的教学与研究。E-mail:huxiewen@163.com

  • 中图分类号: P642.22

Landslide susceptibility assessment and zonation using negative sampling strategy: A case study of Bazhong area, Sichuan Province

  • 摘要:

    滑坡易发性评价是滑坡风险管理的重要环节,能够有效指导防灾减灾工作,但滑坡易发性评价精度受到多种因素制约。当前针对斜坡单元的负样本采样优化策略研究相对较少。文章以四川省巴中地区为研究对象,选取高程、相对高差、历年平均降雨等11个影响因子,以优化斜坡单元负样本采样策略建立地理加权回归-随机森林(GWR-RF)耦合模型,并将评估结果与多次全域随机采样策略进行对比。结果表明:(1)全域随机采样会导致易发性评价结果存在较大差异,且评估结果准确率较差,全域随机采样不适用于以斜坡单元为基础的滑坡易发性评价;(2)GWR-RF耦合模型的滑坡易发性评价结果存在空间差异,主要分布于研究区的恩阳区、巴州区、平昌县,以及南江县中—南部,文章提出的GWR-RF耦合模型通过优化负样本取样策略,提升了滑坡易发性评价的精度,可为巴中地区滑坡灾害防治提供科学依据。

    Abstract:

    Landslide susceptibility assessment is a crucial component of landslide risk management, effectively guiding disaster prevention and mitigation efforts. However, the accuracy of landslide susceptibility assessments is constrained by various factors, and current research on optimizing negative sample sampling strategies based on slope units remains relatively limited. This study, focuses on Bazhong City as the research area, incorporates eleven conditioning factors including elevation, relief, and annual average rainfall to develop a geographically weighted regression - random forest (GWR-RF) coupling model. This model optimize the negative sampling strategy by comparing it against traditional random sampling across the entire area. The results indicate the following: (1) Random sampling from the entire area leads to significant disparities in susceptibility assessments, accompanied by a relatively diminished accuracy, rendering it unsuitable for slope unit-based assessments. (2) The coupled GWR-RF model demonstrates spatial variations in landslide susceptibility, predominantly distributing in the Enyang, Bazhou, Pingchang Counties, and the central - southern region of Nanjiang County. The proposed GWR-RF coupled model improves the accuracy of landslide susceptibility assessments by optimizing the negative sample sampling strategy, providing a scientific basis for landslide disaster prevention and mitigation in the Bazhong region.

  • 地质灾害风险评价主要包含地质灾害易发性评价、危险性评价和易损性评价等内容,综合评价、预测地质灾害发生的可能性大小,是一门自然属性和社会属性并重的交叉学科[1]

    地质灾害风险的概念最早由国外学者 Varnes提出,国外诸多学者对地质灾害风险评价进行了研究[2-7]。近年来,国内很多学者对基于ArcGIS的地质灾害风险评价进行了研究[8-14],建立了地灾风险评估体系和评价模式[15-20]

    随着全球气温上升,降雨量呈逐年增大趋势,近年来河南省嵩县白河镇、闫庄镇、纸房镇、何村乡、饭坡镇等乡镇先后发生10余起地质灾害,见图1(c),其中小型滑坡6起,小型崩塌4起。多期地质灾害造成2人死亡,12间房屋受损,直接经济损失达70余万元,见图1(c)。政府对嵩县地质灾害防治高度重视,在 2021年度中央自然灾害防治体系建设补助资金的资助下,2021—2022年河南省第一地质矿产调查院有限公司开展了《河南省嵩县1∶5万地质灾害风险调查(普查)评价》工作,项目研究成果对嵩县城市规划、防灾减灾及地质灾害风险管控方面具有积极的意义。

    图  1  研究区地质灾害
    Figure  1.  Site photos of geological hazards in the study area

    嵩县位于洛阳市西南部伏牛山区,境内有河谷、丘陵、低山、中山等多种地貌形态。海拔高度自田湖镇千秋外河滩的245 m递增至白河乡白云山玉皇顶的2211.6 m,高差达1966.6 m。区内从新到老出露地层主要为第四系、中新统洛阳组、下白垩统九店组、下古生界二郎坪群、上元古界栾川群、中~上元古界宽坪群、中元古界熊耳群鸡蛋坪组、中元古界熊耳群马家河组—鸡蛋坪组并层、太古界太华群、花岗岩等。区内主要断裂:北西西向断裂主要为黑沟—陶湾断裂带F6、马超营断裂带F4和瓦穴子断裂F7,东西向断裂主要为车村南—下汤大断裂F5,北东向断裂主要为蝉堂—汝阳断裂带F3、旧县—下蛮峪断裂带F2和温家村—朝阳断裂带F1(图2)。

    图  2  研究区地质构造简图
    1—第四系;2—中新统洛阳组;3—下白垩统九店组;4—下古生界二郎坪群;5—上元古界栾川群;6—中—上元古界宽坪群;7—中元古界熊耳群鸡蛋坪组;8—中元古界熊耳群马家河组-鸡蛋坪组并层;9—太古界太华群;10—花岗岩;11—陆浑水库;12—正断层及编号;13—逆断层及编号;14—性质不明断层;15—乡界;16—县界;17—县政府所在地;18—镇(乡)政府所在地
    Figure  2.  Geological structure sketch map of the study area

    嵩县下辖16个乡镇,总人口54.3万,嵩县为山区大县,全县总面积约3008.9 km,嵩县森林覆盖率65.18%,荣获“国家生态示范县”和“全国造林绿化百佳县”。嵩县已探明各类矿产46种,其中黄金储量372 t,年产黄金近20 t,列全省第二,全国第五;钼矿石储量6.8×108 t,年产钼精粉2285 t;铁、萤石、铅、锌、银等有良好的找矿前景。嵩县大力实施“生态立县、工业强县、旅游带动、民生为本”四大战略,经济社会发展取得了一定成效。

    本文数据主要来源于《河南省嵩县1∶5万地质灾害风险调查(普查)评价》项目,项目数据通过资料收集、野外现场调查、遥感解译(哨兵-1系列C波段雷达卫星数据、高分-2号高空间分辨率卫星数据)、室内资料整理与综合研究等多种工作手段获取。在嵩县全境共查明地质灾害隐患点96处,全县16个乡镇均存在有地质灾害隐患,主要为滑坡和崩塌,地质灾害隐患点分布详见图3

    图  3  嵩县地质灾害隐患点分布图
    Figure  3.  Distribution map of geological hazard potential sites in Song county

    信息量模型是从信息预测发展而来的一种评价预测方法[8],是基于ArcGIS环境下,由信息量值来作为该单元影响地质灾害危险性的综合指标,其值越大越容易发生地质灾害,该单元的地质灾害易发性就越高,计算公式如下[9-10]:

    $$ {I}_{i}=\sum _{i}^{n}I\left({X}_{i},K\right)=\sum _{i}^{n}\mathrm{l}\mathrm{n}\frac{{N}_{i}/N}{{S}_{i}/S} \quad(i=1,2,3,\cdots) $$ (1)

    式中:$ {I}_{i} $——地质灾害易发性指数;

    $ {N}_{i} $——分布在因素$ {X}_{i} $内特定类别的灾害面积/km2

    N——研究区有地质灾害总面积/km2

    $ {S}_{i} $——某评价单元灾害面积/km2

    S——研究区总面积/km2

    n——评价体系中参评因子总数/km2

    通过对研究区地质灾害与孕灾环境因素的分析,选择高程、地貌、工程岩组、植被覆盖度、距构造距离、距水系距离、坡度、坡向等 8个因子进行地质灾害易发性评价。高程、坡度、坡向因子由 25 m × 25 m DEM 数据提取;地貌、工程岩组因子由 1∶5 万区域地质图获取;距水系距离、距构造距离因子利用ArcGIS缓冲区分析计算提取;植被覆盖度利用两景Landsat8影像,采用归一化植被指数(NDVI)对其进行计算提取。对 8个评价因子进行分级,并根据式(1) 计算信息量值,结果见表1

    表  1  易发性评价因子分级及信息量值
    Table  1.  Classification and information value of susceptibility assessment factors
    评价因子指标分级Ni/NSi/S信息量值
    高程/m[0, 500]0.38000.21460.5715
    [500, 1000)0.58000.56200.0316
    [1000, 1500)0.04000.1952−1.5854
    ≥15000.00000.02820.0000
    地貌河谷0.05580.0609−0.0883
    中山0.29880.3985−0.2879
    低山0.31830.31760.0037
    丘陵0.32670.22300.3817
    工程岩组坚硬花岗岩岩组0.15200.3001−0.6803
    坚硬片麻岩岩组0.02800.0563−0.6992
    软弱黏性土岩组0.10000.08810.1268
    较软弱砾岩岩组0.03600.01640.7832
    较坚硬砂岩页岩互层岩组0.01600.01130.3452
    较软弱砂质砾岩岩组0.18800.11780.4674
    坚硬安山岩类岩组0.30800.3421−0.1049
    较软弱石英云母片岩岩组0.15200.04551.2065
    较坚硬硅质板岩岩组0.01200.0145−0.1910
    较软弱页岩岩组0.00400.00210.6393
    较坚硬灰岩岩组0.00400.0057−0.3503
    植被覆盖度[0, 0.5)0.10040.05530.5967
    [0.5, 0.65)0.51000.29450.5493
    [0.65, 0.75)0.31330.3799−0.1928
    [0.75, 1]0.07630.2704−1.2651
    距构造距离/m[0, 500)0.50000.30650.4892
    [500, 1000)0.19600.19050.0286
    [1000, 1500)0.13200.12410.0616
    [1500, 2000)0.04800.0903−0.6318
    ≥20000.12400.2886−0.8446
    距水系距离/m[0, 500)0.78000.54900.3512
    [500, 1000)0.12000.2563−0.7588
    [1000, 1500)0.06000.1101−0.6069
    [1500, 2000)0.02400.0415−0.5476
    ≥20000.01600.0431−0.9919
    坡度/(°)[0, 10)0.06800.1321−0.6637
    [10, 25)0.32000.21170.4133
    [25, 40)0.29600.29360.0082
    ≥400.31600.3627−0.1378
    坡向/(°)FLAT(−1)0.00000.01060.0000
    N[337.5, 22.5)0.06800.1427−0.7415
    NE[22.5, 67.5)0.14800.13520.0903
    E[67.5, 112.5)0.13600.11300.1856
    SE[112.5, 157.5)0.17200.11640.3901
    S[157.5, 202.5)0.21600.16300.2814
    SW[202.5, 247.5)0.12400.12360.0032
    W[247.5, 292.5)0.08400.0922−0.0928
    NW[292.5, 337.5)0.05200.1033−0.6862
    下载: 导出CSV 
    | 显示表格

    表1 可知,地质灾害发育程度与距构造距离、植被覆盖度呈负相关,距构造距离越近、植被覆盖度越低地区地质灾害易发性越高;在丘陵地区及坡度在10°~25°地区,地质灾害易发性较高;坡向为东向、南东向、南向的边坡地质灾害易发性较高;地质灾害隐患主要分布在高程0~500 m内软弱地层中;河流水系对地质灾害的易发性,表现出一定的距离效应,距河流水系越近,地质灾害易发性越高。

    在ArcGIS 环境下,运用栅格计算器对各因子信息量值叠加计算出嵩县区域地质灾害易发性评价指数,在此基础上采用自然断点法将嵩县区域划分为非易发区、低易发区、中易发区、高易发区等4个区,得到地质灾害易发性分区图,见图4(a)。对地质灾害易发性评价结果进行统计见图4 (b)(c) ,结果表明:非易发区面积为638.45 km2,占整个嵩县区域面积的21.22%;低易发区面积为686.51 km2,占整个嵩县区域面积的22.82%;中易发区面积为1029.03 km2,占整个嵩县区域面积的34.21%;高易发区面积为654.14 km2 ,占整个嵩县区域面积的21.75%。

    图  4  嵩县地质灾害易发性分区结果图
    Figure  4.  Results of geological hazard susceptibility zoning in Song County

    地质灾害危险性分极高、高、中、低四个等级,地质灾害危险性评价区划的主要目的及用途就是为当地政府制定详细的土地利用提供决策依据。调查资料显示,嵩县全区地震活动相对较弱,地震烈度和地震动峰值加速度在区域内区别不大,因此本次危险性评价中未考虑地震活动的影响因素,参与危险性评价的主要诱发因素为降雨量。

    本区地震活动相对较弱,而且能够代表地震活动程度的地震烈度和地震动峰值加速度在区域内区别不大,因此本次危险性评价中未考虑地震活动的影响因素。本次嵩县区域地质灾害危险性评价主要考虑因素为降雨诱发因素。根据收集到的嵩县区内 17 个气象站点2014—2021年的降雨量数据(表2),计算月累计降雨量,并将其归一化处理(图5)。在ArcGIS 环境下,进行归一化处理,对降雨量线性变换,使得结果映射到0~1之间,计算方法为:

    表  2  嵩县1992—2021年降雨量统计表
    Table  2.  Statistical table of Rainfall level in Song county from 1992—2021
    年份1992199319941995199619971998199920002001
    年降雨量/mm576.90675.20529.60470.70959.10418.10773.10589.90760.30433.10
    月平均降雨量/mm48.0856.2744.1339.2379.9334.8464.4349.16231.5036.09
    年份2002200320042005200620072008200920102011
    年降雨量/mm657.601067.40690.90718.40636.70565.10558.80764.30924.00931.50
    月平均降雨量/mm54.8088.9557.5859.8753.0647.0946.5763.6977.0077.63
    年份2012201320142015201620172018201920202021
    年降雨量/mm649.50518.60674.10594.80562.70745.30690.10690.10642.50944.40
    月平均降雨量/mm54.1343.2256.1849.5746.8962.1157.5153.2653.54145.29
    下载: 导出CSV 
    | 显示表格
    图  5  月累计降雨量归一化结果
    Figure  5.  Normalized results of monthly cumulative rainfall in the study area
    $$ y=\frac{x-\mathrm{m}\mathrm{i}\mathrm{n}\left({x}\right)}{\mathrm{max}\left(x\right)-\mathrm{m}\mathrm{i}\mathrm{n}\left(x\right)} $$ (2)

    式中:y——归一化值;

    x——降雨值;

    max(x)——降雨最大值;

    min(x)——降雨最小值。

    降雨量归一化结果与易发性归一化结果(图6)进行叠加,按自然断点法划分为极高、高、中和低危险 4 个等级,得到嵩县区域危险性评价图(图7)。

    图  6  易发性归一化结果
    Figure  6.  Normalized results of susceptibility in the study area
    图  7  嵩县地质灾害危险性分区结果图
    Figure  7.  Geological hazard risk zoning results in Song County

    在ArcGIS 环境下,将易发性归一化结果和2014—2021年月累计降雨量归一化结果叠加计算出嵩县区域地质灾害危险性评价指数,通过自然断点法划分为极高、高、中和低危险区等4个区,得到地质灾害危险性分区图,见图7(a)。对地质灾害危险性评价结果进行统计,见图7(b)(c),结果表明:低危险区面积为400.43 km2,占嵩县全区面积的13.31%;中危险区面积为1515.14 km2,占嵩县全区面积的50.36%;高危险区面积为910.38 km2,占嵩县全区面积的30.26%;极高危险区面积为182.95 km2,占嵩县全区面积的6.08%。

    风险评价是一个综合过程,是将地质灾害危险性和易损性评价结果的集成运用。

    本次易损性评价主要选取建筑物易损性、人员易损性和交通设施易损性等3个评价因子,以25 m×25 m栅格评价单元为基础,结合承载体易损性赋值表3,在ArcGIS环境下,计算各评价因子的易损性值,得到建筑物易损性、人员易损性和交通设施易损性等3个因子的分区图,见图8(a)(b)(c)。

    表  3  承灾体易损性赋值表
    Table  3.  Vulnerability evaluation table for disaster-bearing bodies
    承灾体类型分级赋值
    受地质灾害直接威胁人口数量10~100 人0.40
    <10 人0.20
    交通设施高速公路0.80
    国家级公路0.70
    省级公路0.40
    其他道路0.25
    下载: 导出CSV 
    | 显示表格

    在ArcGIS环境下,通过计算平均易损性值,选取建筑物易损性、人员易损性和交通易损性中的高值确定易损性指数,结合危险性评价结果,通过矩阵运算,按自然间断法划分为低易损区、中易损区、高易损区、极高易损区,完成嵩县区域易损性分级与区划图9(a)。利用 ArcGIS对研究区地质灾害易损性评价结果进行统计,见图9(b)(c),结果表明:低易损区面积为1229.71 km2,占嵩县全区面积的40.88%;中易损区面积为1005.94 km2,占嵩县全区面积的33.44%;高易损区面积为653.81 km2,占嵩县全区面积的21.73%;极高易损区面积为118.67 km2,占嵩县全区面积的3.94%。

    图  9  嵩县地质灾害易损性分区结果图
    Figure  9.  Geological hazard vulnerability zoning results in Song County

    根据联合国对自然灾害风险的定义,地质灾害风险度可以定量表达为:

    $$ R=H \times V $$ (3)

    式中:R——地质灾害风险度;

    H——地质灾害危险度;

    V——地质灾害易损度。

    基于 ArcGIS 环境下,依据自然间断法将研究区风险性划分为低风险区、中风险区、高风险区和极高风险区,见图10(a)。对分区面积进行统计,见图10(b)(c),结果表明: 其中低风险区面积为962.39 km2,占嵩县全区面积31.98%;中风险区面积为1111.43 km2,占嵩县全区面积的36.94%;高风险区面积为824.56 km2,占嵩县全区面积的27.40%;极高危险区面积为110.61 km2,占嵩县全区面积的3.68%。

    图  8  承载体易损性分级结果图
    Figure  8.  Vulnerability classification results of bearing body
    图  10  嵩县地质灾害风险分区图
    Figure  10.  Geological hazard risk zoning map of Song County

    (1)基于ArcGIS平台,采用信息量模型选取高程、地貌、工程岩组、植被覆盖度、距构造距离、距水系距离、坡度、坡向等 8个因子建立河南省嵩县地质灾害易发性评价模型,对研究区易发性进行了分区,高易发区主要位于白河镇中东部,高易发区面积为 637.91 km2 ,占嵩县区域面积的21%。嵩县区域极高危险区面积为178.04 km2,占嵩县区域面积的6%,大部分布于白河镇,少量分布于车村镇和九皋镇。

    (2)在ArcGIS 环境下,将研究区风险性划分为低风险区、中风险区、高风险区和极高风险区。低风险区面积为965.34 km2,占嵩县全区面积32%;中风险区面积为1114.65 km2,占嵩县全区面积的37%;高风险区面积为826.23 km2,占嵩县全区面积的27%;极高危险区面积为102.68 km2,占嵩县全区面积的3%,其中极高风险区分布于白河镇中部、旧县镇中南、纸房镇西北部、何村乡东南部、饭坡镇北中部及九皋镇中西部,在每个镇分布的面积都较小,说明嵩县区域内风险性整体较低。

    (3)研究成果对嵩县防灾、减灾及地质灾害风险管控方面具有很好的应用价值,嵩县区域内地质灾害防治主要以白河镇、纸房镇、何村乡、饭坡镇、旧县镇、大章镇、九皋镇等7个乡镇为主。

  • 图  1   研究区位置及斜坡单元划分图

    注:a为研究区位置;b为斜坡单元划分;c为斜坡单元形态示意图。

    Figure  1.   Location and slope unit division of the research area

    图  2   易发性影响因子图

    Figure  2.   Map of susceptibility conditioning factors

    图  3   因子地理加权回归结果

    Figure  3.   Geographically weighted regression results for factors

    图  4   地理加权空间分类图

    Figure  4.   Spatial classification map from geographically weighted results

    图  5   滑坡易发性分区制图

    Figure  5.   Landslide susceptibility zoning map

    图  6   ROC曲线

    Figure  6.   ROC curve

    表  1   滑坡易发性分区结果

    Table  1   Results of landslide susceptibility zoning

    模型 易发性等级 分区面积/km2 面积占比/% 分区滑坡数量/个 滑坡数量占比/% 滑坡密度/(个每100 km2
    GWR-RF 极低易发 1704.02 13.85 7 0.65 0.41
    低易发 1339.37 10.89 16 1.49 1.19
    中易发 2231.27 18.13 66 6.15 2.96
    高易发 3698.50 30.06 444 41.38 12.00
    极高易发 3331.41 27.07 540 50.33 16.21
    RS2 极低易发 1380.00 11.22 4 0.37 0.29
    低易发 1344.82 10.93 17 1.58 1.26
    中易发 2560.44 20.81 88 8.20 3.44
    高易发 6959.27 56.56 935 87.14 13.44
    极高易发 60.04 0.49 29 2.70 48.30
    RS3 极低易发 1101.49 8.95 1 0.09 0.09
    低易发 1219.89 9.91 13 1.21 1.07
    中易发 1118.98 9.09 23 2.14 2.06
    高易发 5489.84 44.62 522 48.65 9.51
    极高易发 3374.37 27.42 514 47.90 15.23
    RS7 极低易发 1987.32 16.15 8 0.75 0.40
    低易发 1800.17 14.63 17 1.58 0.94
    中易发 4941.03 40.16 234 21.81 4.74
    高易发 3430.03 27.88 733 68.31 21.37
    极高易发 146.07 1.19 81 7.55 55.45
    下载: 导出CSV

    表  2   模型效果对比

    Table  2   Comparative analysis of model performance

    模型 评价指标
    精确率 召回率 F1分数 准确率 AUC
    RS1 0.763 0.798 0.744 0.846 0.873
    RS2 0.649 0.693 0.825 0.801 0.730
    RS3 0.749 0.785 0.669 0.839 0.847
    RS4 0.619 0.643 0.661 0.779 0.698
    RS5 0.595 0.626 0.670 0.778 0.663
    RS6 0.608 0.637 0.671 0.780 0.684
    RS7 0.581 0.623 0.679 0.781 0.624
    RS8 0.613 0.644 0.682 0.782 0.679
    RS9 0.619 0.649 0.785 0.783 0.695
    $\overline {{\text{RS}}} $ 0.644±0.066 0.678±0.068 0.715±0.070 0.796±0.027 0.721±0.084
    GWR-RF 0.700 0.735 0.773 0.814 0.845
    下载: 导出CSV
  • [1] 牛朝阳,高欧阳,刘伟,等. 光学遥感图像滑坡检测研究进展[J]. 航天返回与遥感,2023,44(3):133 − 144. [NIU Chaoyang,GAO Ouyang,LIU Wei,et al. Research progress of landslide detection in optical remote sensing images[J]. Spacecraft Recovery & Remote Sensing,2023,44(3):133 − 144. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1009-8518.2023.03.014

    NIU Chaoyang, GAO Ouyang, LIU Wei, et al. Research progress of landslide detection in optical remote sensing images[J]. Spacecraft Recovery & Remote Sensing, 2023, 44(3): 133 − 144. (in Chinese with English abstract) DOI: 10.3969/j.issn.1009-8518.2023.03.014

    [2]

    YALCIN A,REIS S,AYDINOGLU A C,et al. A GIS-based comparative study of frequency ratio,analytical hierarchy process,bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon,NE Turkey[J]. Catena,2011,85(3):274 − 287. DOI: 10.1016/j.catena.2011.01.014

    [3]

    MERGHADI A,YUNUS A P,DOU Jie,et al. Machine learning methods for landslide susceptibility studies:A comparative overview of algorithm performance[J]. Earth-Science Reviews,2020,207:103225. DOI: 10.1016/j.earscirev.2020.103225

    [4] 郭飞,赖鹏,黄发明,等. 基于知识图谱的滑坡易发性评价文献综述及研究进展[J]. 地球科学,2024,49(5):1584 − 1606. [GUO Fei,LAI Peng,HUANG Faming,et al. Literature review and research progress of landslide susceptibility mapping based on knowledge graph[J]. Earth Science,2024,49(5):1584 − 1606. (in Chinese with English abstract)]

    GUO Fei, LAI Peng, HUANG Faming, et al. Literature review and research progress of landslide susceptibility mapping based on knowledge graph[J]. Earth Science, 2024, 49(5): 1584 − 1606. (in Chinese with English abstract)

    [5] 陈航, 刘惠军, 王韬, 等. 基于频率比-深度神经网络耦合模型的滑坡易发性评价——以盐源县为例[J]. 水文地质工程地质,2024,51(5):161 − 171. [CHEN Hang, LIU Huijun, WANG Tao, et al. Landslide susceptibility evaluation based on FR-DNN coupling model: A case study on Yanyuan County[J]. Hydrogeology & Engineering Geology,2024,51(5):161 − 171. (in Chinese with English abstract)]

    CHEN Hang, LIU Huijun, WANG Tao, et al. Landslide susceptibility evaluation based on FR-DNN coupling model: A case study on Yanyuan County[J]. Hydrogeology & Engineering Geology, 2024, 51(5): 161 − 171. (in Chinese with English abstract)

    [6] 吕蓓茹,彭玲,李樵民. 顾及样本敏感性的滑坡易发性评价[J]. 测绘通报,2022(11):20 − 25. [LYU Beiru,PENG Ling,LI Qiaomin. Landslide susceptibility evaluation considering sample sensitivity[J]. Bulletin of Surveying and Mapping,2022(11):20 − 25. (in Chinese with English abstract)]

    LYU Beiru, PENG Ling, LI Qiaomin. Landslide susceptibility evaluation considering sample sensitivity[J]. Bulletin of Surveying and Mapping, 2022(11): 20 − 25. (in Chinese with English abstract)

    [7] 黄发明,陈佳武,唐志鹏,等. 不同空间分辨率和训练测试集比例下的滑坡易发性预测不确定性[J]. 岩石力学与工程学报,2021,40(6):1155 − 1169. [HUANG Faming,CHEN Jiawu,TANG Zhipeng,et al. Uncertainties of landslide susceptibility prediction due to different spatial resolutions and different proportions of training and testing datasets[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(6):1155 − 1169. (in Chinese with English abstract)]

    HUANG Faming, CHEN Jiawu, TANG Zhipeng, et al. Uncertainties of landslide susceptibility prediction due to different spatial resolutions and different proportions of training and testing datasets[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6): 1155 − 1169. (in Chinese with English abstract)

    [8] 刘纪平,梁恩婕,徐胜华,等. 顾及样本优化选择的多核支持向量机滑坡灾害易发性分析评价[J]. 测绘学报,2022,51(10):2034 − 2045. [LIU Jiping,LIANG Enjie,XU Shenghua,et al. Multi-kernel support vector machine considering sample optimization selection for analysis and evaluation of landslide disaster susceptibility[J]. Acta Geodaetica et Cartographica Sinica,2022,51(10):2034 − 2045. (in Chinese with English abstract)] DOI: 10.11947/j.AGCS.2022.20220326

    LIU Jiping, LIANG Enjie, XU Shenghua, et al. Multi-kernel support vector machine considering sample optimization selection for analysis and evaluation of landslide disaster susceptibility[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2034 − 2045. (in Chinese with English abstract) DOI: 10.11947/j.AGCS.2022.20220326

    [9] 魏文豪,贾雨霏,盛逸凡,等. 基于Ⅰ、SVM、Ⅰ-SVM的滑坡灾害易发性评价模型研究[J]. 安全与环境工程,2023,30(3):136 − 144. [WEI Wenhao,JIA Yufei,SHENG Yifan,et al. Research on landslide susceptibility evaluation model based on Ⅰ,SVM and Ⅰ-SVM[J]. Safety and Environmental Engineering,2023,30(3):136 − 144. (in Chinese)]

    WEI Wenhao, JIA Yufei, SHENG Yifan, et al. Research on landslide susceptibility evaluation model based on Ⅰ, SVM and Ⅰ-SVM[J]. Safety and Environmental Engineering, 2023, 30(3): 136 − 144. (in Chinese)

    [10] 何万才,赵俊三,林伊琳,等. 基于证据权和支持向量机模型的威信县滑坡易发性评价[J]. 科学技术与工程,2023,23(15):6350 − 6360. [HE Wancai,ZHAO Junsan,LIN Yilin,et al. Landslide susceptibility assessment in Weixin County based on evidence weight and support vector machine model[J]. Science Technology and Engineering,2023,23(15):6350 − 6360. (in Chinese with English abstract)] DOI: 10.12404/j.issn.1671-1815.2023.23.15.06350

    HE Wancai, ZHAO Junsan, LIN Yilin, et al. Landslide susceptibility assessment in Weixin County based on evidence weight and support vector machine model[J]. Science Technology and Engineering, 2023, 23(15): 6350 − 6360. (in Chinese with English abstract) DOI: 10.12404/j.issn.1671-1815.2023.23.15.06350

    [11] 黄发明,曾诗怡,姚池,等. 滑坡易发性预测建模的不确定性:不同“非滑坡样本”选择方式的影响[J]. 工程科学与技术,2023:1 − 14. [HUANG Faming,ZENG Shiyao,YAO Chi,et al. Uncertainties of landslide susceptibility prediction modeling:Influence of different selection methods of "non-landslide samples[J]. Advanced Engineering Sciences,2023,23(15):6350 − 6360. (in Chinese with English abstract)]

    HUANG Faming, ZENG Shiyao, YAO Chi, et al. Uncertainties of landslide susceptibility prediction modeling: Influence of different selection methods of "non-landslide samples[J]. Advanced Engineering Sciences, 2023, 23(15): 6350 − 6360. (in Chinese with English abstract)

    [12]

    JACOBS L,KERVYN M,REICHENBACH P,et al. Regional susceptibility assessments with heterogeneous landslide information:Slope unit- vs. pixel-based approach[J]. Geomorphology,2020,356:107084. DOI: 10.1016/j.geomorph.2020.107084

    [13] 张勇,温智,程英建. 四川巴中市滑坡灾害与降雨雨型关系探讨[J]. 水文地质工程地质,2020,47(2):178 − 182. [ZHANG Yong,WEN Zhi,CHENG Yingjian. A discussion of the relationship between landslide disaster and rainfall types in Bazhong of Sichuan[J]. Hydrogeology & Engineering Geology,2020,47(2):178 − 182. (in Chinese with English abstract)]

    ZHANG Yong, WEN Zhi, CHENG Yingjian. A discussion of the relationship between landslide disaster and rainfall types in Bazhong of Sichuan[J]. Hydrogeology & Engineering Geology, 2020, 47(2): 178 − 182. (in Chinese with English abstract)

    [14]

    COMBER A,BRUNSDON C,CHARLTON M,et al. A route map for successful applications of geographically weighted regression[J]. Geographical Analysis,2023,55(1):155 − 178. DOI: 10.1111/gean.12316

    [15] 卢宾宾,葛咏,秦昆,等. 地理加权回归分析技术综述[J]. 武汉大学学报(信息科学版),2020,45(9):1356 − 1366. [LU Binbin,GE Yong,QIN Kun,et al. A review on geographically weighted regression[J]. Geomatics and Information Science of Wuhan University,2020,45(9):1356 − 1366. (in Chinese with English abstract)]

    LU Binbin, GE Yong, QIN Kun, et al. A review on geographically weighted regression[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1356 − 1366. (in Chinese with English abstract)

    [16] 于宪煜,熊十力. 基于空间多尺度分析的滑坡易发性评价——以三峡库区秭归-巴东段为例[J]. 大地测量与地球动力学,2020,40(2):187 − 192. [YU Xianyu,XIONG Shili. Landslide susceptibility assessment based on spatial multi-scale analysis:A case study of Zigui to Badong in the Three Gorges Reservoir area[J]. Journal of Geodesy and Geodynamics,2020,40(2):187 − 192. (in Chinese with English abstract)]

    YU Xianyu, XIONG Shili. Landslide susceptibility assessment based on spatial multi-scale analysis: A case study of Zigui to Badong in the Three Gorges Reservoir area[J]. Journal of Geodesy and Geodynamics, 2020, 40(2): 187 − 192. (in Chinese with English abstract)

    [17] 方匡南,吴见彬,朱建平,等. 随机森林方法研究综述[J]. 统计与信息论坛,2011,26(3):32 − 38. [FANG Kuangnan,WU Jianbin,ZHU Jianping,et al. A review of technologies on random forests[J]. Statistics & Information Forum,2011,26(3):32 − 38. (in Chinese with English abstract)]

    FANG Kuangnan, WU Jianbin, ZHU Jianping, et al. A review of technologies on random forests[J]. Statistics & Information Forum, 2011, 26(3): 32 − 38. (in Chinese with English abstract)

    [18] 于新洋,赵庚星,常春艳,等. 随机森林遥感信息提取研究进展及应用展望[J]. 遥感信息,2019,34(2):8 − 14. [YU Xinyang,ZHAO Gengxing,CHANG Chunyan,et al. Random forest classifier in remote sensing information extraction:A review of applications and future development[J]. Remote Sensing Information,2019,34(2):8 − 14. (in Chinese with English abstract)]

    YU Xinyang, ZHAO Gengxing, CHANG Chunyan, et al. Random forest classifier in remote sensing information extraction: A review of applications and future development[J]. Remote Sensing Information, 2019, 34(2): 8 − 14. (in Chinese with English abstract)

    [19] 吴先谭,邓辉,张文江,等. 基于斜坡单元自动划分的滑坡易发性评价[J]. 山地学报,2022,40(4):542 − 556. [WU Xiantan,DENG Hui,ZHANG Wenjiang,et al. Evaluation of landslide susceptibility based on automatic slope unit division[J]. Mountain Research,2022,40(4):542 − 556. (in Chinese with English abstract)]

    WU Xiantan, DENG Hui, ZHANG Wenjiang, et al. Evaluation of landslide susceptibility based on automatic slope unit division[J]. Mountain Research, 2022, 40(4): 542 − 556. (in Chinese with English abstract)

    [20] 李星,杨赛,李远耀,等. 面向区域滑坡易发性精细化评价的改进斜坡单元法[J]. 地质科技通报,2023,42(3):81 − 92. [LI Xing,YANG Sai,LI Yuanyao,et al. Improved slope unit method for fine evaluation of regional landslide susceptibility[J]. Bulletin of Geological Science and Technology,2023,42(3):81 − 92. (in Chinese with English abstract)]

    LI Xing, YANG Sai, LI Yuanyao, et al. Improved slope unit method for fine evaluation of regional landslide susceptibility[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 81 − 92. (in Chinese with English abstract)

    [21] 赵晓燕,谈树成,李永平. 基于斜坡单元与组合赋权法的东川区地质灾害危险性评价[J]. 云南大学学报(自然科学版),2021,43(2):299 − 305. [ZHAO Xiaoyan,TAN Shucheng,LI Yongping. Risk assessment of geological hazards in Dongchuan District based on the methods of slope unit and combination weighting[J]. Journal of Yunnan University (Natural Sciences Edition),2021,43(2):299 − 305. (in Chinese with English abstract)]

    ZHAO Xiaoyan, TAN Shucheng, LI Yongping. Risk assessment of geological hazards in Dongchuan District based on the methods of slope unit and combination weighting[J]. Journal of Yunnan University (Natural Sciences Edition), 2021, 43(2): 299 − 305. (in Chinese with English abstract)

    [22] 刘传正,陈春利. 中国地质灾害成因分析[J]. 地质论评,2020,66(5):1334 − 1348. [LIU Chuanzheng,CHEN Chunli. Research on the origins of geological disasters in China[J]. Geological Review,2020,66(5):1334 − 1348. (in Chinese with English abstract)]

    LIU Chuanzheng, CHEN Chunli. Research on the origins of geological disasters in China[J]. Geological Review, 2020, 66(5): 1334 − 1348. (in Chinese with English abstract)

    [23]

    HONG Haoyuan,POURGHASEMI H R,POURTAGHI Z S. Landslide susceptibility assessment in Lianhua County (China):A comparison between a random forest data mining technique and bivariate and multivariate statistical models[J]. Geomorphology,2016,259:105 − 118. DOI: 10.1016/j.geomorph.2016.02.012

    [24] 蒋文学,李益敏,杨雪,等. 基于斜坡单元的怒江州滑坡易发性研究[J]. 水土保持学报,2023,37(5):160 − 167. [JIANG Wenxue,LI Yimin,YANG Xue,et al. Study on landslide susceptibility in Nujiang prefecture based on slope unit[J]. Journal of Soil and Water Conservation,2023,37(5):160 − 167. (in Chinese with English abstract)]

    JIANG Wenxue, LI Yimin, YANG Xue, et al. Study on landslide susceptibility in Nujiang prefecture based on slope unit[J]. Journal of Soil and Water Conservation, 2023, 37(5): 160 − 167. (in Chinese with English abstract)

    [25] 郭衍昊,窦杰,向子林,等. 基于优化负样本采样策略的梯度提升决策树与随机森林的汶川同震滑坡易发性评价[J]. 地质科技通报,2024,43(3):251 − 265. [GUO Yanhao,DOU Jie,XIANG Zilin,et al. Susceptibility evaluation of Wenchuan coseismic landslides by gradient boosting decision tree and random forest based on optimal negative sample sampling strategies[J]. Bulletin of Geological Science and Technology,2024,43(3):251 − 265. (in Chinese with English abstract)]

    GUO Yanhao, DOU Jie, XIANG Zilin, et al. Susceptibility evaluation of Wenchuan coseismic landslides by gradient boosting decision tree and random forest based on optimal negative sample sampling strategies[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 251 − 265. (in Chinese with English abstract)

    [26] 阳清青,余秋兵,张廷斌,等. 基于GDIV模型的大渡河中游地区滑坡危险性评价与区划[J]. 中国地质灾害与防治学报,2023,34(5):130 − 140. [YANG Qingqing,YU Qiubing,ZHANG Tingbin,et al. Landslide hazard assessment in the middle reach area of the Dadu River based on the GDIV model[J]. The Chinese Journal of Geological Hazard and Control,2023,34(5):130 − 140. (in Chinese with English abstract)]

    YANG Qingqing, YU Qiubing, ZHANG Tingbin, et al. Landslide hazard assessment in the middle reach area of the Dadu River based on the GDIV model[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(5): 130 − 140. (in Chinese with English abstract)

    [27] 于宪煜, 汤礼. 基于SMOTE-Tomek和CNN耦合的滑坡易发性评价模型及其应用——以三峡库区秭归—巴东段为例[J]. 中国地质灾害与防治学报,2024,35(3):141 − 151. [YU Xianyu, TANG Li. Landslide susceptibility mapping model based on a coupled model of SMOTE-Tomek and CNN and its application: A case study in the Zigui-Badong section of the Three Gorges Reservoir area[J]. The Chinese Journal of Geological Hazard and Control,2024,35(3):141 − 151. (in Chinese with English abstract)]

    YU Xianyu, TANG Li. Landslide susceptibility mapping model based on a coupled model of SMOTE-Tomek and CNN and its application: A case study in the Zigui-Badong section of the Three Gorges Reservoir area[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 141 − 151. (in Chinese with English abstract)

    [28]

    PETSCHKO H,BRENNING A,BELL R,et al. Assessing the quality of landslide susceptibility maps:case study Lower Austria[J]. Natural Hazards and Earth System Sciences,2014,14(1):95 − 118. DOI: 10.5194/nhess-14-95-2014

    [29] 王惠,许月卿,刘超,等. 基于地理加权回归的生境质量对土地利用变化的响应 ——以河北省张家口市为例[J]. 北京大学学报(自然科学版),2019,55(3):509 − 518. [WANG Hui,XU Yueqing,LIU Chao,et al. Response of habitat quality to land use change based on geographical weighted regression[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2019,55(3):509 − 518. (in Chinese with English abstract)]

    WANG Hui, XU Yueqing, LIU Chao, et al. Response of habitat quality to land use change based on geographical weighted regression[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55(3): 509 − 518. (in Chinese with English abstract)

    [30] 陈强,朱慧敏,何溶,等. 基于地理加权回归模型评估土地利用对地表水质的影响[J]. 环境科学学报,2015,35(5):1571 − 1580. [CHEN Qiang,ZHU Huimin,HE Rong,et al. Evaluating the impacts of land use on surface water quality using geographically weighted regression[J]. Acta Scientiae Circumstantiae,2015,35(5):1571 − 1580. (in Chinese with English abstract)]

    CHEN Qiang, ZHU Huimin, HE Rong, et al. Evaluating the impacts of land use on surface water quality using geographically weighted regression[J]. Acta Scientiae Circumstantiae, 2015, 35(5): 1571 − 1580. (in Chinese with English abstract)

    [31]

    SHIRZADI A,SOLAIMANI K,ROSHAN M H,et al. Uncertainties of prediction accuracy in shallow landslide modeling:Sample size and raster resolution[J]. Catena,2019,178:172 − 188. DOI: 10.1016/j.catena.2019.03.017

  • 期刊类型引用(4)

    1. 莫莉,雷斌,童心. 深圳南山后海深大断裂带灌注桩施工关键技术研究. 建筑施工. 2025(03): 451-454+458 . 百度学术
    2. 耿昊,樊新杰,赵宇,王开华,祁凯宁,唐彦超. 基于SBAS技术的露天煤矿地表沉降监测与分析. 建井技术. 2024(02): 34-41 . 百度学术
    3. 黄宝华,周利霞,孔祥侨. 基于PS-InSAR的建筑及道路动态沉降安全监测. 山东交通学院学报. 2024(02): 53-59 . 百度学术
    4. 何清,魏路,肖永红. 基于SBAS-InSAR技术的安徽亳州市地面沉降时空分布特征与影响因素分析. 中国地质灾害与防治学报. 2023(05): 81-90 . 本站查看

    其他类型引用(2)

图(6)  /  表(2)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  16
  • PDF下载量:  30
  • 被引次数: 6
出版历程
  • 收稿日期:  2023-09-20
  • 修回日期:  2023-11-06
  • 录用日期:  2025-01-05
  • 网络出版日期:  2025-01-10
  • 刊出日期:  2025-02-24

目录

/

返回文章
返回