Risk assessment of single gully debris flows based on dynamic changes of provenance in the Wenchuan earthquake zone: A case study of Qipan gully
-
摘要:
“5•12”汶川特大地震后,震区山体表面产生大量碎屑物,植被遭到严重破坏,为泥石流暴发提供了极为丰富的物质来源,大大增加了泥石流的危险性。多年来,研究人员针对震后泥石流危险性的评估主要考虑植被恢复情况,较少考虑泥石流沟道存在大量的动储量物质对危险性评估的重要影响。为此,基于现场勘察资料,以汶川县七盘沟为研究对象,采用多源多尺度监测手段(Landsat系列、Quick-bird与无人机)对震前震后坡面物源与沟道物源进行分析统计,综合利用博弈论组合赋权结合云模型构建泥石流危险性动态评价模型,对2005—2019年泥石流暴发的危险性进行评价。结果表明:震后坡面物源是震前的7.7倍,到2019年坡面物源已基本恢复至震前水平。经相关资料记载震后泥石流暴发冲出量及清淤工程量进行统计估算可知,到2019年泥石流动态物源减少约7.813×106 m3。相对比只考虑坡面物源,分别考虑坡面和沟道物源对危险性评价所取得的结果,更切合现实。所得结果对在日益增加的高烈度山区开展重要工程所遭受的单沟泥石流危险性动态评价提供参考与借鉴作用,有效保护人民的生命和财产安全。
Abstract:Following the catastrophic “5•12” Wenchuan earthquake, extensive debris was deposited on mountain surfaces in the earthquake zone, and significant vegetation damage occurred, providing abundant material for debris flow outbreaks and substantially increasing their risk. Previous studies primarily focused on vegetation recovery when assessing post-earthquake debris flow risks. However, field surveys revealed that large quantities of dynamic storage materials in the gullies significantly impact risk assessments. Based on field survey data, this study uses Qipan gully in Wenchuan County as a research subject and employs multi-source and multi-scale monitoring tools (Landsat series, Quick-bird, and UAVs) to analyze and statistically assess the source materials on slopes and gullies both pre- and post-earthquake. A dynamic risk assessment model for debris flow is constructed using game theory combined with a cloud model, assessing the risk from 2005 to 2019. Findings indicate that post-earthquake slope material sources were 7.7 times those pre-earthquake, and by 2019, with recovery to pre-earthquake levels by 2019. Statistical estimations based on recorded debris flow eruptions and sediment removal volumes show a reduction of approximately 7.813×106 m3 in dynamic material sources by 2019. Assessing both slope and gully material sources yields more realistic results than considering slope sources alone. These results provide references and guidance for dynamic risk assessments of debris flow, impacting major engineering projects in increasingly seismic regions and effectively ensuring the safety of life and property.
-
Keywords:
- Wenchuan earthquake /
- debris flow /
- provenance changes /
- combined weighting method /
- cloud model /
- risk assessment
-
0. 引言
大量研究表明,滑坡体内地下水赋存与运移是引起滑坡体失稳破坏的主要因素之一[1 − 4]。目前滑坡治理措施中,截排水技术分地表截排水和地下疏排水两大类。地表截排水工程主要为截水沟、排水沟等。地下疏排水结构主要有盲沟、钻孔排水、截水隧洞、集水井、虹吸排水等[5 − 7]。
目前,研究滑坡地下水疏排对滑坡稳定性的研究大多集中于截排水隧道、虹吸排水、仰斜孔排水等。孙红月等[8]研究了地下排水洞在浙江上三公路6#滑坡中的作用与控制,研究表明地下排水洞能有效控制地下水位的上升,特别是有效防止前期降水在坡体中的积累。赵杰[9]通过研究截水隧道在箭丰尾滑坡中应用,阐述了排水隧洞的设计理念,通过现场的监测资料对比分析修建截水隧洞前后降水量与地下水位埋深的关系,客观评价了截水隧洞的工程效果。近年来,一些研究者[10 − 13]在虹吸排水在滑坡地下水排出中的研究做了大量有意义的探索。
井-孔联合排水是指当地下水埋深较大或有多层地下水需要排出时,使用仰斜排水孔效果不佳时,采用仰斜孔结合集水井联合排出滑坡地下水的一种技术。目前国内采用此技术在滑坡治理中的应用鲜见报道。本文依托攀枝花机场13#滑坡治理工程,探讨井-孔联合排水技术在高含水填方滑坡治理中的应用,值得同类工程借鉴。
1. 滑坡概况
1.1 工程地质环境条件
研究区为中山丘陵、山区峡谷地貌, 见图1。受区域地质构造及机场建设等因素影响,地形起伏变化较大,高差悬殊大。机场建设前整体为一走向N—S向条形山脊。机场建设后东侧填筑形成高填方区,高达八级,最大高度 66 m[14]。
钻探揭露研究区地层自上至下为第四系人工填土层(
${\mathrm{Qh}}^{ml} $ ),母岩以强风化砂岩、炭质泥岩角砾、碎石为主,黏土充填,最大厚度达33 m。第四系全新统残坡积层(${\mathrm{Qh}}^{el+dl} $ ),主要为角砾土、碎石土,黄褐—灰褐色,黏土充填,含水量较高,呈可塑—坚硬状,层厚度变化较大,最大可达12 m。下伏侏罗系下统益门组(J1y)炭质泥岩、砂岩,缓倾互层状产出,岩层倾向与坡体倾向相近,倾角18°~21°。典型工程地质断面图见图2。研究区内存在一鱼塘向斜,向斜轴走向NNW,向SSE倾伏,其轴部通过跑道中心点附近,滑坡所在区在该向斜东北翼,地层产状106°~112°∠18°~21°,见图3。岩层中发育有两组张节理,J1节理:65°~87°∠85°~87°,间距3~5 m,闭合—微张开;J2节理:264°~280°∠82°~86°,间距5~15 m,闭合—微张,两组节理均黏土或硅质充填。
1.2 滑坡基本特征
该滑坡平面形态呈 “簸箕”状,见图4。且前缘不对称。滑坡纵向长约162 m,横向宽约246 m,后缘至剪出口高差最大68 m,钻孔揭露滑体最大厚度32.3 m,滑体总体积约50.42×104 m3,为一大型填筑体滑坡。
该滑坡周界清晰,后缘位于土面区张拉下错裂缝处,裂缝走向NE24°—NE33°,与巡场路(坡口线)走向基本一致。左侧界依附于巡场路至一级马道处剪切裂缝,走向SW21°—SE33°滑坡右侧以巡场路张开裂缝北端至五级马道截水沟沟壁外倾变形段为界。滑坡剪出口在坡体南侧沿坡脚便道、截水沟沟底展布,至五级马道截水沟倾倒损毁处沿该平台向北延伸。
该滑坡发育有一层滑带(面),主滑段滑动带(面)依附于全风化残、坡积层。滑带土以残坡积层中灰白色黏土夹层为主,含水量高,呈软塑状,泥膜呈灰白色,滑面泥膜处可见明显粗粒土擦痕,见图5。揉皱严重,倾角随滑面位置的不同而略有变化,主滑段滑面倾角12°~17°滑面埋深最大达32.3 m,横向呈中间深、两侧浅,在南、北两侧受老地面控制。
1.3 水文地质条件
1.3.1 大气降雨时空分布特征
根据机场气象台2007年至2019年年平均降水量图(图6)可知,研究区年平均降水量为792 mm,年最大降水量发生于2017年,为
1025.2 mm。年最小降水量发生于2012年,为496 mm。年平均降水天数97 d。由图7可知,研究区雨季为5—10月,平均降水量为737.16 mm,占全年降水量的95%。前汛期(5—7月)多年平均降水量为385.13 mm,占雨季降水量的52%。后汛期(8—10月)多年平均降水量为352.03 mm,占雨季降水量的48%。旱季6个月,年平均降水量仅为54.84 mm,仅占全年降水量的5%。以上数据充分说明滑坡区雨季降雨集中,降雨强度大。1.3.2 持续降雨、暴雨分布特征
大量研究表明[15 − 17],大量滑坡发生于中雨—暴雨、持续降雨之后。攀枝花机场每年均出现大量中—暴雨及持续降雨,对机场降雨数据的详细统计分析后,得到了2010—2019年每年中雨及以上出现次数及每年连续3 d出现降雨次数,具体见图8。由图8分析可知,按日均降水量标准计算,中雨(10~25 mm)、大雨(25~50 mm)及暴雨(≥50 mm)出现次数,年平均为24.5次,每年平均连续3 d及以上出现降雨天数为14次。中—大暴雨、3 d及以上出现降雨天数出现次数集中于雨季7—9月,占总数的95%以上。充分说明滑坡区降雨具有雨季降水量强度大且集中的特点。
1.3.3 地下水类型及赋存
研究区内存在两种类型的地下水,分别为赋存于松散堆积层的孔隙水和基岩中的裂隙水。根据物探及钻孔揭示,区内松散堆积层孔隙水包含上层滞水及孔隙潜水。松散堆积层孔隙水主要赋存于人工填筑土及第四系残坡积层、滑坡堆积层中,其分布受填料类型及填料密实度的影响,以上层滞水的类型赋存,上层滞水位于地下水位线以上填土中,由于填料及压实度差异导致该层水分布不均,无统一水面,且各水体间地下水连通性较差。
物探成果(图9)表明,二级马道以上至场坪土面区地段电阻率明显偏低,说明该处为滑坡体主要富水区域,具有“窝”状不连续分布特征,具有明显的成层性。通过钻孔中含水层段岩芯分析表明,含水层具有黏土含量高、赋水性较好、孔隙连通性差、径流不畅,坡内水难以快速消散等特点。孔隙潜水分布于基岩顶面原始地层中。现场调查,填筑体4级、5级马道平台截水沟及坡脚挡墙损坏段可见地下水渗出,见图10。坡脚鱼池处可见基岩与覆盖层界限处亦有地下水渗出。主要受上游降雨入渗、浅层基岩裂隙水沿层面运移及上层滞水沿隔水底板边缘下渗补给,沿基岩顶面向下游径流至鱼塘排泄。
2. 治理方案
2.1 治理难点与关键
(1)滑坡的变形具有启动突然,启动后变形加速发展的特点,是一高风险滑坡,治理工程属应急抢险工程。
该滑坡自发现地表宏观变形迹象,立即采取地表变形监测。典型位移/沉降—时间曲线见图11。由图11分析表明,坡体处于等速变形阶段,且变形发展迅速。因此,该滑坡的勘察设计及施工不能按常规的一般滑坡进行,应按应急抢险治理工程对待,对勘察设计及施工提出了挑战。
(2)滑坡具有有利于地表水下渗但不易排出的结构特征。
该滑坡发育在斜坡上填筑的超高(最高达68 m)填筑体边坡上。填筑体下伏基岩为缓倾顺层侏罗系炭质泥岩、砂岩。研究区地层结构示意见图12。由图12分析可知,受特殊的上软下硬单斜顺倾坡体结构影响,使地下水向同一个方向的汇集具有了沿层面渗流的条件,基岩中发育的两组张性节理,形成了基岩中的裂隙水渗流通道,使得基岩裂隙水从机场西侧甚至机场山梁西侧直接进入滑体有了地下通道。机场填筑边坡时,由于底部及填筑体内设置的排水措施偏少,地下水不能及时排除。
(3)降水量大、降雨集中,坡体地下水丰富,如何疏排地下水是滑坡治理成败关键。
由前述水文地质条件分析可知,滑坡区降雨充沛,且主要集中在5—10月,雨季降水量平均占年降水量的95%左右,降雨具有“集中”“量大”“暴雨多”等特点。坡体地下水位高。该段填筑体高边坡在13年后产生滑坡,突出原因是滑坡地下水丰富且排水不畅,并且地下水位逐年增高,导致滑体自重的增加,滑带土长期浸泡后,强度衰减,产生了滑动变形。因此,如何设置地下排水措施是该滑坡治理成功的关键。
2.2 治理理念
由于该滑坡地下水丰富且难以排出,地下水的来源主要有两个方面,一是滑坡区及后侧宽阔机场场坪汇集的降水。除少部分经地表排水系统排走,大部分降水下渗至坡体内,再向水位较低的临空方向渗流。而研究区钻探揭露滑体填土层具有的黏土含量高、赋水性较好、孔隙连通性差、径流不畅的性质,导致由场坪下渗的地下水在坡体内难以得到及时的消散。二是研究区地层为一典型的砂泥岩互层单斜地层结构,滑坡西侧机场以外的部分地下水沿砂岩层面、裂隙及泥岩顶面向填方区坡体渗流,地层中有张开的节理裂隙较发育,为地下水的补给提供了途径,是该段地层中的地下水通道,顺层面、节理裂隙方向从西向东流动,向滑坡体不断补给。因此考虑在滑体内设置排水工程措施。工程设计应充分考虑如何疏排地下水,应采取支挡与疏排地下水并重的治理理念。
2.3 治理方案
基于该滑坡的特点与难点,治理工程采用应急工程与永久工程相结合、支挡与疏排地下水相结合的方式进行。
应急治理主要为滑坡后缘减载和疏排滑坡地下水,具体采用仰斜排水孔排水。
永久工程治理方案采用支挡工程与排水工程相结合的方式进行。支挡结构根据滑坡推力大小,采用普通抗滑桩、预应力锚索抗滑桩强支挡。地下排水结构措施采用集水井联合井内仰斜排水孔疏排地下水。具体工程平面布置图见图13,工程断面布置图见图14。
具体集水井设置在一级马道围栏外坡面,设置6个集水井,直径4m,采用C30钢筋砼浇筑。为加大集水井疏排地下水的范围及能力,在井壁设置1~4排放射状集水斜孔以疏排滑体中的地下水,将地下水引至集水井内,然后通过井间导流管将水引至下一个集水井,最终将坡体中地下水排至滑坡体以外。具体集水井设置见图15。
3. 排水工程效果分析
该滑坡应急治理及永久治理工程实施后,对其稳定性进行了综合评估与长期位移监测,综合评估结果见表1,长期位移监测见图16。由表1可知,该滑坡体采用支挡与排水并重的方式治理后,坡体处于稳定状态。排水工程的实施,使得坡体中地下水及时疏排与水位降低且雨季不再 ,保证了岩土体抗剪强度不衰减,有利于坡体的长期稳定。由图16可知,治理工程实施后,坡体位移无增大趋势,水平位移及沉降曲线均呈水平状,坡体处于稳定状态。
表 1 治理前后稳定性评估结果Table 1. Stability assessment results before and after treatment序号 断面
编号治理前稳定系数 应急刷
体积/m3设支挡结构后增加
抗滑力/(kN·m−1)设集水井后地下水
降低高度/m治理后稳定系数 自然工况 暴雨工况 地震工况 自然工况 暴雨工况 地震工况 1 1-1' 1.03 1.00 0.86 23516 1740 5.8 1.35 1.31 1.25 2 2-2' 1.03 1.00 0.85 2730 6.5 1.34 1.33 1.26 3 3-3' 1.02 0.99 0.82 2609 7.2 1.35 1.32 1.26 为评价集水井联合仰斜排水孔排水效果,在两个排水口(图17)进行了出水量监测。图18、19为两个排水口流量-日降水量-时间曲线图。
图18为出水口1涌水量—降水量—时间曲线。分析表明,排水初期,由于为雨季,降水量较大,涌水量较大,在250~500 mL/s。2017年10月后随着降水量的锐减,涌水量也呈迅速下降趋势,涌水量基本小于50 mL/s。2018年进入雨季后,降水量增多,但出水口1涌水量没有明显的增加,基本稳定在10 mL/s。图19为出水口2涌水量—降水量—时间曲线。分析表明,出水口2涌水量基本随降水量变化而变化。表现为,降水量大,涌水量大,降水量小,涌水量小。但排水口2总体涌水量没有排水口1大。综合比较可以得出,排水初期,坡体内长期蓄存的地下水,基本通过排水 口1在近两个月的时间排出,2018年1月后,两个排水口基本响应了大气降雨,及时排走了坡体内下渗的地下水。
4. 结论
以攀枝花机场13#滑坡治理工程为例,在简述滑坡基本概况的基础上,着重论述了研究区水文地质条件,基于该滑坡治理难点及特性,探讨了滑坡治理方案,提出了基于支挡与疏排地下水并重的治理方案,并评估了井孔联合疏排地下水措施的排水效果,得到了以下几条结论。
(1)研究区雨季降水量占全年降水量的95%,中—大暴雨、3d及以上出现降雨天数出现次数集中于雨季7~9月,占总数的95%以上。充分说明研究区降雨具有雨季降水量强度大且集中的特点。
(2)物探及钻探揭示,滑坡后缘场坪填方区地下水丰富,具有“窝”状不连续分布特征,明显的成层性;含水层具有黏土含量高、赋水性较好、孔隙连通性差、径流不畅,坡内地下水难以快速消散等特点。
(3)采用支挡与疏排滑坡地下水整治理念治理滑坡。采用集水井联合孔内仰斜排水孔疏排地下水,竣工后通过测试其排水量,效果良好,滑坡体长期处于稳定状态。
-
表 1 七盘沟流域的历史泥石流事件[26]
Table 1 Historical debris-flow events in the Qipan gully watershed, Wenchuan, China
日期 降雨强度/mm 泥石流
类型峰值流量
/(m3·s−1)持续时间
/min泥石流冲出量
/(104 m3)72 h 24 h 1 h 10 min 1933 — — — — 黏性 150 — — 1961-07-06 99.5 79.9 — — 75 60 13.5 1964-07-23 48.3 41.7 — 1.2 稀性 65 50 9.1 1965-07-16 69.5 41.2 — — 65 50 9.9 1970-07-28 56.5 33.0 — — 60 60 5.8 1971-07-24 79.4 53.4 — — 62 45 8.4 1975-07-29 — 32.5 9.6 3.8 81 40 9.8 1977-07-07 — 39.4 7.6 1.6 黏性 65 30 5.8 1978-07-15 79.5 66.7 36.4 17.0 稀性 90 50 13.5 1979-08-15 48.0 30.8 — 6.1 42 30 3.8 1980-07-26 — — — 4.4 65 20 5.4 1981-08-12 — 53.8 9.5 2.1 90 25 6.7 1983-07-19 — 31.3 8.1 1.7 黏性 50 15 2.3 2013-07-11 109.6 54.3 6.4 — 1745 30 78.2 2017-07-05 — 18.6 — — — — 18.5 2018-08-22 — 33.4 — — — — 11.5 2019-08-20 — 28.1 — — — — 15 注:“—” 指数据缺失。 表 2 七盘沟泥石流危险性因子评价标准及实际值转换
Table 2 Risk assessment criteria and actual value conversion for debris flow factors in Qipan gully
评价指标 极低危险(Ⅰ) 较低危险(Ⅱ) 中等危险(Ⅲ) 较高危险(Ⅳ) 极高危险(Ⅴ) X1 0~25 25~50 50~100 100~250 250~ 1000 X2 0~10 10~20 20~30 30~40 40~60 X3 0~1 1~5 5~10 10~100 100~700 X4 0~5 5~10 10~20 20~100 100~150 X5 0~25 25~50 50~75 50~100 100~500 X6 0~0.5 0.5~5 5~15 15~35 35~70 X7 0~1 1~2 2~5 5~10 10~50 X8 0~0.2 0.2~0.5 0.5~0.7 0.7~1.0 1.0~6.0 X9 0~2 2~5 5~10 10~20 20~100 X10 80~100 80~60 60~40 20~40 0~20 X11 80~100 80~60 60~40 20~40 0~20 X12 0.8~1 0.6~0.8 0.4~0.6 0.2~0.4 0~0.2 X13 0.8~1 0.6~0.8 0.4~0.6 0.2~0.4 0~0.2 X14 0~20 20~50 50~100 100~200 200~ 3000 注:X12[37]:新修(Ⅰ);1/3库容(Ⅱ);2/3库容(Ⅲ);淤满(Ⅳ);未修(Ⅴ)。X13[38]:坝基、坝肩、坝体、溢流口未发生损毁, 排水孔不堵塞(Ⅰ);坝基未被淘蚀, 坝肩、坝体、溢流口有较少部分发生损毁,排水孔不堵塞(Ⅱ);坝基未被淘蚀, 坝肩、坝体、溢流口有较少部分发生损毁,排水孔堵塞较少(Ⅲ);坝基被淘蚀,坝体、坝肩发生损毁,排水孔较少部分未堵塞(Ⅳ);极差 坝基被严重淘蚀,坝肩、坝体破坏严重,排水孔全部堵塞(Ⅴ)。 表 3 七盘沟泥石流样本实测值
Table 3 Measured value of debris flow samples in Qipan gully
样本 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 2005 75 34 5 20 26 54.2 15.2 3.04 2.12 60 0.4 0 0 90 2008 574 26 8 22 34 54.2 15.2 3.04 2.12 18 0.09 0 0 65 2011 157 32 8 24 38.3 54.2 15.2 3.04 2.12 24 0.15 0 0 135 2013 581 54 78.2 25 54.3 54.2 15.2 3.04 2.12 13 0.17 0 0 135 2018 149 37 11.5 27 33.4 54.2 15.2 3.04 2.12 34 0.30 0.6 0.8 165 2019 114 33 15 28 28.1 54.2 15.2 3.04 2.12 57 0.37 0.6 0.7 185 表 4 2005—2019年七盘沟泥石流危险性评价结果
Table 4 Risk assessment results of debris flow in Qipan gully, 2005—2019
年份 危险性评价值 危险级别 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 2005 0.0009 0.0046 0.2282 0.1015 0.0237 中等危险 2008 0.0002 0.0126 0.0489 0.0011 0.1572 极高危险 2011 0.0019 0.0019 0.0752 0.1430 0.0936 较高危险 2013 0.0001 0.0002 0.0245 0.1327 0.1657 极高危险 2018 0.0235 0.1280 0.0000 0.2366 0.0006 较高危险 2019 0.0007 0.3534 0.0084 0.1210 0.0005 较低危险 -
[1] 崔鹏,韦方强,何思明,等. 5•12汶川地震诱发的山地灾害及减灾措施[J]. 山地学报,2008,26(3):280 − 282. [CUI Peng,WEI Fangqiang,HE Siming,et al. Mountain disasters induced by the earthquake of May 12 in Wenchuan and the disasters mitigation[J]. Mountain Research,2008,26(3):280 − 282. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1008-2786.2008.03.006 CUI Peng, WEI Fangqiang, HE Siming, et al. Mountain disasters induced by the earthquake of May 12 in Wenchuan and the disasters mitigation[J]. Mountain Research, 2008, 26(3): 280 − 282. (in Chinese with English abstract) DOI: 10.3969/j.issn.1008-2786.2008.03.006
[2] 许强. 四川省8•13特大泥石流灾害特点、成因与启示[J]. 工程地质学报,2010,18(5):596 − 608. [XU Qiang. The 13 August 2010 catastrophic debris flows in Sichuan Province:Characteristics,genetic mechanism and suggestions[J]. Journal of Engineering Geology,2010,18(5):596 − 608. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1004-9665.2010.05.002 XU Qiang. The 13 August 2010 catastrophic debris flows in Sichuan Province: Characteristics, genetic mechanism and suggestions[J]. Journal of Engineering Geology, 2010, 18(5): 596 − 608. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2010.05.002
[3] LI Ning,TANG Chuan,ZHANG Xianzheng,et al. Characteristics of the disastrous debris flow of Chediguan gully in Yinxing Town,Sichuan Province,on August 20,2019[J]. Scientific Reports,2021,11(1):23666. DOI: 10.1038/s41598-021-03125-x
[4] 陈晓清,崔鹏,李泳,等. 汶川地震后北川干溪沟山地灾害及长期发展趋势初步分析[J]. 四川大学学报(工程科学版),2010,42(增刊1):22 − 32. [CHEN Xiaoqing,CUI Peng,LI,Yong,et al. Mountain Hazard Induced by Wenchuan Earthquake and its long-term development trends of Ganxi Gully,Beichuan[J]. Journal of Sichuan University (Engineering Science Edition),2010,42(Sup 1):22 − 32. (in Chinese with English abstract] CHEN Xiaoqing, CUI Peng, LI, Yong, et al. Mountain Hazard Induced by Wenchuan Earthquake and its long-term development trends of Ganxi Gully, Beichuan[J]. Journal of Sichuan University (Engineering Science Edition), 2010, 42(Sup 1): 22 − 32. (in Chinese with English abstract
[5] 黄润秋. 汶川地震地质灾害后效应分析[J]. 工程地质学报,2011,19(2):145 − 151. [HUANG Runqiu. After effect of geohazards induced by the Wenchuan earthquake[J]. Journal of Engineering Geology,2011,19(2):145 − 151. (in Chinese)] DOI: 10.3969/j.issn.1004-9665.2011.02.001 HUANG Runqiu. After effect of geohazards induced by the Wenchuan earthquake[J]. Journal of Engineering Geology, 2011, 19(2): 145 − 151. (in Chinese) DOI: 10.3969/j.issn.1004-9665.2011.02.001
[6] FAN Xuanmei,SCARINGI G,DOMÈNECH G,et al. Two multi-temporal datasets that track the enhanced landsliding after the 2008 Wenchuan earthquake[J]. Earth System Science Data,2019,11(1):35 − 55. DOI: 10.5194/essd-11-35-2019
[7] YANG Wentao,QI Wenwen,ZHOU Jinxing. Decreased post-seismic landslides linked to vegetation recovery after the 2008 Wenchuan earthquake[J]. Ecological Indicators,2018,89:438 − 444. DOI: 10.1016/j.ecolind.2017.12.006
[8] FAN R L,ZHANG L M,WANG H J,et al. Evolution of debris flow activities in Gaojiagou Ravine during 2008–2016 after the Wenchuan earthquake[J]. Engineering Geology,2018,235:1 − 10. DOI: 10.1016/j.enggeo.2018.01.017
[9] CHEN M,TANG C,XIONG J,et al. The long-term evolution of landslide activity near the epicentral area of the 2008 Wenchuan earthquake in China[J]. Geomorphology,2020,367:107317. DOI: 10.1016/j.geomorph.2020.107317
[10] FAN Xuanmei,DOMÈNECH G,SCARINGI G,et al. Spatio-temporal evolution of mass wasting after the 2008 Mw 7.9 Wenchuan earthquake revealed by a detailed multi-temporal inventory[J]. Landslides,2018,15(12):2325 − 2341. DOI: 10.1007/s10346-018-1054-5
[11] LIU Jinfeng,YOU Yong,CHEN Xiaoqing,et al. Mitigation planning based on the prediction of river blocking by a typical large-scale debris flow in the Wenchuan earthquake area[J]. Landslides,2016,13(5):1231 − 1242. DOI: 10.1007/s10346-015-0615-0
[12] 眭海刚,刘超贤,刘俊怡,等. 典型自然灾害遥感快速应急响应的思考与实践[J]. 武汉大学学报(信息科学版),2020,45(8):1137 − 1145. [SUI Haigang,LIU Chaoxian,LIU Junyi,et al. Reflection and exploration of rapid remote sensing emergency response for typical natural disasters[J]. Geomatics and Information Science of Wuhan University,2020,45(8):1137 − 1145. (in Chinese with English abstract)] SUI Haigang, LIU Chaoxian, LIU Junyi, et al. Reflection and exploration of rapid remote sensing emergency response for typical natural disasters[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1137 − 1145. (in Chinese with English abstract)
[13] TANG Chenxiao,LIU Xinlei,CAI Yinghua,et al. Monitoring of the reconstruction process in a high mountainous area affected by a major earthquake and subsequent hazards[J]. Natural Hazards and Earth System Sciences,2020,20(4):1163 − 1186. DOI: 10.5194/nhess-20-1163-2020
[14] CUI Peng,XIANG Lingzhi,ZOU Qiang. Risk assessment of highways affected by debris flows in Wenchuan earthquake area[J]. Journal of Mountain Science,2013,10(2):173 − 189. DOI: 10.1007/s11629-013-2575-y
[15] 侯圣山,曹鹏,陈亮,等. 基于数值模拟的耳阳河流域泥石流灾害危险性评价[J]. 水文地质工程地质,2021,48(2):143 − 151. [HOU Shengshan,CAO Peng,CHEN Liang,et al. Debris flow hazard assessment of the Eryang River watershed based on numerical simulation[J]. Hydrogeology & Engineering Geology,2021,48(2):143 − 151. (in Chinese with English abstract)] HOU Shengshan, CAO Peng, CHEN Liang, et al. Debris flow hazard assessment of the Eryang River watershed based on numerical simulation[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 143 − 151. (in Chinese with English abstract)
[16] 李永威,徐林荣,谷丰宇,等. 孕灾环境对泥石流危险性影响[J/OL]. 地球科学,2022:1 − 12. (2022-03-01)[2024-01-20]. https://kns.cnki.net/kcms/detail/42.1874.P.20220228.1828.004.html. [LI Yongwei,XU Linrong,GU Fengyu,et al. Influence of disaster-prone environment on debris flow risk[J/OL]. Earth Science,2022:1 − 12. (2022-03-01)[2024-01-20]. https://kns.cnki.net/kcms/detail/42.1874.P.20220228.1828.004.html. (in Chinese with English abstract)] LI Yongwei, XU Linrong, GU Fengyu, et al. Influence of disaster-prone environment on debris flow risk[J/OL]. Earth Science, 2022: 1 − 12. (2022-03-01)[2024-01-20]. https://kns.cnki.net/kcms/detail/42.1874.P.20220228.1828.004.html. (in Chinese with English abstract)
[17] 殷启睿,苏娜. 基于DEA冗余分析的泥石流危险度评价[J]. 中国地质灾害与防治学报,2020,31(3):30 − 34. [YIN Qirui,SU Na. Debris-flow risk assessment based on DEA redundancy analysis[J]. The Chinese Journal of Geological Hazard and Control,2020,31(3):30 − 34. (in Chinese with English abstract)] YIN Qirui, SU Na. Debris-flow risk assessment based on DEA redundancy analysis[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(3): 30 − 34. (in Chinese with English abstract)
[18] 周亮,何晓英,晋云超,等. 泥石流拦挡坝工程服役性能特征分析——以甘肃省陇南市武都区为例[J]. 中国地质灾害与防治学报,2023,34(6):37 − 46. [ZHOU Liang,HE Xiaoying,JIN Yunchao,et al. Analysis of service performance characteristics of debris flow check dams:A case study in Wudu District,Longnan City,Gansu Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(6):37 − 46. (in Chinese with English abstract)] ZHOU Liang, HE Xiaoying, JIN Yunchao, et al. Analysis of service performance characteristics of debris flow check dams: A case study in Wudu District, Longnan City, Gansu Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(6): 37 − 46. (in Chinese with English abstract)
[19] 龙玉洁,李为乐,黄润秋,等. 汶川地震震后10 a绵远河流域滑坡遥感自动提取与演化趋势分析[J]. 武汉大学学报(信息科学版),2020,45(11):1792 − 1800. [LONG Yujie,LI Weile,HUANG Runqiu,et al. Automatic extraction and evolution trend analysis of landslides in Mianyuan River Basin in the 10 years after Wenchuan earthquake[J]. Geomatics and Information Science of Wuhan University,2020,45(11):1792 − 1800. (in Chinese with English abstract)] LONG Yujie, LI Weile, HUANG Runqiu, et al. Automatic extraction and evolution trend analysis of landslides in Mianyuan River Basin in the 10 years after Wenchuan earthquake[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1792 − 1800. (in Chinese with English abstract)
[20] 李志,陈宁生,侯儒宁,等. 基于机器学习的伊犁河谷黄土区泥石流易发性评估[J]. 中国地质灾害与防治学报,2024,35(3):129 − 140. [LI Zhi,CHEN Ningsheng,HOU Runing,et al. Susceptibility assessment of debris flow disaster based on machine learning models in the loess area along Yili Valley[J]. The Chinese Journal of Geological Hazard and Control,2024,35(3):129 − 140. (in Chinese with English abstract)] LI Zhi, CHEN Ningsheng, HOU Runing, et al. Susceptibility assessment of debris flow disaster based on machine learning models in the loess area along Yili Valley[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 129 − 140. (in Chinese with English abstract)
[21] 汪明武,王霄,龙静云,等. 基于多维联系正态云模型的泥石流危险性评价[J]. 应用基础与工程科学学报,2021,29(2):368 − 375. [WANG Mingwu,WANG Xiao,LONG Jingyun,et al. Risk assessment of debris flow based on multidimensional connection normal cloud model[J]. Journal of Basic Science and Engineering,2021,29(2):368 − 375. (in Chinese with English abstract)] WANG Mingwu, WANG Xiao, LONG Jingyun, et al. Risk assessment of debris flow based on multidimensional connection normal cloud model[J]. Journal of Basic Science and Engineering, 2021, 29(2): 368 − 375. (in Chinese with English abstract)
[22] 严惊涛,刘树光. 基于组合赋权的对地攻击无人机自主能力云模型评价[J]. 北京航空航天大学学报,2023,49(12):3500 − 3510. [YAN Jingtao,LIU Shuguang. Combination weighting based cloud model evaluation of autonomous capability of ground-attack UAV[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3500 − 3510. (in Chinese with English abstract)] YAN Jingtao, LIU Shuguang. Combination weighting based cloud model evaluation of autonomous capability of ground-attack UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(12): 3500 − 3510. (in Chinese with English abstract)
[23] 曾超,崔鹏,葛永刚,等. 四川汶川七盘沟“7•11” 泥石流破坏建筑物的特征与力学模型[J]. 地球科学与环境学报,2014,36(2):81 − 91. [ZENG Chao,CUI Peng,GE Yonggang,et al. Characteristics and mechanism of buildings damaged by debris flows on 11 July,2013 in qipangou of Wenchuan,Sichuan[J]. Journal of Earth Sciences and Environment,2014,36(2):81 − 91. (in Chinese with English abstract)] ZENG Chao, CUI Peng, GE Yonggang, et al. Characteristics and mechanism of buildings damaged by debris flows on 11 July, 2013 in qipangou of Wenchuan, Sichuan[J]. Journal of Earth Sciences and Environment, 2014, 36(2): 81 − 91. (in Chinese with English abstract)
[24] HU Tao,HUANG Runqiu. A catastrophic debris flow in the Wenchuan Earthquake area,July 2013:Characteristics,formation,and risk reduction[J]. Journal of Mountain Science,2017,14(1):15 − 30. DOI: 10.1007/s11629-016-3965-8
[25] 袁亚东. 强震区“宽缓” 型沟道物源起动机理及动储量评价研究——以七盘沟为例[D]. 绵阳:西南科技大学,2020. [YUAN Yadong. Study on provenance starting mechanism and dynamic reserve evaluation of “wide and slow” channel in strong earthquake area:Taking Qipangou as an example[D]. Mianyang:Southwest University of Science and Technology,2020. (in Chinese with English abstract)] YUAN Yadong. Study on provenance starting mechanism and dynamic reserve evaluation of “wide and slow” channel in strong earthquake area: Taking Qipangou as an example[D]. Mianyang: Southwest University of Science and Technology, 2020. (in Chinese with English abstract)
[26] HU Xudong,YANG Feng,HU Kaiheng,et al. Estimating the debris-flow magnitude using landslide sediment connectivity,Qipan catchment,Wenchuan County,China[J]. Catena,2023,220:106689. DOI: 10.1016/j.catena.2022.106689
[27] 七盘沟泥石流勘查报告[R]. 四川:四川省蜀通岩土工程公司,2013 [Investigation of emergency actions to mitigate debris flow hazards in the Qipan Gully, Wenchuan County, Aba Prefecture, Sichuan Province[R]. Sichuan: Sichuan Shutong geotechnical engineering company,2013. (in Chinese)] Investigation of emergency actions to mitigate debris flow hazards in the Qipan Gully, Wenchuan County, Aba Prefecture, Sichuan Province[R]. Sichuan: Sichuan Shutong geotechnical engineering company, 2013. (in Chinese)
[28] 张伟 , 吴鄂, 刘宁鉴. 七盘沟滑坡泥石流勘查报告[R]. 四川:四川省华地建设工程有限责任公司. 2008. [ZHANG Wei, WU E, LIU Ningjian. Field investigation report on emergency management project of landslide and debris flow in the Qipan gully in Wenchuan county,Aba Prefecture,Sichuan Province[R]. the Sichuan Huadi Construction Engineering Co. Ltd,2008. (in Chinese)] ZHANG Wei, WU E, LIU Ningjian. Field investigation report on emergency management project of landslide and debris flow in the Qipan gully in Wenchuan county, Aba Prefecture, Sichuan Province[R]. the Sichuan Huadi Construction Engineering Co. Ltd, 2008. (in Chinese)
[29] SHI Qingyun,TANG Chuan,GONG Lingfeng,et al. Activity evolution of landslides and debris flows after the Wenchuan earthquake in the Qipan catchment,Southwest China[J]. Journal of Mountain Science,2021,18(4):932 − 951. DOI: 10.1007/s11629-020-6494-4
[30] 李敬强,樊天辰,周妍汝,等. 基于云模型的民航监察员队伍能力综合评价[J]. 北京航空航天大学学报,2022,48(12):2425 − 2433. [LI Jingqiang,FAN Tianchen,ZHOU Yanru,et al. Comprehensive evaluation on capability of civil aviation supervisor team based on cloud model[J]. Journal of Beijing University of Aeronautics and Astronautics,2022,48(12):2425 − 2433. (in Chinese with English abstract)] LI Jingqiang, FAN Tianchen, ZHOU Yanru, et al. Comprehensive evaluation on capability of civil aviation supervisor team based on cloud model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2425 − 2433. (in Chinese with English abstract)
[31] YANG Fan,FAN Xuanmei,SIVA SUBRAMANIAN S,et al. Catastrophic debris flows triggered by the 20 August 2019 rainfall,a decade since the Wenchuan earthquake,China[J]. Landslides,2021,18(9):3197 − 3212. DOI: 10.1007/s10346-021-01713-6
[32] ZHU Jing,TANG Chuan,CHANG Ming,et al. Field observations of the disastrous 11 July 2013 debris flows in qipan gully,Wenchuan area,southwestern China[C]//Engineering Geology for Society and Territory - Volume 2. Cham:Springer International Publishing,2015:531 − 535.
[33] CHEN Ming,TANG Chuan,LI Mingwei,et al. Changes of surface recovery at coseismic landslides and their driving factors in the Wenchuan earthquake-affected area[J]. Catena,2022,210:105871. DOI: 10.1016/j.catena.2021.105871
[34] ZHANG Xianzheng,TANG Chenxiao,LI Ning,et al. Investigation of the 2019 Wenchuan County debris flow disaster suggests nonuniform spatial and temporal post-seismic debris flow evolution patterns[J]. Landslides,2022,19(8):1935 − 1956. DOI: 10.1007/s10346-022-01896-6
[35] GUZZETTI F,ARDIZZONE F,CARDINALI M,et al. Distribution of landslides in the upper Tiber River Basin,central Italy[J]. Geomorphology,2008,96(1/2):105 − 122.
[36] 叶小兵. 强震区震后泥石流坡面物源起动机制研究[D]. 绵阳:西南科技大学,2020. [YE Xiaobing. Study on provenance starting mechanism of debris flow slope after earthquake in strong earthquake area[D]. Mianyang:Southwest University of Science and Technology,2020. (in Chinese with English abstract)] YE Xiaobing. Study on provenance starting mechanism of debris flow slope after earthquake in strong earthquake area[D]. Mianyang: Southwest University of Science and Technology, 2020. (in Chinese with English abstract)
[37] 王念秦,韩波,庞琦,等. 泥石流防治工程效果后评价初探[J]. 工程地质学报,2015,23(2):219 − 226. [WANG Nianqin,HAN Bo,PANG Qi,et al. Post-evaluation model on effectiveness of debris flow control[J]. Journal of Engineering Geology,2015,23(2):219 − 226. (in Chinese with English abstract)] WANG Nianqin, HAN Bo, PANG Qi, et al. Post-evaluation model on effectiveness of debris flow control[J]. Journal of Engineering Geology, 2015, 23(2): 219 − 226. (in Chinese with English abstract)
[38] 张文涛,柳金峰,游勇,等. 泥石流防治工程损毁度评价——以汶川地区为例[J]. 中国地质灾害与防治学报,2022,33(4):77 − 83. [ZHANG Wentao,LIU Jinfeng,YOU Yong,et al. Damage evaluation of control works against debris flow:A case study in Wenchuan area[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):77 − 83. (in Chinese with English abstract)] ZHANG Wentao, LIU Jinfeng, YOU Yong, et al. Damage evaluation of control works against debris flow: A case study in Wenchuan area[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 77 − 83. (in Chinese with English abstract)
-
期刊类型引用(3)
1. 陈家乐,倪万魁,王海曼,荣誉. 原状黄土土-水特征曲线与湿陷性的相关性. 中国地质灾害与防治学报. 2024(02): 107-114 . 本站查看
2. 贾静,宿星,张军,路常亮,张满银,李霞,董耀刚,任皓晨. 1985—2020年甘肃省通渭县滑坡区土地利用变化及驱动力. 应用生态学报. 2024(10): 2833-2841 . 百度学术
3. 王韵,王红雨,李其星,亢文涛. 探地雷达在湿陷性黄土挖填方高边坡土体性状探测中的应用. 中国地质灾害与防治学报. 2023(02): 102-110 . 本站查看
其他类型引用(1)