Analysis of the anti-erosion effectiveness of polypropylene fiber (PPF) cement-reinforced soil for slope protection
-
摘要:
以水泥和聚丙烯纤维在粉质黏土边坡坡面抗冲刷防护应用为背景,探讨了聚丙烯纤维水泥加固粉质黏土边坡的抗冲刷有效性。基于室内试验,开展水泥和纤维的掺量对粉质黏土抗剪强度影响试验,并基于试验配比进行边坡冲刷模拟。结果表明:水泥掺量与粉质黏土的抗剪强度呈正相关,聚丙烯纤维可进一步提高加固土的黏聚力;边坡坡比对土体的抗冲刷效果呈先增大后减小的影响;与未加固的素土坡面相比,加固后的边坡坡面抗冲刷能力得到显著提高,从SEM试验中发现,加固土抗冲刷能力提高是由于水泥水化作用和聚丙烯纤维的分散排列使加固后的土壤颗粒相互吸引,形成了坚固的结构,从而提高了土壤抗渗透性。研究结果为边坡抗冲刷防护提供了新的工程应用思路。
Abstract:Taking the application of cement and polypropylene fiber in the protection of silty clay slope as the research background, this paper explores the validity analysis of polypropylene fiber cement reinforcement material on the anti-erosion ability of silty clay slope. Based on indoor experiments, the research investigated the effects of varying cement and fiber content on the shear strength of silty clay. A slope erosion model experiment was conducted based on predetermined experimental ratios. The results indicate a positive correlation between cement content and the shear strength of silty clay. Additionally, polypropylene fiber was found to further improve the cohesion of the reinforced soil. The slope ratio initially enhances and then diminishes the anti-erosion effect on the soil. Compared to unreinforced slopes, the erosion resistance of the strengthened side slope is significantly improved. Scanning electron microscopy (SEM) analyses revealed that the improved erosion resistance of the reinforced soil results from the hydration of cement and the dispersed arrangement of polypropylene fibers, which promote interparticle cohesion and form a robust structure, thereby enhancing the soil’s impermeability. The research results offer novel engineering application insights for protecting slopes against erosion.
-
Keywords:
- polypropylene fiber /
- reinforced soil /
- shear strength /
- scour test /
- slope stability
-
0. 引言
边坡破坏一般可分为坡体破坏和坡面破坏[1 − 3],坡体破坏通常规模较大,影响斜坡整体稳定性[4 − 6],而坡面破坏主要为边坡冲刷破坏,表现为土质边坡受降雨汇水冲刷导致坡面产生冲刷沟蚀,引起边坡局部土壤流失和坡面侵蚀等问题[7 − 11]。由于天然土质边坡抗冲刷能力弱,容易发生边坡坡面冲刷破坏,因此通过加固材料改善边坡表面土体的特性以提高抗冲刷能力[12 − 15]。一些学者通过在天然边坡土体中添加不同的材料,结合无机盐或表面活性剂等,调制出提高土壤密实度、强度、耐水性的材料,从而提升边坡的抗冲刷能力[16 − 18]。近年来,聚丙烯纤维材料作为添加剂也用在了加固材料中,它是以聚丙烯树脂为原料,经过熔融纺丝而成的合成纤维,具有良好的弹性、稳定性和耐久性,是一种用途广泛的高分子聚合物,在路基加固等方面得到了广泛应用[19 − 22],但目前在土质边坡抗冲刷应用中还比较少。因此,本文聚焦于聚丙烯纤维水泥加固材料的应用,通过研究不同配比下的聚丙烯纤维水泥加固材料特性,探究对土质边坡抗冲刷能力的提升效果,为土质边坡抗冲刷工程应用提供新的理论基础和治理思路。
1. 试验材料
试验用土取自四川省自贡地区常见粉质黏土,通过击实试验确定该黏土最优含水率为12%,水泥采用P.O42.5普通硅酸盐水泥,聚丙烯纤维选用白色3 mm长度的普通聚丙烯纤维,主要材料的基本物理性质指标如表1、表2所示。
表 1 试验用土的物理性质Table 1. Physical properties of test soils参数 天然含水率/% 最优含水率/% 塑限 液限 塑性指数 最大干密度
/(g·cm−3)粒径/% >0.25 mm 0.25~0.075 mm <0.075 mm 取值 11.5 12 18.09 33.54 15.45 2.28 6.88 28.26 64.86 表 2 聚丙烯纤维主要物理特性Table 2. Physical properties of polypropylene fibers类型 直径/mm 密度/(g·cm−3) 抗拉强度/MPa 弹性模量/MPa 熔点/°C 燃点/°C 耐酸碱性 束状单丝 3 0.91 ≥350 ≥ 3500 160 550 极强 2. 聚丙烯纤维水泥加固材料的直剪试验
2.1 试验方案与制样
根据直剪试验要求设计试样规格为Φ61.8 mm×20 mm的圆柱体,每组试验制样4个,养护7 d后采用ZJ型电动四联应变控制式直剪仪进行直剪试验。试样分为纯粉质黏土的素土试样、水泥土试样和聚丙烯纤维水泥混合土试样,其中水泥土试样水泥设计掺量分别为4%、6%、8%、10%、12%;聚丙烯纤维水泥混合土试样以10%的水泥添加量为基准,额外添加0.1%、0.2%、0.4%的聚丙烯纤维。在制样的过程中,所有试样加水量按照最优含水率为12%控制,水泥土试样先将水泥按掺量比与干黏土混合,对于添加聚丙烯纤维的水泥土则再称取相应比例的聚丙烯纤维混入试样,随后加入纯水均匀搅拌,接着将均匀搅拌的混合物倒入模具中,在100 kPa的压力机静压下静压10 min成型。试样成型后,削平试样两端并脱模,将成型试样密封,并置于室内自然环境中(环境温度为25 °C±5 °C)静置养护7 d。
2.2 直剪试验分析
2.2.1 水泥土与素土抗剪强度关系
水泥土和素土在不同垂直压力条件下的抗剪强度如图1所示,水泥土与素土的抗剪强度与竖向压力成正比,随着水泥掺量的增加,水泥土抗剪强度也增加。根据抗剪强度数据,进一步得到不同水泥掺量下的水泥土抗剪强度c、φ值。如图2可见,素土掺入的水泥量增多,黏聚力(c)从16.6 kPa逐渐增大到98.3 kPa,内摩擦角(φ)则从22.1°增大到34.2°,黏聚力和内摩擦角整体上呈先快速增大后缓慢增加的特征,在水泥掺入量超过10%后,黏聚力和内摩擦角提升效率有减缓的趋势。
2.2.2 聚丙烯纤维与水泥土抗剪强度关系
以10%水泥掺量的粉质黏土为基准,分别掺入0.1%、0.2%和0.4%的聚丙烯纤维后进行直剪试验,结果如图3所示,并进一步得到不同水泥聚丙烯纤维掺量下加固土的抗剪强度c、φ值,如图4所示。
根据直剪试验结果看出,掺入聚丙烯纤维的水泥土黏聚力有一定提升,强度也略有增加。随着聚丙烯纤维含量的增加,加固土的黏聚力值从91.4 kPa增加至116.5 kPa,相较于普通水泥土,聚丙烯纤维掺量为0.4%时黏聚力增长了27.39%,而对应内摩擦角则基本保持不变,说明聚丙烯纤维的掺入在一定程度上提升了普通水泥土的黏聚力,但对内摩擦角的提升相对较小。
3. 聚丙烯纤维水泥加固材料的抗冲刷试验
3.1 试验装置
试验装置由储水装置、试验区域和回收水桶三部分组成(图5)。储水装置由管道和储水箱组成,储水箱尺寸为0.3 m×0.3 m,前缘最低处高0.2 m,管道内水流通过流量计后流入储水箱中;试验区域为模拟边坡的土槽,尺寸为0.4 m×0.3 m×0.3 m,通过填土后模拟边坡坡面;回收水桶为若干个塑料水桶,可满足冲刷后的材料回收分析。
试验装置设计的边坡坡比可调,以模拟天然条件下不同的边坡坡度。开始试验时,通过水龙头开关调节放水流量,使水流经管道导入储水箱,在储水箱的缓冲作用下,水流平稳、均匀地流向试验区域,并对试验区域的边坡土产生冲刷,这一过程中,记录好流量计的读数。通过本装置,可以实现在不同边坡土体材料、放水流量、冲刷时间、坡比变化等条件组合情况下的放水冲刷模拟试验。
3.2 试验方案设计
基于直剪试验结果,考虑水泥掺量超过10%后土体抗剪强度提升减缓的特点,设计10%水泥掺量、0.4%聚丙烯纤维掺量对素土进行加固,将加固土材料堆填至试验区域模拟天然边坡,同时以素粉质黏土坡面为对照,进行边坡冲刷对比试验,观察边坡材料加固前后的坡面侵蚀特征、不同流量及坡比的侵蚀差异,试验组次设计如表3所示。
表 3 试验主要参数Table 3. Main parameters of the experiment组数 土壤类型 坡比 放水流量/(L·h−1) 8组 素土
聚丙烯纤维加固土1∶1.73 50 100 150 200 10组 素土
聚丙烯纤维加固土1∶1.73 100 1∶1.19 1∶1 1∶0.84 1∶0.58 试验过程中,水管的放水流量分别控制为50 L/h、100 L/h、150 L/h、200 L/h,设计冲刷时间为30 min,并使用回收水桶在试验区域下端的出料口处收集全部冲刷泥土样本。其中,在开始放水后的前10 min,每隔2 min取样一次,后续每隔5 min取样一次,共采集9次,并将其倒入不同的可回收桶内。试验结束后,对回收桶内的泥土进行过滤烘干称重,记录每次冲刷产生的土颗粒重量。
3.3 试验结果和分析
3.3.1 边坡冲刷效果对比
边坡坡面的冲刷主要因降雨导致的汇水冲蚀引起,当雨水渗入边坡时,会先增加土体含水率并使土体趋于饱和,导致表层土体由于饱水软化使抗剪强度降低,同时在坡体内部产生往坡体下方的渗流作用,进一步削弱边坡坡面的稳定性。雨水在边坡表面汇集的过程中,也产生局部集中的汇流,直接冲击并带走浅表层的土体颗粒,产生侵蚀并形成沟壑。
对比两种边坡的冲刷过程发现,素土边坡的侵蚀明显强于加固土边坡,且随着放水流量的增加,侵蚀也变得更严重,表现出沟壑深度和宽度都显著增加(图6),而加固土边坡则主要表现为浅表层的剥落侵蚀,未出现明显的冲刷沟壑。即使是200 L/h的流量下,坡面也基本完整。由此表明,聚丙烯纤维水泥加固土在一定程度上能较好地抵抗水分的渗入侵蚀,提高边坡的抗冲刷能力。
3.3.2 冲刷流量对边坡的影响
在坡面发生径流冲刷后,土体也会随着水流运动产生剥离、分散和迁移。因此,在冲刷过程中,坡体被水带走的土颗粒总量也反映了边坡的抗冲刷能力。比较不同流量条件下,单位时间内素土和加固土边坡冲刷过程中产生的土颗粒总质量可见(图7),边坡冲刷产生的土体颗粒质量整体随时间逐渐减少,其中,素土边坡的下降趋势较为明显,趋向稳定状态所需的时间较长,而加固土边坡的下降趋势相对缓慢,基本趋于稳定状态。整体上,边坡冲刷带走的土颗粒重量与流量呈正相关,随着放水流量的增加,边坡坡面的冲刷侵蚀也更强烈。如加固土冲刷过程中产生土颗粒重量的平均值,其大小顺序为200 L/h(11.34 g/min)>150 L/h(8.58 g/min)>100 L/h(3.24 g/min)>50 L/h(1.79 g/min)。
通过进一步对比各个放水流量下的素土和加固土边坡冲刷产生的土颗粒总量可以发现(图8),加固土边坡冲刷产生的土体颗粒总量显著少于素土边坡,冲刷带走的土体总重量分别在50 L/h下降了96.76%,在100 L/h下下降了96.21%,在150 L/h下下降了92.26%,在200 L/h下下降了91.11%。可见加固材料使边坡土颗粒之间的黏结效果增强,更难以被冲刷带走,抗冲刷能力得到了大幅提升。
3.3.3 边坡坡比对水土流失的影响
对比相同放水流量下(100 L/h)5种不同坡比的冲刷过程,获得了素土和加固土边坡产生的土颗粒总量与坡比变化的曲线,如图9所示。
从图9可见,坡比的大小对于边坡冲刷产土颗粒总量有一定的影响,且素土边坡和加固土边坡都有相同的规律。当坡比较小时(坡比<1∶1),产土颗粒总量随坡比的增大而增大,而当边坡坡比达到一定程度后(临界点为1∶1),产土颗粒总量随坡比的增大而减小。这与实际工程中边坡的冲刷现象基本一致,即当边坡坡度较缓时,水流冲刷力较小,难以推动表层土颗粒产生运动;而当边坡坡度过大时,水流入渗效果变差,由渗透力参与的土体冲刷作用减弱,导致无法带走更深处的土体颗粒。因此,在实际边坡抗冲刷工程应用中,坡度也是影响边坡抗冲刷效果的重要因素。
4. 加固材料的固化机理分析
由试验发现,经过聚丙烯纤维水泥材料加固后的粉质黏土抗冲刷性能得到了提升。为了探究水泥和聚丙烯纤维固化粉质黏土的机理,通过电镜在真空环境下获取了素粉质黏土以及掺入10%水泥和0.4%聚丙烯纤维的粉质黏土样品扫描照片,对比两者100倍、500倍和
1000 倍照片中土颗粒结构进行分析发现(图10),素土边坡的土体骨架颗粒之间结构较松散,在放水冲刷时会迅速崩解,表现为坡面在水流冲刷过程中被侵蚀,而侵蚀过程中大量土颗粒的运动又会进一步加剧冲刷效应,最终在水流冲刷掏蚀下形成冲刷沟槽。而加固土的土体微观结构呈黏聚成团的状态,孔隙相对于素土明显减少,骨架颗粒之间结合紧密。由于水泥的水化作用,土体颗粒与水泥的水化产物中的活性离子进行了置换反应,形成了具有骨架支撑功能的胶凝体,该胶凝体可以充填土体的孔隙,使土颗粒之间的孔隙变小,压缩性也减小,从而提高了土体的强度。同时,掺入的聚丙烯纤维表面附着了水泥的水化产物,纤维上的水泥水化产物与土体中的水泥水化产物相互结合,有效地阻止了纤维与土颗粒之间的位移,这一过程中,聚丙烯纤维在水泥土中呈无序排列和相互交错状态,形成了类似于网络的结构,产生了类似于“围压”的效应对土颗粒产生约束。这种效应有助于限制土体的变形,并在一定程度上增强水泥土的黏聚力。因此,当加固土材料受到外部渗透力和冲刷作用时,纤维不容易从剪切面和缝隙处脱落,有效地提升了粉质黏土的抗冲刷能力。5. 结语
(1)水泥掺入素粉质黏土的比例与抗剪强度呈正相关,其掺入量超过10%后抗剪强度提升效率逐渐降低,水泥土中掺入聚丙烯纤维会进一步提高土体的黏聚力,但对内摩擦角提升不明显。
(2)素土坡面在水流作用下会产生明显的冲刷,并侵蚀形成沟槽,抗冲刷能力较低;聚丙烯纤维水泥加固后抗冲刷能力明显提升,大大减少了坡面冲刷产生的土体颗粒总量,这是由于加固土的水化作用和纤维的排列特性增强了加固土的黏聚力和整体性,以此提高了抗冲刷和抗渗透破坏的能力。
(3)边坡的坡比也会影响边坡抗冲刷的效果,当边坡在较为平缓时(坡比<1∶1),坡比值与冲刷强度和侵蚀强度呈正相关;当边坡较为陡峭时(坡比>1∶1),冲刷强度和侵蚀强度则随坡比值呈负相关。合理设计边坡坡比可以进一步提高边坡的抗冲刷性能和减小坡面的侵蚀效果。
-
表 1 试验用土的物理性质
Table 1 Physical properties of test soils
参数 天然含水率/% 最优含水率/% 塑限 液限 塑性指数 最大干密度
/(g·cm−3)粒径/% >0.25 mm 0.25~0.075 mm <0.075 mm 取值 11.5 12 18.09 33.54 15.45 2.28 6.88 28.26 64.86 表 2 聚丙烯纤维主要物理特性
Table 2 Physical properties of polypropylene fibers
类型 直径/mm 密度/(g·cm−3) 抗拉强度/MPa 弹性模量/MPa 熔点/°C 燃点/°C 耐酸碱性 束状单丝 3 0.91 ≥350 ≥ 3500 160 550 极强 表 3 试验主要参数
Table 3 Main parameters of the experiment
组数 土壤类型 坡比 放水流量/(L·h−1) 8组 素土
聚丙烯纤维加固土1∶1.73 50 100 150 200 10组 素土
聚丙烯纤维加固土1∶1.73 100 1∶1.19 1∶1 1∶0.84 1∶0.58 -
[1] 潘俊义,侯大勇,李荣建,等. 不同雨强下黄土边坡降雨入渗测试与分析[J]. 工程地质学报,2018,26(5):1170 − 1177. [PAN Junyi,HOU Dayong,LI Rongjian,et al. Rainfall infiltration test and analysis of loess slope under different rainfall intensities[J]. Journal of Engineering Geology,2018,26(5):1170 − 1177. (in Chinese with English abstract)] PAN Junyi, HOU Dayong, LI Rongjian, et al. Rainfall infiltration test and analysis of loess slope under different rainfall intensities[J]. Journal of Engineering Geology, 2018, 26(5): 1170 − 1177. (in Chinese with English abstract)
[2] 周志军,赵涛,钟世福,等. 基于地震力作用下的黄土边坡稳定性分析[J]. 公路交通科技,2013,30(9):38 − 42. [ZHOU Zhijun,ZHAO Tao,ZHONG Shifu,et al. Analysis on stability of loess slope based on effect of earthquake force[J]. Journal of Highway and Transportation Research and Development,2013,30(9):38 − 42. (in Chinese with English abstract)] ZHOU Zhijun, ZHAO Tao, ZHONG Shifu, et al. Analysis on stability of loess slope based on effect of earthquake force[J]. Journal of Highway and Transportation Research and Development, 2013, 30(9): 38 − 42. (in Chinese with English abstract)
[3] 许强,唐然. 红层及其地质灾害研究[J]. 岩石力学与工程学报,2023,42(1):28 − 50. [XU Qiang,TANG Ran. Study on red beds and its geological hazards[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(1):28 − 50. (in Chinese with English abstract)] XU Qiang, TANG Ran. Study on red beds and its geological hazards[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(1): 28 − 50. (in Chinese with English abstract)
[4] 彭和鹏,李馨馨. 考虑土层软化及渗流应力耦合的边坡稳定性分析[J]. 武汉大学学报(工学版),2022,55(2):117 − 122. [PENG Hepeng,LI Xinxin. Slope stability analysis considering soil softening and seepage-stress coupling effect[J]. Engineering Journal of Wuhan University,2022,55(2):117 − 122. (in Chinese with English abstract)] PENG Hepeng, LI Xinxin. Slope stability analysis considering soil softening and seepage-stress coupling effect[J]. Engineering Journal of Wuhan University, 2022, 55(2): 117 − 122. (in Chinese with English abstract)
[5] 孙永帅,贾苍琴,王贵和. 降雨对边坡稳定性影响研究综述[J]. 施工技术,2012,41(17):63 − 66. [SUN Yongshuai,JIA Cangqin,WANG Guihe. Overview of research on stability of slope during rainfall[J]. Construction Technology,2012,41(17):63 − 66. (in Chinese with English abstract)] SUN Yongshuai, JIA Cangqin, WANG Guihe. Overview of research on stability of slope during rainfall[J]. Construction Technology, 2012, 41(17): 63 − 66. (in Chinese with English abstract)
[6] 柯建武,张国沅. 地质灾害治理工程施工中边坡稳定性分析及治理方法探究[J]. 西部资源,2021(6):70 − 72. [KE Jianwu,ZHANG Guoyuan. Slope stability analysis and treatment methods in geological disaster control engineering construction[J]. Western Resources,2021(6):70 − 72. (in Chinese)] KE Jianwu, ZHANG Guoyuan. Slope stability analysis and treatment methods in geological disaster control engineering construction[J]. Western Resources, 2021(6): 70 − 72. (in Chinese)
[7] 唐晓松,郑颖人,唐辉明. 边坡变形破坏演化特征的数值分析[J]. 重庆大学学报,2013,36(10):101 − 113. [TANG Xiaosong,ZHENG Yingren,TANG Huiming. Numerical analysis on the evolutionary features of deformation and failure modes of slopes[J]. Journal of Chongqing University,2013,36(10):101 − 113. (in Chinese with English abstract)] TANG Xiaosong, ZHENG Yingren, TANG Huiming. Numerical analysis on the evolutionary features of deformation and failure modes of slopes[J]. Journal of Chongqing University, 2013, 36(10): 101 − 113. (in Chinese with English abstract)
[8] SUN Shuwei,HU Jjiabing,DENG An,et al. Comparative tests on the failure characteristics and mechanisms of slopes with curved surfaces[J]. Bulletin of Engineering Geology and the Environment,2023,82(9):357. DOI: 10.1007/s10064-023-03379-x
[9] 王康,畅俊斌,李晓科,等. 基于水文过程和应力应变耦合的陕北黄土滑坡复活机理分析——以延安二庄科滑坡为例[J]. 中国地质灾害与防治学报,2023,34(6):47 − 56. [WANG Kang,CHANG Junbin,LI Xiaoke,et al. Mechanistic analysis of loess landslide reactivation in northern Shaanxi based on coupled numerical modeling of hydrological processes and stress strain evolution:A case study of the Erzhuangke landslide in Yan’an[J]. The Chinese Journal of Geological Hazard and Control,2023,34(6):47 − 56. (in Chinese with English abstract)] WANG Kang, CHANG Junbin, LI Xiaoke, et al. Mechanistic analysis of loess landslide reactivation in northern Shaanxi based on coupled numerical modeling of hydrological processes and stress strain evolution: A case study of the Erzhuangke landslide in Yan’an[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(6): 47 − 56. (in Chinese with English abstract)
[10] 刘冉,余新晓,蔡强国,等. 黄土丘陵沟壑区黄土坡面侵蚀过程及其影响因素[J]. 应用生态学报,2021,32(8):2886 − 2894. [LIU Ran,YU Xinxiao,CAI Qiangguo,et al. Erosion process of loess slope and influencing factors in the loess hilly-gully region,China[J]. Chinese Journal of Applied Ecology,2021,32(8):2886 − 2894. (in Chinese with English abstract)] LIU Ran, YU Xinxiao, CAI Qiangguo, et al. Erosion process of loess slope and influencing factors in the loess hilly-gully region, China[J]. Chinese Journal of Applied Ecology, 2021, 32(8): 2886 − 2894. (in Chinese with English abstract)
[11] 夏万云. 银西高铁董志塬地区边坡侵蚀特性分析[J]. 中国地质灾害与防治学报,2022,33(1):99 − 106. [XIA Wanyun. Analysis on characteristic of slope erosion in Dongzhiyuan plateau of Yinchuan-Xi’an high-speed railway[J]. The Chinese Journal of Geological Hazard and Control,2022,33(1):99 − 106. (in Chinese with English abstract)] XIA Wanyun. Analysis on characteristic of slope erosion in Dongzhiyuan plateau of Yinchuan-Xi’an high-speed railway[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 99 − 106. (in Chinese with English abstract)
[12] ADAJAR M A,CUTORA M,BOLIMA S J,et al. Strength performance of nonwoven coir geotextiles as an alternative material for slope stabilization[J]. Applied Sciences,2023,13(13):7590. DOI: 10.3390/app13137590
[13] 王银梅,徐鹏飞. 新型高分子材料固化黄土边坡的抗冲刷试验[J]. 中国地质灾害与防治学报,2018,29(6):92 − 96. [WANG Yinmei,XU Pengfei. Experimental stady on erosion resistance of loess slope solidified with new high polymer material[J]. The Chinese Journal of Geological Hazard and Control,2018,29(6):92 − 96. (in Chinese with English abstract)] WANG Yinmei, XU Pengfei. Experimental stady on erosion resistance of loess slope solidified with new high polymer material[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(6): 92 − 96. (in Chinese with English abstract)
[14] 卢浩,晏长根,杨晓华,等. 麦秆纤维加筋土对黄土边坡抗冲刷的试验研究[J]. 合肥工业大学学报(自然科学版),2016,39(12):1671 − 1675. [LU Hao,YAN Changgen,YANG Xiaohua,et al. Experimental research on anti-eroding effect of reinforced soil with wheat straw in loess slope[J]. Journal of Hefei University of Technology (Natural Science),2016,39(12):1671 − 1675. (in Chinese with English abstract)] LU Hao, YAN Changgen, YANG Xiaohua, et al. Experimental research on anti-eroding effect of reinforced soil with wheat straw in loess slope[J]. Journal of Hefei University of Technology (Natural Science), 2016, 39(12): 1671 − 1675. (in Chinese with English abstract)
[15] 徐岗,裴向军,袁进科,等. 改性纳米硅材料加固松散砂土的工程特性研究[J]. 水文地质工程地质,2019,46(4):142 − 149. [XU Gang,PEI Xiangjun,YUAN Jinke,et al. A study of the engineering characteristics of reinforced loose sand by modified nano-Si materials[J]. Hydrogeology & Engineering Geology,2019,46(4):142 − 149. (in Chinese with English abstract)] XU Gang, PEI Xiangjun, YUAN Jinke, et al. A study of the engineering characteristics of reinforced loose sand by modified nano-Si materials[J]. Hydrogeology & Engineering Geology, 2019, 46(4): 142 − 149. (in Chinese with English abstract)
[16] 马少坤,马敏,韦榕宽,等. 基于新型防渗护壁材料的膨胀土边坡抗入渗及抗冲刷特性[J]. 中南大学学报(自然科学版),2022,53(1):335 − 349. [MA Shaokun,MA Min,WEI Rongkuan,et al. Anti-infiltration and anti-scour characteristics of expansive soil slopes based on rubber polymer waterproof coating[J]. Journal of Central South University (Science and Technology),2022,53(1):335 − 349. (in Chinese with English abstract)] MA Shaokun, MA Min, WEI Rongkuan, et al. Anti-infiltration and anti-scour characteristics of expansive soil slopes based on rubber polymer waterproof coating[J]. Journal of Central South University (Science and Technology), 2022, 53(1): 335 − 349. (in Chinese with English abstract)
[17] 樊恒辉, 吴普特, 高建恩, 等. 水泥基土壤固化剂固化土的微观结构特征[J]. 建筑材料学报,2010,13(5):669 − 674. [FAN Henghui, WU Pute, GAO Jianen, et al. Microstructure characteristics of soil stabilized with cement-based soil stabilizer[J]. Journal of Building Materials,2010,13(5):669 − 674. (in Chinese with English abstract)] FAN Henghui, WU Pute, GAO Jianen, et al. Microstructure characteristics of soil stabilized with cement-based soil stabilizer[J]. Journal of Building Materials, 2010, 13(5): 669 − 674. (in Chinese with English abstract)
[18] 王逢睿,王旭东,王捷,等. 偏高岭土复合加固剂改性生土材料的结构及性能研究[J]. 兰州大学学报(自然科学版),2020,56(3):341 − 348. [WANG Fengrui,WANG Xudong,WANG Jie,et al. The structure and properties of soil materials modified by the metakaolin composite reinforcer[J]. Journal of Lanzhou University (Natural Sciences),2020,56(3):341 − 348. (in Chinese with English abstract)] WANG Fengrui, WANG Xudong, WANG Jie, et al. The structure and properties of soil materials modified by the metakaolin composite reinforcer[J]. Journal of Lanzhou University (Natural Sciences), 2020, 56(3): 341 − 348. (in Chinese with English abstract)
[19] 李岩,凌贤长,杨英姿,等. 静力荷载作用下纤维材料增强路基性能的试验研究[J]. 防灾减灾工程学报,2018,38(6):996 − 1002. [LI Yan,LING Xianchang,YANG Yingzi,et al. Research on the behavior of subgrade improved by the material of fibers under static loadings[J]. Journal of Disaster Prevention and Mitigation Engineering,2018,38(6):996 − 1002. (in Chinese with English abstract)] LI Yan, LING Xianchang, YANG Yingzi, et al. Research on the behavior of subgrade improved by the material of fibers under static loadings[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(6): 996 − 1002. (in Chinese with English abstract)
[20] 李长雨,马桂霞,郝光,等. 季节冻土地区路基冷阻层温度场效应[J]. 吉林大学学报(地球科学版),2018,48(4):1174 − 1181. [LI Changyu,MA Guixia,HAO Guang,et al. Effect on temperature field of subgrade cold resistive layer in seasonal frost region[J]. Journal of Jilin University (Earth Science Edition),2018,48(4):1174 − 1181. (in Chinese with English abstract)] LI Changyu, MA Guixia, HAO Guang, et al. Effect on temperature field of subgrade cold resistive layer in seasonal frost region[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(4): 1174 − 1181. (in Chinese with English abstract)
[21] TIWARI N,SATYAM N. An experimental study on strength improvement of expansive subgrades by polypropylene fibers and geogrid reinforcement[J]. Scientific Reports,2022,12(1):6685. DOI: 10.1038/s41598-022-10773-0
[22] SINGH K,PATEL M,KUMAR S. Soil performance evaluation on mixing polypropylene fiber,fly ash in different layers of subgrade[J]. Materials Today:Proceedings,2021,47:6317 − 6324.