Characteristics and causal mechanism analysis of geological hazards induced by underground mining in the Longtan formation coal mine group in Guizhou
-
摘要:
长期以来,从事矿山地质灾害成因分析的专家学者主要从自然因素、人为因素两方面来研究,但尚未论证引发地质灾害的主要原因及次要原因。自然因素指地形地貌、地质构造、岩溶作用、降雨、风化作用以及植物根劈等天然原因;人为因素指采矿等人为活动。文章通过现场调查、工程测量、综合分析,总结了贵州龙潭组地层煤矿开采引发的地质灾害特点,以AH煤矿为例,地质灾害主要发育有地面塌陷、崩塌2类,其中塌陷坑均发育于第四系,规模均为小型;崩塌(危岩体)发育于长兴组灰岩,具有凹岩腔较为发育、受陡倾裂隙控制等特点,按体积分类为中小型危岩,按所处相对高度分类均为中位危岩。采用理论计算及图解法,从煤层开采安全深度及采空区影响范围等2个维度来定量分析,研究表明该煤矿范围内地面塌陷的形成原因为地下采煤造成;崩塌危岩体的险情形成,地下采煤为主要诱发因素,自然条件为次要因素。研究有助于完善类似矿山地质灾害成因分析理论,对于类似矿山地质灾害防治工作具有理论指导意义。
Abstract:For a long time, experts and scholars engaged in the analysis of the causes of mine geological disasters have primarily studied two aspects: natural factors and human factors. Natural factors refer to natural causes such as topography, geological structures, karst processes, rainfall, weathering, and plant root splitting. Human factors refer to human activities such as mining. However, the main and secondary causes of geological disasters triggered by these factors have not been thoroughly investigated. This paper takes AH coal mine as an example and, through field investigations, engineering surveys, and comprehensive analysis, summarizes the characteristics of geological disasters induced by the mining of the Longtan formation coal mines in Guizhou. The main geological disasters observed include ground subsidence and collapse. The subsidence pits are all developed in the Quaternary system and are of small-scale. Collapses (hazardous rock masses) are developed in the Changxing formation limestone, characterized by well-developed rock cavities, and controlled by steeply inclined fractures. They are classified as medium-sized hazardous rock masses based on volume and as intermediate hazardous rock masses based on relative elevation. Using theoretical calculations and graphical methods, a quantitative analysis is conducted from two dimensions: the safe depth of coal mining and the range of influence of goaf (the area left behind after coal extraction). The research indicates that the formation of ground subsidence within the coal mine area is primarily caused by underground coal mining while the perilous situation of rockfall masses is mainly induced by underground coal mining, with natural conditions playing a secondary role. This study contributes to the improvement of theoretical analysis of the causes of similar mining geological hazards and provides theoretical guidance for the prevention andcontrol of similar mine geological disasters.
-
Keywords:
- Longtan formation /
- coal mining /
- geological disaster /
- safety depth /
- displacement angle
-
0. 引 言
贵州省煤炭资源丰富,素有“西南煤海”之称[1]。据贵州矿山地质灾害和地质环境调查报告调查有
6556 处矿山,矿区及其周边共分布有1165 处地质灾害,其中以煤矿开采引发的地质灾害最为严重,造成损失最大[2]。贵州煤矿主要形成于二叠纪晚期,按沉积环境分为陆相地层宣威组(P3x)、海陆交互相地层龙潭组(P3l)及海相地层吴家坪组(P3w)。其中,分布面积最广、开采价值最高的含煤地层为龙潭组(P3l),其查明资源储量占晚二叠世总资源储量的95%。龙潭组(P3l)地层煤矿开采引发的地质灾害分布面积最广、危害最大。例如,2004年纳雍县鬃岭镇孙晓煤矿佐家营崩塌冲击坡脚堆积体形成高速碎屑流,造成44人死亡[3];2017年8月28日,纳雍县张家湾镇普洒村崩塌造成26人遇难,9人失踪[4 − 7]。因此,对龙潭组(P3l)地层煤矿开采引发的地质灾害特点及成因机理进行分析,对于地质灾害防治及责任鉴定意义重大。长期以来,从事矿山地质灾害成因分析的专家学者主要从自然因素和人为因素这两方面来研究,自然因素指地形地貌、地质构造、岩溶作用、降雨、风化作用以及植物根劈等天然原因,人为因素指采矿等人为活动,但尚未论证引发地质灾害的主要原因及次要原因[7 − 19]。
本文在充分剖析贵州龙潭组地层煤矿地下开采引发地质灾害特点的基础上,从煤层开采安全深度及采空区影响范围2个维度来定量论证地质灾害发生的主要原因,将有助于完善矿山地质灾害成因分析,对于矿山地质灾害防治工作具有理论指导意义。
1. AH煤矿矿区地质环境
AH煤矿矿区地处贵州高原西部,属低中山侵蚀-溶蚀地貌,地形切割较深,总体地势南东、北西高、北东低,最高处位于矿区西部背儿坡,标高为
1436.2 m,最低点位于矿区外围东侧的凹河,河床标高为950.0 m,最大高差486.2 m,一般相对高差50~150 m。矿区中部地段多形成陡崖带,走向以近南北向为主,坡度达70°以上。总体上,矿区内地形地貌条件较为复杂(图1)。矿区及邻近出露的地层为第四系(Q)、下三叠统大冶组(T1d)、上二叠统长兴组(P3c)及龙潭组(P3l)(图2)。第四系(Q)广泛分布于矿区大部分低洼及相对平缓地段,岩性主要为残积亚黏土、砂土,厚度一般0~20 m,植被发育,耕地广泛,分布少量村落;下三叠统大冶组(T1d)出露于矿区中西部,主要为薄层状石灰岩、泥灰岩,局部夹细砂岩、泥质粉砂岩,厚度一般大于200 m;上二叠统长兴组(P3c)呈宽条带状出露于矿区中部,上部灰、深灰色薄至中厚层硅质灰岩夹泥岩及蒙脱石泥岩,下部为深灰色中厚层细晶燧石灰岩,平均厚48.86 m;上二叠统龙潭组(P3l)为矿区唯一含煤地层,属海陆交互相沉积,出露于矿区东部,深灰、灰色泥岩、细砂岩、粉砂岩、石灰岩,泥灰岩、含煤层及煤线40层,平均厚306.58 m。
矿区大地构造位于扬子准地台-黔北台隆-遵义断拱-贵阳复杂构造变形区,属凹河背斜西翼。总体为一单斜构造,地层走向北东,倾向北西,倾角10°~35°,一般为15°~20°。受西部边界断层影响,北西部见一宽缓的次级向斜构造,地层走向从东至西有一定变化。
2. 地质灾害特征
AH煤矿矿区地形切割强烈,地层岩性、地质构造中等,地质环境较为脆弱,在自然因素和人类工程活动的影响下,导致地质灾害发育强烈。调查研究发现矿区内共有地面塌陷28处(伴生地裂缝1条)、崩塌点4处(危岩体6个),各地质灾害点的基本特征如下:
2.1 地面塌陷(伴生地裂缝)
调查研究发现矿区范围内有28个地面塌陷坑(图2),根据塌陷规模类型划分标准[20],该28个地面塌陷坑均为小型采空地面塌陷。AH煤矿地面塌陷坑全部位于矿区西侧陡崖上部约0.5 km2范围内的缓坡地带。塌陷坑均发育于第四系,下伏基岩地层为大冶组及长兴组。塌陷坑口普遍呈圆形、椭圆形。圆形坑口直径为1.2~5.0 m,普遍直径约2.0 m;视深为0.4~2.3 m,普遍视深约1.5 m。椭圆形坑口长轴为2.0~10.7 m,普遍长轴约3.5 m;短轴为1.4~7.0 m,普遍短轴约2.5 m;视深为1.0 m至大于5.0 m,普遍视深约1.5 m。塌陷坑初现时间为2017年雨季,此后塌陷坑数量不断增加,普遍在汛期暴雨后出现(图3)。
矿区范围内因地面塌陷诱发1条伴生地裂缝(DLF1),位于矿区西侧陡崖上部缓坡地带(图2)。该伴生地裂缝发育于第四系,下伏基岩地层为大冶组及长兴组。走向350°~15°,长约210 m,宽度0.2~3.4 m,原深度约2.0 m。根据地裂缝规模类型划分标准[20],该条伴生地裂缝为小型地裂缝。
2.2 崩塌(危岩体)
调查发现AH煤矿矿区范围内有崩塌点4处(含危岩体6个),分布于矿区中部近南北走向的陡崖带,陡崖带全长约900 m。危岩体发育地层为上二叠统长兴组(P3c),岩性主要为深灰色中厚层细晶燧石灰岩,总体崩塌方向为95°~130°。AH煤矿陡崖带,历史上发生过大大小小十余次崩塌,单次崩塌最大体积约
6000 m3,崩落块度不均,最大崩塌块石为12 m×8 m×5 m。现存的6个危岩体总体稳定性较差,规模大小不一,其中规模最大的危岩体为WY1,体积为
14256 m3;规模最小的危岩体为WY5,体积为788 m3。按危岩体体积分类[21],WY1为中型危岩,其余均为小型危岩;按所处相对高度分类[22],均为中位危岩。参照《地质灾害防治条例》(国务院令第394号)和《地质灾害危险性评估规范》(GB/T40112—2021),AH煤矿矿区范围内4处崩塌点灾情等级均为小型,6个危岩体险情等级均为中型。6个危岩体具有凹岩腔较为发育、受陡倾裂隙控制等特点,各危岩体特征见表1。表 1 AH煤矿矿区危岩体特征表Table 1. Characteristic table of dangerous rock mass in AH coal mine area编号 宽度/m 高度/m 均厚/m 体积/m3 规模 危岩类型 坡向/(°) 坡度/(°) 主要结构面 失稳方式 威胁对象 险情等级 WY1 33 24 18 14256 中型 中位 100 80 40°∠78°、70°∠78° 倾倒 ① 中型 WY2 20 26 8 4160 小型 中位 95 80 20°∠75°、90°∠75° 倾倒 ② 中型 WY3 13 26 7 2366 小型 中位 105 80 20°∠75°、90°∠75° 倾倒 ② 中型 WY4 6 25 6 900 小型 中位 85 78 30°∠75°、115°∠75° 倾倒 ② 中型 WY5 9 35 3 788 小型 中位 135 85 40°∠80°、300°∠80° 倾倒 ② 中型 WY6 14 34 5 2380 小型 中位 150 85 45°∠80°、130°∠80° 倾倒 ② 中型 注:①为办公楼人员、危岩顶部通信塔;②为下部村民、附近人员、耕地。 2.2.1 凹岩腔较为发育
根据调查统计,AH煤矿矿区范围内现有6个危岩单体(WY1—WY6)。6个危岩体岩性均为燧石灰岩,底部粉砂质泥岩均发育有凹岩腔。凹岩腔的形状、规模尺寸各异,多呈条带状、方块状和不规则状,凹岩腔宽度为6~33 m,其中WY4宽度最小,约为6 m,WY1宽度最大,约为33 m;凹岩腔高度0.5~2.0 m,一般约为1.5 m,且凹岩腔底部一般有土层覆盖,厚度较薄,一般在1.0 m以内;凹岩腔深度一般为0.5~1.5 m。凹岩腔发育于灰岩底部与粉砂质泥岩接触带的软弱部位,受风化差异和雨水浸湿作用影响,岩土体含泥质越重,凹岩腔的规模越大,或同一地质时期内形成凹岩腔的速度越快。由于凹岩腔大多发育在危岩体的底部,随着凹岩腔的发育延伸,发生腔内垮塌、掉块等现象较多。且因危岩体重心不变,随着凹岩腔的发育延伸,转动点向内移动,抵抗力矩变小或者直接演变为荷载,将加剧倾倒式崩塌发生。
2.2.2 受陡倾裂隙控制
调查发现,AH煤矿矿区范围内危岩体除底部发育凹岩腔之外,其顶部还发育大量的外倾、陡倾裂隙,危岩体顶部陡倾裂隙为岩体内部硬性结构面,贯通性较好,裂隙走向基本与陡崖走向一致,在340°~40°范围内,倾角75°~80°不等,宽度0.1~2.5 m,大部分无充填。此类危岩体由于底部因发育凹岩腔而失去支撑,顶部发育陡倾裂隙且基本贯通至危岩体底部,其处于极限平衡状态。如:危岩体WY4,见图4(a)顶部陡倾裂隙倾向115°,倾角80°,裂隙宽度0.1~1.5 m,无充填,长度约6 m,从顶部贯穿至底部,裂缝上宽下窄,呈“V”型,且从两侧可从裂隙中看穿,使危岩体成孤石;危岩体WY5,见图4(b),顶部陡倾裂隙产状40°∠80°,宽1.2~2.5 m,长度约9 m,可视深度大于5 m,裂隙下部由碎石黏土充填。
3. 地质灾害成因分析
前述地面塌陷(伴生地裂缝)、崩塌等地质灾害的发生,既有地形地貌、地质构造、岩溶作用、降雨、风化作用甚至植物根劈等自然原因,又有煤矿地下开采等人为原因[23]。但上述地质灾害的发生均是AH煤矿开采之后产生,下面从煤层开采安全深度、采空区影响范围等2个维度来定量论证地下开采这一剧烈人类活动对矿区地质灾害的影响程度。
3.1 煤层开采安全深度
3.1.1 安全系数的确定
参照《建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程》[24],薄及中厚煤(矿)层的采深与单层采厚比大于或等于150,厚煤(矿)层及煤(矿)层群的采深与分层采厚比大于200的原则。AH煤矿含7层可采煤层,其安全系数K取值为200。
3.1.2 煤层综合作用厚度的确定
煤层群开采时需计算各层煤的综合作用厚度。根据《地方煤矿实用手册》[25],综合作用厚度的计算方法为最上面一层可采煤层分别作用于下一层可采煤层直至最后一层可采煤层的叠加计算结果,即M=M1(最下面一层可采煤层的综合作用厚度)。各层煤的综合作用厚度计算公式为:
$$ {M}_{{n-1}}={m}_{{n-1}}+{C}\cdot{M}_{{n}} $$ (1) 式中:M——综合作用厚度/m,Mn=mn、Mn为最上面一 层煤的综合作用厚度;
m——煤层厚度/m;
n——煤层数;
C——两层煤之间的真厚度与下一层煤的厚度的比值的函数,可查表2。
表 2 系数C值表Table 2. Coefficient C value tableh/m① 缓倾斜煤层② 倾斜煤层③ 急倾斜煤层④ 0 1.00 1.00 1.00 10 1.00 1.00 1.00 20 0.85 0.80 0.75 30 0.70 0.60 0.50 40 0.55 0.40 0.25 50 0.45 0.20 0.00 60 0.30 0.00 0.00 70 0.15 0.00 0.00 80 0.00 0.00 0.00 注:①h/m为两层煤之间的间距与下一层煤层厚度的比值;②缓倾斜煤层指煤层倾角<15°;③倾斜煤层指煤层倾角为15°~45°;④急倾斜煤层指煤层倾角>45°。 3.1.3 安全深度的确定
安全深度为煤层综合作用厚度与安全系数的乘积,计算公式为:
$$ H=M\cdot K $$ (2) 式中:H——安全深度/m;
M——综合作用厚度/m;
K——安全系数。
AH煤矿含7层可采煤层,编号自上往下为14、15、16、18、21、28、32,平均厚度分别为1.38,1.66,2.96,1.86,1.13,1.63,0.94 m,按以上方法计算各煤层的安全深度见表3。
表 3 AH煤矿安全深度计算表Table 3. Calculation table safety depth in AH coal mine煤层编号 煤层厚度/m 两层煤之间的间距/m 两层煤之间的间距与
下一层煤层厚度的比值/mC 综合作用厚度/m 安全深度/m 赋存深度/m M14 1.38 1.38 276 0~185 M15 1.66 5.64 3 1.00 3.04 608 0~192 M16 2.96 26.01 9 1.00 6.00 1 200 0~220 M18 1.86 15.60 8 1.00 7.86 1 572 0~238 M21 1.13 10.90 10 1.00 8.99 1 798 0~251 M28 1.63 53.93 33 0.54 6.48 1 297 0~306 M32 0.94 30.33 32 0.56 4.57 914 0~338 从表3可以发现,AH煤矿M14号煤层赋存深度约为0~185 m,小于其安全开采深度(H14 =276 m);M15号煤层赋存深度约为0~192 m,小于其安全开采深度(H15 =608 m);M16号煤层赋存深度约为0~220 m,小于其安全开采深度(H16 =
1200 m);M18号煤层赋存深度约为0~238 m,小于其安全开采深度(H18 =1572 m);M21号煤层赋存深度约为0~251 m,小于其安全开采深度(H21 =1798 m);M28号煤层赋存深度约为0~306 m,小于其安全开采深度(H28 =1297 m);M32号煤层赋存深度约为0~338 m,小于其安全开采深度(H32=914 m)。总之,AH煤矿7层可采煤层赋存深度均小于其安全深度。因此,从竖直方向上看,AH煤矿开采后形成的采空区崩顶后,导致地表产生地裂缝、地面塌陷、崩塌等地质灾害的可能性大。3.2 采空区影响范围
3.2.1 移动角的确定
移动角采用类比法确定,类比原则是赋存地层层位相同,矿层倾角相近、矿层上覆岩层岩性和厚度相近。AH煤矿煤层出露地层时.2代为上二叠统龙潭组(P3l),覆岩类型为中硬岩石。参照《建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范》(安监总煤装[2017]66号)[24]及相关要求,本次AH煤矿各移动角取值如下:
走向移动角δ=70°;
倾向下山移动角β=70°;
倾向上山方向移动角γ=70°−0.6×矿层倾角(视倾角)。
3.2.2 采空区影响范围
AH煤矿主采煤层为M16及M18煤层,根据《AH煤矿M16煤层采掘工程平面图》及《AH煤矿M18煤层采掘工程平面图》所反映的煤矿采空区,按照前述采空区移动影响范围参数,按移动角与本次实测的地形图地面交点图解确定各采空区移动影响范围(图2、图5)。
由图2计算得出:AH煤矿现采空区影响范围约0.37 km2,矿区现状地质灾害:地面塌陷(TX1—TX28)、伴生地裂缝(DLF1)、崩塌危岩体(WY1—WY6)等均处于其采空区覆岩移动影响范围之内,AH煤矿地下采煤所形成的M16煤层采空区、M18煤层采空区崩顶是造成上述现状地质灾害产生的主要原因。矿山开采形成采空区后,随着采空区面积增大,煤层顶板岩层在失去支撑状态下弯曲、断裂、垮落,应力重新分布,达到新的平衡。顶板垮落过程中引发采空区周围岩体变形、松动乃至破坏,也使采空区上覆岩层和地表产生连续的移动、变形和非连续的破坏(开裂、冒落等),随之弯曲下沉,上覆岩层的这种破坏达到地面后形成地面塌陷(伴生地裂缝),在地表陡崖临空面处易形成危岩体并诱发崩塌地质灾害。
综上所述,AH煤矿矿区范围内地面塌陷(TX1—TX28)及伴生地裂缝(DLF1)的形成原因为地下采煤造成;崩塌危岩体(WY1—WY6)的险情形成,其原因为地下采煤为主要诱发因素、自然条件为次要因素,两者综合作用的结果。根据上述地质灾害发生的时间与地下煤矿开采时空关系,同样印证这一结论。
4. 结 论
(1)总结了贵州龙潭组地层煤矿开采引发的地质灾害特点。该地层煤矿开采主要引发地面塌陷(伴生地裂缝)、崩塌2类地质灾害,其中塌陷坑(伴生地裂缝)均发育于第四系,规模均为小型;崩塌(危岩体)发育地层岩性为上二叠统长兴组(P3c)燧石灰岩,具有凹岩腔较为发育、受陡倾裂隙控制等特点,主要为小型危岩,次为中型危岩,均为中位危岩。这些特点在该地层煤矿开采引发的地质灾害中具有普遍性和典型性。
(2)分析了贵州龙潭组地层煤矿开采引发的地质灾害成因。AH煤矿7层可采煤层的上覆岩体厚度均小于其安全深度,地质灾害均处于其采空区覆岩移动影响范围之内。因此,地面塌陷(伴生地裂缝)的形成原因为地下采煤造成;崩塌(危岩体)主要诱发因素为地下采煤、次因为自然条件,两者综合作用的结果。
(3)针对贵州龙潭组地层煤矿开采引发的地质灾害,地形地貌、地质构造、岩溶作用等是内因,而降雨、风化、采矿人类活动是外因,外因又分为自然外因、人类外因。其中采矿等人类剧烈活动属可以控制因素,建议在陡崖地带附近合理留设保护煤柱。
(4)本次研究有助于完善类似矿山地质灾害特点研究及成因分析理论,对于类似矿山地质灾害防治工作具有理论指导意义。希望在以后的研究中,能够有效监测上覆围岩在煤层开采前后的应力应变数据,以便进一步深化矿山地质灾害成因机理研究。
-
表 1 AH煤矿矿区危岩体特征表
Table 1 Characteristic table of dangerous rock mass in AH coal mine area
编号 宽度/m 高度/m 均厚/m 体积/m3 规模 危岩类型 坡向/(°) 坡度/(°) 主要结构面 失稳方式 威胁对象 险情等级 WY1 33 24 18 14256 中型 中位 100 80 40°∠78°、70°∠78° 倾倒 ① 中型 WY2 20 26 8 4160 小型 中位 95 80 20°∠75°、90°∠75° 倾倒 ② 中型 WY3 13 26 7 2366 小型 中位 105 80 20°∠75°、90°∠75° 倾倒 ② 中型 WY4 6 25 6 900 小型 中位 85 78 30°∠75°、115°∠75° 倾倒 ② 中型 WY5 9 35 3 788 小型 中位 135 85 40°∠80°、300°∠80° 倾倒 ② 中型 WY6 14 34 5 2380 小型 中位 150 85 45°∠80°、130°∠80° 倾倒 ② 中型 注:①为办公楼人员、危岩顶部通信塔;②为下部村民、附近人员、耕地。 表 2 系数C值表
Table 2 Coefficient C value table
h/m① 缓倾斜煤层② 倾斜煤层③ 急倾斜煤层④ 0 1.00 1.00 1.00 10 1.00 1.00 1.00 20 0.85 0.80 0.75 30 0.70 0.60 0.50 40 0.55 0.40 0.25 50 0.45 0.20 0.00 60 0.30 0.00 0.00 70 0.15 0.00 0.00 80 0.00 0.00 0.00 注:①h/m为两层煤之间的间距与下一层煤层厚度的比值;②缓倾斜煤层指煤层倾角<15°;③倾斜煤层指煤层倾角为15°~45°;④急倾斜煤层指煤层倾角>45°。 表 3 AH煤矿安全深度计算表
Table 3 Calculation table safety depth in AH coal mine
煤层编号 煤层厚度/m 两层煤之间的间距/m 两层煤之间的间距与
下一层煤层厚度的比值/mC 综合作用厚度/m 安全深度/m 赋存深度/m M14 1.38 1.38 276 0~185 M15 1.66 5.64 3 1.00 3.04 608 0~192 M16 2.96 26.01 9 1.00 6.00 1 200 0~220 M18 1.86 15.60 8 1.00 7.86 1 572 0~238 M21 1.13 10.90 10 1.00 8.99 1 798 0~251 M28 1.63 53.93 33 0.54 6.48 1 297 0~306 M32 0.94 30.33 32 0.56 4.57 914 0~338 -
[1] 唐显贵. 贵州省煤炭资源赋存规律[J]. 煤田地质与勘探,2012,40(5):1 − 5. [TANG Xiangui. Occurrence regularities of coal resources in Guizhou Province[J]. Coal Geology & Exploration,2012,40(5):1 − 5. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1001-1986.2012.05.003 TANG Xiangui. Occurrence regularities of coal resources in Guizhou Province[J]. Coal Geology & Exploration, 2012, 40(5): 1 − 5. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-1986.2012.05.003
[2] 朱要强,裴永炜,犹俊,等. 贵州省矿山地质灾害和地质环境调查报告[R]. 2016. [ZHU Yaoqiang,PEI Yongwei,YOU Jun,et al. Investigation report on mine geological disasters and geological environment in Guizhou Province[R]. 2016.(in Chinese)] ZHU Yaoqiang, PEI Yongwei, YOU Jun, et al. Investigation report on mine geological disasters and geological environment in Guizhou Province[R]. 2016.(in Chinese)
[3] 谭宁. 贵州省纳雍县鬃岭镇中岭高边坡变形破坏机制及稳定性评价[D]. 成都:成都理工大学,2013. [TAN Ning. Failure mechanism and stability evaluation of the Zhongling high slope deformation on mine area in Nayong County[D]. Chengdu:Chengdu University of Technology,2013. (in Chinese with English abstract)] TAN Ning. Failure mechanism and stability evaluation of the Zhongling high slope deformation on mine area in Nayong County[D]. Chengdu: Chengdu University of Technology, 2013. (in Chinese with English abstract)
[4] 郑光,许强,巨袁臻,等. 2017年8月28日贵州纳雍县张家湾镇普洒村崩塌特征与成因机理研究[J]. 工程地质学报,2018,26(1):223 − 240. [ZHENG Guang,XU Qiang,JU Yuanzhen,et al. The Pusacun rockavalanche on August 28,2017 in Zhangjiawan Nayongxian,Guizhou:Characteristics and failure mechanism[J]. Journal of Engineering Geology,2018,26(1):223 − 240. (in Chinese with English abstract)] ZHENG Guang, XU Qiang, JU Yuanzhen, et al. The Pusacun rockavalanche on August 28, 2017 in Zhangjiawan Nayongxian, Guizhou: Characteristics and failure mechanism[J]. Journal of Engineering Geology, 2018, 26(1): 223 − 240. (in Chinese with English abstract)
[5] 许世民, 殷跃平, 邢爱国. 基于地震信号的贵州纳雍崩塌-碎屑流运动特征分析[J]. 中国地质灾害与防治学报,2020,31(2):1 − 8. [XU Shimin, YIN Yueping, XING Aiguo. Characteristic analysis of the Nayong rock avalanche’s kinematics based on seismic signals[J]. The Chinese Journal of Geological Hazard and Control,2020,31(2):1 − 8. (in Chinese with English abstract)] XU Shimin, YIN Yueping, XING Aiguo. Characteristic analysis of the Nayong rock avalanche’s kinematics based on seismic signals[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(2): 1 − 8. (in Chinese with English abstract)
[6] FAN Xuanmei,XU Qiang,SCARINGI G,et al. The “long” runout rock avalanche in Pusa,China,on August 28,2017:A preliminary report[J]. Landslides,2019,16(1):139 − 154. DOI: 10.1007/s10346-018-1084-z
[7] YIN Yueping,SUN Ping,ZHANG Ming,et al. Mechanism on apparent dip sliding of oblique inclined bedding rockslide at Jiweishan,Chongqing,China[J]. Landslides,2011,8(1):49 − 65. DOI: 10.1007/s10346-010-0237-5
[8] 张磊, 周银朋, 庄宇, 等. 贵州水城尖山营滑坡动力学特性分析与隐患点致灾范围预测[J]. 中国地质灾害与防治学报,2023,34(3):1 − 7. [ZHANG Lei, ZHOU Yinpeng, ZHUANG Yu, et al. Dynamic analysis and prediction of rear slope affected area of the Jianshanying landslide in Shuicheng County, Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(3):1 − 7. (in Chinese with English abstract)] ZHANG Lei, ZHOU Yinpeng, ZHUANG Yu, et al. Dynamic analysis and prediction of rear slope affected area of the Jianshanying landslide in Shuicheng County, Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(3): 1 − 7. (in Chinese with English abstract)
[9] 林锋,冯亮,孙赤,等. 强烈岩溶控制型崩塌形成机理研究[J]. 工程地质学报,2015,23(3):408 − 414. [LIN Feng,FENG Liang,SUN Chi,et al. Formation mechanism of rockfall controlled by intensively developed karst[J]. Journal of Engineering Geology,2015,23(3):408 − 414. (in Chinese with English abstract)] LIN Feng, FENG Liang, SUN Chi, et al. Formation mechanism of rockfall controlled by intensively developed karst[J]. Journal of Engineering Geology, 2015, 23(3): 408 − 414. (in Chinese with English abstract)
[10] 李滨,王国章,冯振,等. 地下采空诱发陡倾层状岩质斜坡失稳机制研究[J]. 岩石力学与工程学报,2015,34(6):1148 − 1161. [LI Bin,WANG Guozhang,FENG Zhen,et al. Failure mechanism of steeply inclined rock slopes induced by underground mining[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(6):1148 − 1161. (in Chinese with English abstract)] LI Bin, WANG Guozhang, FENG Zhen, et al. Failure mechanism of steeply inclined rock slopes induced by underground mining[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6): 1148 − 1161. (in Chinese with English abstract)
[11] 郭松, 郭广礼, 李怀展, 等. 基于主成分层次聚类模型的采空塌陷场地稳定性评价[J]. 中国地质灾害与防治学报,2020,31(6):116 − 121. [GUO Song, GUO Guangli, LI Huaizhan, et al. Goaf-collapse sites stability evaluation based on principal component hierarchical clustering model[J]. The Chinese Journal of Geological Hazard and Control,2020,31(6):116 − 121. (in Chinese with English abstract)] GUO Song, GUO Guangli, LI Huaizhan, et al. Goaf-collapse sites stability evaluation based on principal component hierarchical clustering model[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(6): 116 − 121. (in Chinese with English abstract)
[12] 赵建军,蔺冰,马运韬,等. 缓倾煤层采空区上覆岩体变形特征物理模拟研究[J]. 煤炭学报,2016,41(6):1369 − 1374. [ZHAO Jianjun,LIN Bing,MA Yuntao,et al. Physical modeling on deformation characteristics of overlying rock mass above mined-out area in gently inclined coal seam[J]. Journal of China Coal Society,2016,41(6):1369 − 1374. (in Chinese with English abstract)] ZHAO Jianjun, LIN Bing, MA Yuntao, et al. Physical modeling on deformation characteristics of overlying rock mass above mined-out area in gently inclined coal seam[J]. Journal of China Coal Society, 2016, 41(6): 1369 − 1374. (in Chinese with English abstract)
[13] 范立民,马雄德,李永红,等. 西部高强度采煤区矿山地质灾害现状与防控技术[J]. 煤炭学报,2017,42(2):276 − 285. [FAN Limin,MA Xiongde,LI Yonghong,et al. Geological disasters and control technology in high intensity mining area of Western China[J]. Journal of China Coal Society,2017,42(2):276 − 285. (in Chinese with English abstract)] FAN Limin, MA Xiongde, LI Yonghong, et al. Geological disasters and control technology in high intensity mining area of Western China[J]. Journal of China Coal Society, 2017, 42(2): 276 − 285. (in Chinese with English abstract)
[14] 曾芮,姜明顺,孙琳馗,等. 强降雨条件下岩质边坡倾倒崩塌破坏机理——以鄂西赵家岩崩塌为例[J]. 中国地质灾害与防治学报,2018,29(3):12 − 17. [ZENG Rui,JIANG Mingshun,SUN Linkui,et al. Toppling failure mechanism of rock slope induced by heavy rainfall:A case study of the Zhaojiayan rockfall in western Hubei[J]. The Chinese Journal of Geological Hazard and Control,2018,29(3):12 − 17. (in Chinese with English abstract)] ZENG Rui, JIANG Mingshun, SUN Linkui, et al. Toppling failure mechanism of rock slope induced by heavy rainfall: A case study of the Zhaojiayan rockfall in western Hubei[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(3): 12 − 17. (in Chinese with English abstract)
[15] 钟祖良,高国富,刘新荣,等. 地下采动下含深大裂隙岩溶山体变形响应特征[J]. 水文地质工程地质,2020,47(4):97 − 106. [ZHONG Zuliang,GAO Guofu,LIU Xinrong,et al. Deformation response characteristics of karst mountains with deep and large fissures under the condition of underground mining[J]. Hydrogeology & Engineering Geology,2020,47(4):97 − 106. (in Chinese with English abstract)] ZHONG Zuliang, GAO Guofu, LIU Xinrong, et al. Deformation response characteristics of karst mountains with deep and large fissures under the condition of underground mining[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 97 − 106. (in Chinese with English abstract)
[16] 崔芳鹏,武强,李滨,等. 多层浅埋煤层开采触发岩溶坡体动力崩滑机制研究[J]. 煤炭科学技术,2023,51(2):317 − 333. [CUI Fangpeng,WU Qiang,LI Bin,et al. Dynamic formation mechanism of a karst landslide triggered by mining of multiple-layer & shallow-seated coal seams[J]. Coal Science and Technology,2023,51(2):317 − 333. (in Chinese with English abstract)] CUI Fangpeng, WU Qiang, LI Bin, et al. Dynamic formation mechanism of a karst landslide triggered by mining of multiple-layer & shallow-seated coal seams[J]. Coal Science and Technology, 2023, 51(2): 317 − 333. (in Chinese with English abstract)
[17] 陈涛. 重庆武隆庆口危岩形成机制及失稳模式探讨[J]. 中国地质灾害与防治学报,2020,31(3):50 − 57. [CHEN Tao. Discussion on formation mechanism and instability mode of Qingkou dangerous rock in Wulong District,Chongqing City[J]. The Chinese Journal of Geological Hazard and Control,2020,31(3):50 − 57. (in Chinese with English abstract)] CHEN Tao. Discussion on formation mechanism and instability mode of Qingkou dangerous rock in Wulong District, Chongqing City[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(3): 50 − 57. (in Chinese with English abstract)
[18] 刘向峰,郭子钰,王来贵,等. 降雨矿震叠加作用下抚顺西露天矿边坡稳定性分析[J]. 中国地质灾害与防治学报,2021,32(4):40 − 46. [LIU Xiangfeng,GUO Ziyu,WANG Laigui,et al. Analysis on the slope stability of Fushun west open-pit mine under superimposed action of rainfall,mine and earthquake[J]. The Chinese Journal of Geological Hazard and Control,2021,32(4):40 − 46. (in Chinese with English abstract)] LIU Xiangfeng, GUO Ziyu, WANG Laigui, et al. Analysis on the slope stability of Fushun west open-pit mine under superimposed action of rainfall, mine and earthquake[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(4): 40 − 46. (in Chinese with English abstract)
[19] 靳鹏,申力,韩晓极,等. 辽宁抚顺西露天矿地质灾害时空分布特征及影响因素分析[J]. 中国地质灾害与防治学报,2022,33(3):68 − 76. [JIN Peng,SHEN Li,HAN Xiaoji,et al. Spatial-temporal distribution characteristics and influencing factors of geological disasters in the open-pit mining area of western Fushun,Liaoning Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):68 − 76. (in Chinese with English abstract)] JIN Peng, SHEN Li, HAN Xiaoji, et al. Spatial-temporal distribution characteristics and influencing factors of geological disasters in the open-pit mining area of western Fushun, Liaoning Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 68 − 76. (in Chinese with English abstract)
[20] 中华人民共和国国土资源部. 地质灾害排查规范:DZ/T 0284—2015[S]. 北京:中国标准出版社,2015. [Ministry of Land and Resources of the People’s Republic of China. Specification of dynamic survey on geological hazards:DZ/T 0284—2015[S]. Beijing:Standards Press of China,2015. (in Chinese)] Ministry of Land and Resources of the People’s Republic of China. Specification of dynamic survey on geological hazards: DZ/T 0284—2015[S]. Beijing: Standards Press of China, 2015. (in Chinese)
[21] 中华人民共和国国土资源部. 滑坡防治工程勘查规范:DZ/T 0218—2006[S]. 北京:中国标准出版社,2006. [Ministry of Land and Resources of the People’s Republic of China. Specification of geological investigation for landslide stabilization:DZ/T 0218—2006[S]. Beijing:Standards Press of China,2006. (in Chinese)] Ministry of Land and Resources of the People’s Republic of China. Specification of geological investigation for landslide stabilization: DZ/T 0218—2006[S]. Beijing: Standards Press of China, 2006. (in Chinese)
[22] 地质灾害防治工程勘察规范:DB50-143-2003[S]. 2003. [Specification of geological disaster prevention engineering investigation:DB50-143-2003[S]. 2003. (in Chinese)] Specification of geological disaster prevention engineering investigation: DB50-143-2003[S]. 2003. (in Chinese)
[23] 罗川, 陈剑文, 官在平. 采空区上方斜坡地形塌陷灾害研究——以申家山采空塌陷为例[J]. 水文地质工程地质,2015,42(3):156 − 160. [LUO Chuan, CHEN Jianwen, GUAN Zaiping. Subsidence in a slope terrain above the mined-out area: A case study of the mining subsidence in Shenjia Mountain[J]. Hydrogeology & Engineering Geology,2015,42(3):156 − 160. (in Chinese with English abstract)] LUO Chuan, CHEN Jianwen, GUAN Zaiping. Subsidence in a slope terrain above the mined-out area: A case study of the mining subsidence in Shenjia Mountain[J]. Hydrogeology & Engineering Geology, 2015, 42(3): 156 − 160. (in Chinese with English abstract)
[24] 国家安全监管总局,国家煤矿安监局,国家能源局,等. 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范:安监总煤装[2017]66号[S]. 2017. [State Administration of Safety Supervision,State Administration of Coal Mine Safety,State Energy Administration,et al. Buildings,water,railway and main roadway coal pillar remaining and mining pressed coal regulations:Safety Supervision General Coal Loading [2017] No.66[S]. 2017. (in Chinese)] State Administration of Safety Supervision, State Administration of Coal Mine Safety, State Energy Administration, et al. Buildings, water, railway and main roadway coal pillar remaining and mining pressed coal regulations: Safety Supervision General Coal Loading [2017] No.66[S]. 2017. (in Chinese)
[25] 田旭民,田力. 地方煤矿实用手册[M]. 北京:地质出版社,1989. [TIAN Xumin,TIAN Li. Manual of Local Coal Mines [M]. Beijing:Geological Publishing House,1989. (in Chinese)] TIAN Xumin, TIAN Li. Manual of Local Coal Mines [M]. Beijing: Geological Publishing House, 1989. (in Chinese)
-
期刊类型引用(3)
1. 耿昊,樊新杰,赵宇,王开华,祁凯宁,唐彦超. 基于SBAS技术的露天煤矿地表沉降监测与分析. 建井技术. 2024(02): 34-41 . 百度学术
2. 黄宝华,周利霞,孔祥侨. 基于PS-InSAR的建筑及道路动态沉降安全监测. 山东交通学院学报. 2024(02): 53-59 . 百度学术
3. 何清,魏路,肖永红. 基于SBAS-InSAR技术的安徽亳州市地面沉降时空分布特征与影响因素分析. 中国地质灾害与防治学报. 2023(05): 81-90 . 本站查看
其他类型引用(2)