ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

汶川地震震后七盘沟泥石流动态物源危险性评价

苏娜, 徐林荣, 李永威, 李佳珅, 汤玉兰

苏娜,徐林荣,李永威,等. 汶川地震震后七盘沟泥石流动态物源危险性评价[J]. 中国地质灾害与防治学报,2025,36(1): 16-27. DOI: 10.16031/j.cnki.issn.1003-8035.202308010
引用本文: 苏娜,徐林荣,李永威,等. 汶川地震震后七盘沟泥石流动态物源危险性评价[J]. 中国地质灾害与防治学报,2025,36(1): 16-27. DOI: 10.16031/j.cnki.issn.1003-8035.202308010
SU Na,XU Linrong,LI Yongwei,et al. Risk assessment of single gully debris flows based on dynamic changes of provenance in the Wenchuan earthquake zone: A case study of Qipan gully[J]. The Chinese Journal of Geological Hazard and Control,2025,36(1): 16-27. DOI: 10.16031/j.cnki.issn.1003-8035.202308010
Citation: SU Na,XU Linrong,LI Yongwei,et al. Risk assessment of single gully debris flows based on dynamic changes of provenance in the Wenchuan earthquake zone: A case study of Qipan gully[J]. The Chinese Journal of Geological Hazard and Control,2025,36(1): 16-27. DOI: 10.16031/j.cnki.issn.1003-8035.202308010

汶川地震震后七盘沟泥石流动态物源危险性评价

基金项目: 联合基金项目(U2268213);国家重点研发计划项目(2018YFC1505403);国家自然科学基金面上项目(42172322)
详细信息
    作者简介:

    苏 娜(1989—),女,河南永城人,博士研究生,主要从事地质灾害评估、防治与预警预报研究工作。E-mail:184801021@cus.edu.cn

  • 中图分类号: P642.23

Risk assessment of single gully debris flows based on dynamic changes of provenance in the Wenchuan earthquake zone: A case study of Qipan gully

  • 摘要:

    “5•12”汶川特大地震后,震区山体表面产生大量碎屑物,植被遭到严重破坏,为泥石流暴发提供了极为丰富的物质来源,大大增加了泥石流的危险性。多年来,研究人员针对震后泥石流危险性的评估主要考虑植被恢复情况,较少考虑泥石流沟道存在大量的动储量物质对危险性评估的重要影响。为此,基于现场勘察资料,以汶川县七盘沟为研究对象,采用多源多尺度监测手段(Landsat系列、Quick-bird与无人机)对震前震后坡面物源与沟道物源进行分析统计,综合利用博弈论组合赋权结合云模型构建泥石流危险性动态评价模型,对2005—2019年泥石流暴发的危险性进行评价。结果表明:震后坡面物源是震前的7.7倍,到2019年坡面物源已基本恢复至震前水平。经相关资料记载震后泥石流暴发冲出量及清淤工程量进行统计估算可知,到2019年泥石流动态物源减少约7.813×106 m3。相对比只考虑坡面物源,分别考虑坡面和沟道物源对危险性评价所取得的结果,更切合现实。所得结果对在日益增加的高烈度山区开展重要工程所遭受的单沟泥石流危险性动态评价提供参考与借鉴作用,有效保护人民的生命和财产安全。

    Abstract:

    Following the catastrophic “5•12” Wenchuan earthquake, extensive debris was deposited on mountain surfaces in the earthquake zone, and significant vegetation damage occurred, providing abundant material for debris flow outbreaks and substantially increasing their risk. Previous studies primarily focused on vegetation recovery when assessing post-earthquake debris flow risks. However, field surveys revealed that large quantities of dynamic storage materials in the gullies significantly impact risk assessments. Based on field survey data, this study uses Qipan gully in Wenchuan County as a research subject and employs multi-source and multi-scale monitoring tools (Landsat series, Quick-bird, and UAVs) to analyze and statistically assess the source materials on slopes and gullies both pre- and post-earthquake. A dynamic risk assessment model for debris flow is constructed using game theory combined with a cloud model, assessing the risk from 2005 to 2019. Findings indicate that post-earthquake slope material sources were 7.7 times those pre-earthquake, and by 2019, with recovery to pre-earthquake levels by 2019. Statistical estimations based on recorded debris flow eruptions and sediment removal volumes show a reduction of approximately 7.813×106 m3 in dynamic material sources by 2019. Assessing both slope and gully material sources yields more realistic results than considering slope sources alone. These results provide references and guidance for dynamic risk assessments of debris flow, impacting major engineering projects in increasingly seismic regions and effectively ensuring the safety of life and property.

  • 地裂缝为常见的地质灾害之一,一般指在内外应力协同作用下,岩土体的连续性被破坏,并发生变形破裂,进而在浅表层形成的具一定规模的变形带或裂缝的灾害现象,其变形破坏常呈现为水平剪切、垂直剪切与拉张破坏[13]。地裂缝在许多国家都有广泛发育,在美国、中国、墨西哥、澳大利亚以及埃塞俄比亚、肯尼亚等地均出现了大规模的地裂缝灾害,对当地居民生产生活造成严重影响,产生了难以计量的破坏和损失[410]

    调查发现,自上世纪60年代起,北京平原区勘察到地裂缝超过40条,至今已发育有7个地裂缝带,其中以高丽营、顺义和通州地区所发育的地裂缝最为典型,对周围建筑和公共设施造成了严重破坏,引起了人们的高度关注[11]。在北京地裂缝的发育特征和成因机理研究方面:贾三满等认为高丽营地裂缝主要受断裂的控制,为基底断裂活动延伸至地表导致的,是断裂构造和地面沉降共同作用的结果[12];彭建兵等通过对顺义区土沟村地裂缝进行研究,认为该地裂缝与下伏断裂相连,并呈现出同沉积断层的活动特征[13];刘德成等认为通州地裂缝是非构造性地裂缝,主要受地貌形态所控制,并分布于河流两岸,顺河堤方向展布[14];姜媛等在对大量资料分析的基础上,得到了高丽营地裂缝和当地地面沉降在时间、空间和活动方式上的关联,认为二者在加剧活动时间上具有同步性,在活动特征上具有相似性,并指出地面沉降在断裂两侧引起的不均匀沉降是高丽营地裂缝形成的主要因素[15];卢全中等对北七家至高丽营段的地裂缝进行研究,确定其上、下盘影响带总宽度为43 m,地裂缝对房屋与道路的破坏形式有3种[16];刘方翠等认为是区域构造活动及差异沉降变形机制的共同作用导致了北京平原区顺义地裂缝、高丽营地裂缝、羊房地裂缝和北小营地裂缝的快速形成发育[17];周永恒等通过地球物理探测技术与联合钻孔剖面方法揭示了黄庄-高丽营断裂(房山-涞水段)具典型的正断活动特征[18];关金环等发现北京首都国际机场发生的差异性沉降主要是由顺义-良乡断裂所发育的顺义地裂缝造成的[19];孟振江等以北京地裂缝为原型研究了耦合型地裂缝的发育活动特征和成因机制,揭示了不同位错量和水位下降量引发的地层位移场和应力场的变化特征[20];任雅哲等依据断层位错理论定量分析了顺义断裂蠕滑活动对机场地裂缝形成的影响,认为顺义断裂上盘中、深层地下水抽采引起的地面差异沉降是导致机场地裂缝加剧的主要因素[21]。以上研究在一定程度上揭示了北京地裂缝的成因与影响因素,为后续的深入研究提供了重要的研究基础和理论参考。

    作为特殊的工程场地,地裂缝场地对动力的响应明显且产生的影响较大。相关研究表明,傅里叶频率与场地条件、土层结构完整性及力学性质等紧密相关,而地脉动频率及卓越周期都可以反映出试验场地土体结构的变化[2223]。在利用地脉动测试方法研究方面:薛捷等通过地脉动测试的方法对西安地裂缝场地进行了研究,从而为西安市抗震设防工作提供理论依据[24];慕焕东等使用FLAC3D数值分析软件对西安地裂缝场地开展研究,发现地裂缝场地具有明显的放大效应,且上盘效应显著[25];张磊刚等应用地脉动测试手段对西安F6地裂缝场地进行研究,探明了场地因地裂缝而产生的放大效应和峰值变化规律[26];王晗等通过地脉动现场测试方法,得到了西安地区典型地裂缝的场地放大效应和变化规律[27];崔思颖等选取河北平原具有代表性的地裂缝进行地脉动测试揭示了动力响应特征[28];Chang J和Xuan Y等利用地脉动测试技术获得了山西临汾和大同两处盆地的典型地裂缝场地的数据并开展研究,研究结果表明可以通过地脉动信号来分析地裂缝场地的动力响应特征,并揭示了其变化规律与放大效应[2932]

    在对北京地区的地裂缝研究方面,前人所做研究大多集中于对地裂缝破坏现象的描述和产状勘察,以及从发育场地地貌和地质构造角度对其成因机理进行研究,在利用地脉动测试北京地裂缝发育场地的动力响应研究方面还属于空白,因该方法的应用还未被普及,加上北京多个地裂缝段现场的干扰较大,故尚未开展专门的地脉动现场测试[33]。鉴于此,本文的研究对象选取为北京通州区宋庄地裂缝场地,采用现场踏勘、地脉动测试和动力分析等方法,开展针对性的宋庄地裂缝场地的动力响应研究,以探究地裂缝的存在对场地动力响应的“峰值”及其“卓越频率”所造成的影响,并在此基础上揭示地裂缝发育场地的动力响应规律,以期为宋庄地区场地工程建设和防震减灾工程的设计和规划提供理论依据,同时为其他地裂缝发育区开展此类研究提供借鉴与参考。

    北京平原区地处太行山隆起与燕山隆起和华北断陷盆地相交汇的地带,自新生代以来,该地区主要处于伸展变形的构造环境,地质构造复杂且独特,断裂构造发育。近年来,随着人类工程活动的日益加剧,引发了多起地裂缝灾害[33]

    通州区地裂缝于上世纪60年代开始零星出现,唐山大地震发生后,郎府、西集、宋庄等地都出现了大量的地裂缝,其中以宋庄地裂缝最为典型。宋庄镇地处北京迭断陷与大兴迭隆起相交界的区域,其下伏具有活动迹象的早、中更新世南苑-通县断裂,该断裂带长约110 km,走向NE35~50°,倾向NW,倾角60°~75°,NW盘下降,SE盘上升,为正断层(图1)。断层西北侧震旦亚界埋深400~1000余米,上覆有巨厚的新近系、第四系沉积,而东南侧寒武系及中上元古界埋深仅60~300米,上覆有第四系及少量新近系沉积;对断层附近钻孔岩芯观察,具有明显挤压现象,应属压型断层。宋庄地裂缝于2010年后活动尤为剧烈[34]。经野外调查发现,宋庄地裂缝沿南苑-通县断裂展布,南起小中河在地表呈近直线延伸,经双埠头村、沟渠村、大庞村至平家疃村后向北东方向延伸,长度约8.7 km,整体走向NE31°,倾向NW。该地裂缝以水平拉张破坏为主,地表水平拉张量在2.15~56.7 cm之间,垂直位错量较小,地裂缝影响变形带最宽处达到400 m(图2)。

    图  1  宋庄地裂缝与周边断裂分布图
    Figure  1.  Distribution map of mainly fractures and location of Songzhuang ground fissures
    图  2  宋庄地裂缝致灾示意图
    Figure  2.  Schematic diagram of disaster caused by songzhuang ground fissures

    宋庄地裂缝的地层剖面如图3示,地表以下由粉砂、细砂、粉土、粉质黏土互层组成[35]。在浅表层,地裂缝近直立,地裂缝以偏拉张开裂为主,张开量为1~15 cm;在地下埋深50 m以下的地层开始逐渐出现位错现象,埋深53.2 m处的钻孔岩芯显示,在浅黑灰色砂质粘土层中,发育不连续构造面,构造面倾角64°,且两侧地层颜色不同。总体上分析发现地层上下盘位错量随埋深逐渐增大,地裂缝NW盘地层相对下降,西北侧第四系地层沉积厚度大于东南侧。在宋庄地裂缝影响范围内,致灾最为严重的是双埠头村至大庞村段,据统计,2016年、2018年和2022年地裂缝造成的直接经济损失总值分别为4623.24万元、7033.49万元和10751.14万元,可见地裂缝的影响和破坏在不断加剧[36]

    图  3  宋庄地裂缝浅表部地层剖面图(据赵龙,2018修改)
    Figure  3.  Stratigraphic section of the shallow strata of Songzhuang ground fissure (modified from Zhao Long, 2018)

    地脉动通常是指地表面振动周期在0.05~10s、振幅在千分之几至几微米的微幅振动,是由环境振动在地球表面所产生的复杂随机振动,包括地球内部应力、地震等自然因素及交通等人类活动所引起的振动,并经过不同传波介质和不同场地环境后综合作用于地球表面的结果。目前地脉动研究大致分为两类:一类是常时微动,一般是指周期小于1s的微动,侧重其振幅、周期性与观测点场地分类和振动特性研究;另一类是长波微动,一般是指周期大于1s的微动,研究的重点是由微动提取面波,进而解释推断观测点地下横波波速1s的常时微动,可用以研究地裂缝场地动力响应特性。

    地脉动测试要求的频段范围在0.1~15Hz之间,本次进行地脉动测试所使用的设备是高灵敏度伺服型速度网络地震仪,可满足测试精度要求,主要规格参数见表1

    表  1  选取地震仪的主要技术参数
    Table  1.  Main technical parameters of the Seismic Monitor
    仪器型号 CV-374AV
    动态范围 136 db
    灵敏度 1000 mv/(cm/s)
    通频带 0.1~100 Hz
    测量范围 ±0.02 m/s
    线性 0.03%
    采样频率 100 Hz
    AD分辨频率 24 bit
    下载: 导出CSV 
    | 显示表格

    高灵敏度伺服型速度网络地震仪尺寸为180*120*100 mm,灵敏度较高,在进行地脉动测试时,严格按照操作规程测试,确保测试数据的精确性。为避开不利环境因素和人类活动对地脉动监测结果的影响,选择天气条件良好情况下进行地脉动测试,测试工作选择在凌晨1点至5点期间。

    选择在北京通州区宋庄镇发育较为典型的双埠头村地裂缝段进行地脉动测试,现场布设测点具体原则为:在与主裂缝走向垂直的方向布设2条测线,结合地裂缝的影响带宽度范围,布设长度为60 m的测线,其中,上、下盘长度各设30 m。将地裂缝作为测线的中点,向远离地裂缝的方向进行测点的布设。以上盘为例,首先,在距地裂缝1.5 m处布设第一个测点,再沿测线以3 m为间距布设测点,共布设5个;接着按每隔5 m布设一个测点,共布设3个。因此,所布设测点与地裂缝间的水平距离由近到远设成1.5、3、6、9、12、15、20、25和30 m。下盘测点与上盘对称布设。

    针对地脉动观测各个测点的数据,在稳定波段内以10秒为单位进行波段的截取并通过Pwave32软件将其转换导出为加速度时程曲线,之后应用SeismoSignal软件对数据进行预处理,以得到反应谱曲线、傅里叶谱曲线以及Arias烈度曲线,通过频谱特征分析,进而获得地裂缝场地地脉动响应的加速度幅值、卓越频率、影响范围等场地动力响应特征;通过利用3种从不同角度出发的动力分析方法,对采集并经处理的地脉动数据进行分析,进一步提炼地脉动产生的场地动力特性。

    通过傅里叶谱分析,可以将地脉动加速度时程曲线转换成傅里叶谱曲线,从而得到场地卓越频率和傅里叶谱峰值,通过对不同测点卓越频率和峰值的对比,可得到场地不同区域地脉动响应的分布特征,从而获得地裂缝场地动力响应特征。

    图4图5为双埠头村地裂缝测线上盘和下盘在三个方向上的傅里叶谱图(其中X、Y、Z分别为垂直地裂缝走向方向、平行地裂缝走向方向及和垂直地面方向,下文同),图中各测点的傅里叶谱峰值显著,呈现出多峰的特点。主频带宽度较大,而各测点的卓越频率相对集中,因此其波速的变化没有明显的规律。傅里叶谱图反映出的多峰、谱面积大以及谐波丰富等特征,这与双埠头村地裂缝发育场地中较为松软的粘性土层结构特征相一致。通过对双埠头村地裂缝上下盘的傅里叶谱统计分析,得到该区域地裂缝场地的卓越频率在2.10~4.30 Hz之间浮动。而场地卓越频率的大小和测点距地裂缝的水平距离间的关系并不显著,均值约为3.30 Hz。

    图  4  双埠头村地裂缝上盘不同测点XYZ方向上傅里叶谱
    Figure  4.  Fourier spectra in the XYZ direction at different measurement points on the hanging wall of the ground fissures in Shuangbutou village
    图  5  双埠头村地裂缝下盘不同测点XYZ方向上傅里叶谱
    Figure  5.  Fourier spectra in the XYZ direction at different measurement points on the footwall of the ground fissures in Shuangbutou village

    图6图7为双埠头村地裂缝各测点的傅里叶卓越峰值图。从图中可以看出,在距离地裂缝区域较近的位置,地脉动响应由于地裂缝的存在而出现了显著的放大效应,傅里叶谱峰值与该距离呈负相关关系,距地裂缝的距离越大,峰值越低,在距离较远处曲线趋于平缓,其临界值约在距地裂缝12 m处,傅里叶谱峰值大致保持稳定不变。在距离地裂缝12 m以内的区域,振动的幅值和能量密度相对较高,而在距离地裂缝12米以外的区域,地表振动的幅值和能量密度则相对较低,这种现象表明靠近地裂缝的区域地表振动会比远离地裂缝的区域更强烈。

    图  6  双埠头村地裂缝上盘XYZ方向上傅里叶卓越峰值
    Figure  6.  The peak value of Fourier spectrum of the hanging wall in XYZ directions in Shuangbutou village
    图  7  双埠头村地裂缝下盘XYZ方向上傅里叶卓越峰值
    Figure  7.  The peak value of Fourier spectrum of the footwall in XYZ directions in Shuangbutou village

    图8图9分别为沟渠村地裂缝各测点X、Y、Z三个方向上傅里叶谱峰值与距地裂缝的距离变化关系的散点及曲线图,发现距离地裂缝越远的位置则傅里叶谱峰值越小,直至在较远的位置,曲线逐渐接近平缓;最终在距地裂缝约12 m处,曲线基本保持不变,傅里叶谱峰值趋于一致。通过统计分析,得出沟渠村地裂缝的场地卓越频率在2.30~4.30 Hz范围内变化,卓越频率的高低与测点所在的位置之间没有明显关系,其均值约为3.40 Hz。

    图  8  沟渠村地裂缝上盘XYZ方向上傅里叶卓越峰值
    Figure  8.  The peak value of Fourier spectrum of the hanging wall in XYZ directions in Gouqu village
    图  9  沟渠村地裂缝下盘XYZ方向上傅里叶卓越峰值
    Figure  9.  The peak value of Fourier spectrum of the footwall in XYZ directions in Gouqu village

    通过反应谱分析,可以得到特征周期和相应的反应谱峰值,通过对不同测点特征周期和反应谱峰值的对比,可以得到场地不同区域地脉动响应的分布特征,从而获得地裂缝场地动力响应特征。

    经数据分析得到,双埠头村地裂缝各测点在同一方向上的反应谱谱型均为“单峰型”,且具有主峰突出、频带窄和谱面积小的特点;反应谱卓越周期集中在0.1 s~0.2 s之间,部分卓越周期可达0.3s,此外卓越周期值与地裂缝和测点间的水平距离无明显关系(图1011)。

    图  10  双埠头村地裂缝上盘不同测点XYZ方向上反应谱
    Figure  10.  Response spectrum in the XYZ direction at different measurement points on the hanging wall of the ground fissures in Shuangbutou Village
    图  11  双埠头村地裂缝下盘不同测点XYZ方向上反应谱
    Figure  11.  Response spectrum in the XYZ direction at different measurement points on the footwall of the ground fissures in Shuangbutou Village

    图12图13可得,在距离地裂缝较近处,因地裂缝的存在地脉动响应表现出显著的放大效应,随着与地裂缝距离的增大,地脉动的响应加速度基本不变,在距地裂缝12m处趋于平稳,反应谱峰值基本一致。

    图  12  双埠头村地裂缝上盘XYZ方向上反应谱加速度峰值变化曲线
    Figure  12.  Response spectrum acceleration peak value variation curves in XYZ direction on the hanging wall of the ground fissures in Shuangboutou village
    图  13  双埠头村地裂缝下盘XYZ方向上反应谱加速度峰值变化曲线
    Figure  13.  Variation curves of peak values of reaction spectral acceleration in XYZ direction on the footwall of the ground fissures in Shuangbutou Village

    图14图15可以看出,沟渠村地裂缝各测点在X、Y、Z三个方向的上反应谱加速峰值随与地裂缝间的垂直距离变化,距地裂缝较近的区域的地脉动响应表现出显著的放大效应,且距离地裂缝越远,反应谱峰值越小,直至曲线接近稳定不变,反应谱峰值基本一致。

    图  14  沟渠村地裂缝上盘XYZ方向上反应谱加速度峰值变化曲线
    Figure  14.  Variation Curve of Peak Acceleration in the XYZ Directions of the Response Spectrum on the Hanging Wall of the Ground Fissure in Gouqu Village
    图  15  沟渠村地裂缝下盘XYZ方向上反应谱加速度峰值变化曲线
    Figure  15.  Variation Curve of Peak Acceleration in the XYZ Directions of the Response Spectrum on the Footwall of the Ground Fissure in Gouqu Village

    通过对比双埠头村地裂缝和沟渠村地裂缝反应谱曲线,发现布设在宋庄地裂缝上下盘的测点,在与地裂缝同等距离时,上盘反应谱的峰值均大于下盘,这表明地裂缝的存在使得地裂缝两侧场地的地脉动响应发生了差异变化,存在显著“上盘效应”,且上盘峰值大于下盘。

    Arias烈度是一种目前较为成熟的评判场地地震动响应强弱、反映场地抗震能力和设防标准的方法,通过分析Arias烈度曲线的变化特征进而了解地裂缝场地不同位置的抗震特性,可从场地抗震烈度方面揭示地裂缝对场地的放大效应。

    图16图17分别为双埠头村地裂缝上盘与下盘不同测点的Arias烈度曲线图,图中注释栏“MP”表示监测点。结果表明,Arias烈度呈现出随时间逐渐增长的趋势,但各个测点的增长幅度有所不同,且有着不同的最大值。

    图  16  双埠头村地裂缝上盘不同测点XYZ方向上Arias烈度曲线
    Figure  16.  Arias intensity profiles in the XYZ direction at different measurement points on the hanging wall of the ground fissure in Shuangbutou village
    图  17  双埠头村地裂缝下盘不同测点XYZ方向上Arias烈度曲线
    Figure  17.  Arias intensity profiles in the XYZ direction at different measurement points on the footwall of the ground fissure in Shuangbutou village

    为反映地裂缝对场地不同位置烈度值产生的影响,将双埠头村地裂缝各测点Arias烈度的峰值沿垂直地裂缝走向方向展开,得到上下盘各测点在X、Y、Z三个方向上的Arias烈度峰值随与地裂缝距离变化的散点数据曲线图(图1819)。可见,场地不同位置的烈度值受地裂缝的影响程度也不同。Arias烈度在距离地裂缝较近的区域,其峰值较大,且该烈度值随测点与地裂缝间的距离增大而减小并逐渐趋于稳定,其临界距离为12 m,而临界区域以外的范围受放大效应的影响较小。

    图  18  双埠头村地裂缝上盘XYZ方向上Arias烈度峰值随距离变化曲线
    Figure  18.  Variation curves of peak Arias intensity with distance in the XYZ direction on the hanging wall of the ground fissures in Shuangbutou village
    图  19  双埠头村地裂缝下盘XYZ方向上Arias烈度峰值随距离变化曲线
    Figure  19.  Variation curves of peak Arias intensity with distance in the XYZ direction on the footwall of the ground fissures in Shuangbutou village

    (1)宋庄地裂缝延伸8.7 km,地表破坏以拉张开裂为主,水平拉张量在2.15~56.7 cm之间;其中双埠头村地裂缝的傅里叶卓越频率主要集中在2.10~4.30 Hz之间,反应谱的卓越周期集中在0.1~0.2 s之间;沟渠村地裂缝的傅里叶卓越频率集中在2.30~4.30 Hz之间,反映了地裂缝不同区段活动性的变化。

    (2)通过反应谱分析法、傅里叶谱分析法分析得到,测点的卓越频率无明显的规律性变化;Arias烈度峰值在靠近地裂缝处较大,且随着距离的增大而逐渐减小,在距地裂缝较远的区域趋于平缓。

    (3)宋庄地裂缝场地动力响应在反应谱、傅里叶谱和Arias烈度上都存在明显的“放大效应”,即靠近地裂缝的区域大于远离地裂缝的区域,且该临界距离为距地裂缝12 m。

    (4)宋庄地裂缝场地有着较为显著的“上盘效应”,即距地裂缝相同距离情况下,位于上盘的傅里叶卓越频率、反应谱卓越周期和Arias烈度峰值总大于下盘。

  • 图  1   七盘沟泥石流拦挡防治工程分布图

    注:1#坝顶长181 m,有效坝高20 m,库容73.9×104 m3;2#坝桩40根,总长323 m,库容4.3×104 m3;3#坝顶长94.8 m,有效坝高10 m;4#坝顶长34.5 m,有效坝高10 m,库容1.4×104 m3;5#坝顶长30.7 m,有效坝高10 m,库容3.4×104 m3;排导槽长2351 m。

    Figure  1.   Layout map of blocking dams in Qipan gully

    图  2   七盘沟物源减少途径

    注:a为2013年大规模泥石流前(2008.9.12);b为2013年泥石流冲出量;c为植被固源;d为拦挡结构清淤。

    Figure  2.   Decrease patterns of provenance of debris flow in Qipan gully

    图  3   2005—2019年七盘沟植被覆盖率变化

    Figure  3.   Changes in vegetation coverage in Qipan gully from 2005 to 2019

    图  4   2005—2019年七盘沟物源遥感解译

    Figure  4.   Remote sensing interpretation of materials sources in Qipan gully from 2005 to 2019

    图  5   2019年3月18日无人机测试七盘沟情况

    注:a为沟道物源;b为沟口建筑物情况;c为3#拦挡坝淤埋情况。

    Figure  5.   UAV exploration of Qipan gully on March 18, 2019

    图  6   泥石流物源统计分析图

    Figure  6.   Statistical analysis of vegetation coverage and provenance of debris flow in Qipan gully

    图  7   七盘沟泥石流危险性评价指标体系

    Figure  7.   Risk assessment indicator system for debris flow in Qipan gully

    表  1   七盘沟流域的历史泥石流事件[26]

    Table  1   Historical debris-flow events in the Qipan gully watershed, Wenchuan, China

    日期 降雨强度/mm 泥石流
    类型
    峰值流量
    /(m3·s−1
    持续时间
    /min
    泥石流冲出量
    /(104 m3
    72 h 24 h 1 h 10 min
    1933 黏性 150
    1961-07-06 99.5 79.9 75 60 13.5
    1964-07-23 48.3 41.7 1.2 稀性 65 50 9.1
    1965-07-16 69.5 41.2 65 50 9.9
    1970-07-28 56.5 33.0 60 60 5.8
    1971-07-24 79.4 53.4 62 45 8.4
    1975-07-29 32.5 9.6 3.8 81 40 9.8
    1977-07-07 39.4 7.6 1.6 黏性 65 30 5.8
    1978-07-15 79.5 66.7 36.4 17.0 稀性 90 50 13.5
    1979-08-15 48.0 30.8 6.1 42 30 3.8
    1980-07-26 4.4 65 20 5.4
    1981-08-12 53.8 9.5 2.1 90 25 6.7
    1983-07-19 31.3 8.1 1.7 黏性 50 15 2.3
    2013-07-11 109.6 54.3 6.4 1745 30 78.2
    2017-07-05 18.6 18.5
    2018-08-22 33.4 11.5
    2019-08-20 28.1 15
      注:“—” 指数据缺失。
    下载: 导出CSV

    表  2   七盘沟泥石流危险性因子评价标准及实际值转换

    Table  2   Risk assessment criteria and actual value conversion for debris flow factors in Qipan gully

    评价指标 极低危险(Ⅰ) 较低危险(Ⅱ) 中等危险(Ⅲ) 较高危险(Ⅳ) 极高危险(Ⅴ)
    X1 0~25 25~50 50~100 100~250 250~1000
    X2 0~10 10~20 20~30 30~40 40~60
    X3 0~1 1~5 5~10 10~100 100~700
    X4 0~5 5~10 10~20 20~100 100~150
    X5 0~25 25~50 50~75 50~100 100~500
    X6 0~0.5 0.5~5 5~15 15~35 35~70
    X7 0~1 1~2 2~5 5~10 10~50
    X8 0~0.2 0.2~0.5 0.5~0.7 0.7~1.0 1.0~6.0
    X9 0~2 2~5 5~10 10~20 20~100
    X10 80~100 80~60 60~40 20~40 0~20
    X11 80~100 80~60 60~40 20~40 0~20
    X12 0.8~1 0.6~0.8 0.4~0.6 0.2~0.4 0~0.2
    X13 0.8~1 0.6~0.8 0.4~0.6 0.2~0.4 0~0.2
    X14 0~20 20~50 50~100 100~200 200~3000
      注:X12[37]:新修(Ⅰ);1/3库容(Ⅱ);2/3库容(Ⅲ);淤满(Ⅳ);未修(Ⅴ)。X13[38]:坝基、坝肩、坝体、溢流口未发生损毁, 排水孔不堵塞(Ⅰ);坝基未被淘蚀, 坝肩、坝体、溢流口有较少部分发生损毁,排水孔不堵塞(Ⅱ);坝基未被淘蚀, 坝肩、坝体、溢流口有较少部分发生损毁,排水孔堵塞较少(Ⅲ);坝基被淘蚀,坝体、坝肩发生损毁,排水孔较少部分未堵塞(Ⅳ);极差 坝基被严重淘蚀,坝肩、坝体破坏严重,排水孔全部堵塞(Ⅴ)。
    下载: 导出CSV

    表  3   七盘沟泥石流样本实测值

    Table  3   Measured value of debris flow samples in Qipan gully

    样本 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14
    2005 75 34 5 20 26 54.2 15.2 3.04 2.12 60 0.4 0 0 90
    2008 574 26 8 22 34 54.2 15.2 3.04 2.12 18 0.09 0 0 65
    2011 157 32 8 24 38.3 54.2 15.2 3.04 2.12 24 0.15 0 0 135
    2013 581 54 78.2 25 54.3 54.2 15.2 3.04 2.12 13 0.17 0 0 135
    2018 149 37 11.5 27 33.4 54.2 15.2 3.04 2.12 34 0.30 0.6 0.8 165
    2019 114 33 15 28 28.1 54.2 15.2 3.04 2.12 57 0.37 0.6 0.7 185
    下载: 导出CSV

    表  4   2005—2019年七盘沟泥石流危险性评价结果

    Table  4   Risk assessment results of debris flow in Qipan gully, 2005—2019

    年份危险性评价值危险级别
    20050.00090.00460.22820.10150.0237中等危险
    20080.00020.01260.04890.00110.1572极高危险
    20110.00190.00190.07520.14300.0936较高危险
    20130.00010.00020.02450.13270.1657极高危险
    20180.02350.12800.00000.23660.0006较高危险
    20190.00070.35340.00840.12100.0005较低危险
    下载: 导出CSV
  • [1] 崔鹏,韦方强,何思明,等. 5•12汶川地震诱发的山地灾害及减灾措施[J]. 山地学报,2008,26(3):280 − 282. [CUI Peng,WEI Fangqiang,HE Siming,et al. Mountain disasters induced by the earthquake of May 12 in Wenchuan and the disasters mitigation[J]. Mountain Research,2008,26(3):280 − 282. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1008-2786.2008.03.006

    CUI Peng, WEI Fangqiang, HE Siming, et al. Mountain disasters induced by the earthquake of May 12 in Wenchuan and the disasters mitigation[J]. Mountain Research, 2008, 26(3): 280 − 282. (in Chinese with English abstract) DOI: 10.3969/j.issn.1008-2786.2008.03.006

    [2] 许强. 四川省8•13特大泥石流灾害特点、成因与启示[J]. 工程地质学报,2010,18(5):596 − 608. [XU Qiang. The 13 August 2010 catastrophic debris flows in Sichuan Province:Characteristics,genetic mechanism and suggestions[J]. Journal of Engineering Geology,2010,18(5):596 − 608. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1004-9665.2010.05.002

    XU Qiang. The 13 August 2010 catastrophic debris flows in Sichuan Province: Characteristics, genetic mechanism and suggestions[J]. Journal of Engineering Geology, 2010, 18(5): 596 − 608. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2010.05.002

    [3]

    LI Ning,TANG Chuan,ZHANG Xianzheng,et al. Characteristics of the disastrous debris flow of Chediguan gully in Yinxing Town,Sichuan Province,on August 20,2019[J]. Scientific Reports,2021,11(1):23666. DOI: 10.1038/s41598-021-03125-x

    [4] 陈晓清,崔鹏,李泳,等. 汶川地震后北川干溪沟山地灾害及长期发展趋势初步分析[J]. 四川大学学报(工程科学版),2010,42(增刊1):22 − 32. [CHEN Xiaoqing,CUI Peng,LI,Yong,et al. Mountain Hazard Induced by Wenchuan Earthquake and its long-term development trends of Ganxi Gully,Beichuan[J]. Journal of Sichuan University (Engineering Science Edition),2010,42(Sup 1):22 − 32. (in Chinese with English abstract]

    CHEN Xiaoqing, CUI Peng, LI, Yong, et al. Mountain Hazard Induced by Wenchuan Earthquake and its long-term development trends of Ganxi Gully, Beichuan[J]. Journal of Sichuan University (Engineering Science Edition), 2010, 42(Sup 1): 22 − 32. (in Chinese with English abstract

    [5] 黄润秋. 汶川地震地质灾害后效应分析[J]. 工程地质学报,2011,19(2):145 − 151. [HUANG Runqiu. After effect of geohazards induced by the Wenchuan earthquake[J]. Journal of Engineering Geology,2011,19(2):145 − 151. (in Chinese)] DOI: 10.3969/j.issn.1004-9665.2011.02.001

    HUANG Runqiu. After effect of geohazards induced by the Wenchuan earthquake[J]. Journal of Engineering Geology, 2011, 19(2): 145 − 151. (in Chinese) DOI: 10.3969/j.issn.1004-9665.2011.02.001

    [6]

    FAN Xuanmei,SCARINGI G,DOMÈNECH G,et al. Two multi-temporal datasets that track the enhanced landsliding after the 2008 Wenchuan earthquake[J]. Earth System Science Data,2019,11(1):35 − 55. DOI: 10.5194/essd-11-35-2019

    [7]

    YANG Wentao,QI Wenwen,ZHOU Jinxing. Decreased post-seismic landslides linked to vegetation recovery after the 2008 Wenchuan earthquake[J]. Ecological Indicators,2018,89:438 − 444. DOI: 10.1016/j.ecolind.2017.12.006

    [8]

    FAN R L,ZHANG L M,WANG H J,et al. Evolution of debris flow activities in Gaojiagou Ravine during 2008–2016 after the Wenchuan earthquake[J]. Engineering Geology,2018,235:1 − 10. DOI: 10.1016/j.enggeo.2018.01.017

    [9]

    CHEN M,TANG C,XIONG J,et al. The long-term evolution of landslide activity near the epicentral area of the 2008 Wenchuan earthquake in China[J]. Geomorphology,2020,367:107317. DOI: 10.1016/j.geomorph.2020.107317

    [10]

    FAN Xuanmei,DOMÈNECH G,SCARINGI G,et al. Spatio-temporal evolution of mass wasting after the 2008 Mw 7.9 Wenchuan earthquake revealed by a detailed multi-temporal inventory[J]. Landslides,2018,15(12):2325 − 2341. DOI: 10.1007/s10346-018-1054-5

    [11]

    LIU Jinfeng,YOU Yong,CHEN Xiaoqing,et al. Mitigation planning based on the prediction of river blocking by a typical large-scale debris flow in the Wenchuan earthquake area[J]. Landslides,2016,13(5):1231 − 1242. DOI: 10.1007/s10346-015-0615-0

    [12] 眭海刚,刘超贤,刘俊怡,等. 典型自然灾害遥感快速应急响应的思考与实践[J]. 武汉大学学报(信息科学版),2020,45(8):1137 − 1145. [SUI Haigang,LIU Chaoxian,LIU Junyi,et al. Reflection and exploration of rapid remote sensing emergency response for typical natural disasters[J]. Geomatics and Information Science of Wuhan University,2020,45(8):1137 − 1145. (in Chinese with English abstract)]

    SUI Haigang, LIU Chaoxian, LIU Junyi, et al. Reflection and exploration of rapid remote sensing emergency response for typical natural disasters[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1137 − 1145. (in Chinese with English abstract)

    [13]

    TANG Chenxiao,LIU Xinlei,CAI Yinghua,et al. Monitoring of the reconstruction process in a high mountainous area affected by a major earthquake and subsequent hazards[J]. Natural Hazards and Earth System Sciences,2020,20(4):1163 − 1186. DOI: 10.5194/nhess-20-1163-2020

    [14]

    CUI Peng,XIANG Lingzhi,ZOU Qiang. Risk assessment of highways affected by debris flows in Wenchuan earthquake area[J]. Journal of Mountain Science,2013,10(2):173 − 189. DOI: 10.1007/s11629-013-2575-y

    [15] 侯圣山,曹鹏,陈亮,等. 基于数值模拟的耳阳河流域泥石流灾害危险性评价[J]. 水文地质工程地质,2021,48(2):143 − 151. [HOU Shengshan,CAO Peng,CHEN Liang,et al. Debris flow hazard assessment of the Eryang River watershed based on numerical simulation[J]. Hydrogeology & Engineering Geology,2021,48(2):143 − 151. (in Chinese with English abstract)]

    HOU Shengshan, CAO Peng, CHEN Liang, et al. Debris flow hazard assessment of the Eryang River watershed based on numerical simulation[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 143 − 151. (in Chinese with English abstract)

    [16] 李永威,徐林荣,谷丰宇,等. 孕灾环境对泥石流危险性影响[J/OL]. 地球科学,2022:1 − 12. (2022-03-01)[2024-01-20]. https://kns.cnki.net/kcms/detail/42.1874.P.20220228.1828.004.html. [LI Yongwei,XU Linrong,GU Fengyu,et al. Influence of disaster-prone environment on debris flow risk[J/OL]. Earth Science,2022:1 − 12. (2022-03-01)[2024-01-20]. https://kns.cnki.net/kcms/detail/42.1874.P.20220228.1828.004.html. (in Chinese with English abstract)]

    LI Yongwei, XU Linrong, GU Fengyu, et al. Influence of disaster-prone environment on debris flow risk[J/OL]. Earth Science, 2022: 1 − 12. (2022-03-01)[2024-01-20]. https://kns.cnki.net/kcms/detail/42.1874.P.20220228.1828.004.html. (in Chinese with English abstract)

    [17] 殷启睿,苏娜. 基于DEA冗余分析的泥石流危险度评价[J]. 中国地质灾害与防治学报,2020,31(3):30 − 34. [YIN Qirui,SU Na. Debris-flow risk assessment based on DEA redundancy analysis[J]. The Chinese Journal of Geological Hazard and Control,2020,31(3):30 − 34. (in Chinese with English abstract)]

    YIN Qirui, SU Na. Debris-flow risk assessment based on DEA redundancy analysis[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(3): 30 − 34. (in Chinese with English abstract)

    [18] 周亮,何晓英,晋云超,等. 泥石流拦挡坝工程服役性能特征分析——以甘肃省陇南市武都区为例[J]. 中国地质灾害与防治学报,2023,34(6):37 − 46. [ZHOU Liang,HE Xiaoying,JIN Yunchao,et al. Analysis of service performance characteristics of debris flow check dams:A case study in Wudu District,Longnan City,Gansu Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(6):37 − 46. (in Chinese with English abstract)]

    ZHOU Liang, HE Xiaoying, JIN Yunchao, et al. Analysis of service performance characteristics of debris flow check dams: A case study in Wudu District, Longnan City, Gansu Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(6): 37 − 46. (in Chinese with English abstract)

    [19] 龙玉洁,李为乐,黄润秋,等. 汶川地震震后10 a绵远河流域滑坡遥感自动提取与演化趋势分析[J]. 武汉大学学报(信息科学版),2020,45(11):1792 − 1800. [LONG Yujie,LI Weile,HUANG Runqiu,et al. Automatic extraction and evolution trend analysis of landslides in Mianyuan River Basin in the 10 years after Wenchuan earthquake[J]. Geomatics and Information Science of Wuhan University,2020,45(11):1792 − 1800. (in Chinese with English abstract)]

    LONG Yujie, LI Weile, HUANG Runqiu, et al. Automatic extraction and evolution trend analysis of landslides in Mianyuan River Basin in the 10 years after Wenchuan earthquake[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1792 − 1800. (in Chinese with English abstract)

    [20] 李志,陈宁生,侯儒宁,等. 基于机器学习的伊犁河谷黄土区泥石流易发性评估[J]. 中国地质灾害与防治学报,2024,35(3):129 − 140. [LI Zhi,CHEN Ningsheng,HOU Runing,et al. Susceptibility assessment of debris flow disaster based on machine learning models in the loess area along Yili Valley[J]. The Chinese Journal of Geological Hazard and Control,2024,35(3):129 − 140. (in Chinese with English abstract)]

    LI Zhi, CHEN Ningsheng, HOU Runing, et al. Susceptibility assessment of debris flow disaster based on machine learning models in the loess area along Yili Valley[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 129 − 140. (in Chinese with English abstract)

    [21] 汪明武,王霄,龙静云,等. 基于多维联系正态云模型的泥石流危险性评价[J]. 应用基础与工程科学学报,2021,29(2):368 − 375. [WANG Mingwu,WANG Xiao,LONG Jingyun,et al. Risk assessment of debris flow based on multidimensional connection normal cloud model[J]. Journal of Basic Science and Engineering,2021,29(2):368 − 375. (in Chinese with English abstract)]

    WANG Mingwu, WANG Xiao, LONG Jingyun, et al. Risk assessment of debris flow based on multidimensional connection normal cloud model[J]. Journal of Basic Science and Engineering, 2021, 29(2): 368 − 375. (in Chinese with English abstract)

    [22] 严惊涛,刘树光. 基于组合赋权的对地攻击无人机自主能力云模型评价[J]. 北京航空航天大学学报,2023,49(12):3500 − 3510. [YAN Jingtao,LIU Shuguang. Combination weighting based cloud model evaluation of autonomous capability of ground-attack UAV[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3500 − 3510. (in Chinese with English abstract)]

    YAN Jingtao, LIU Shuguang. Combination weighting based cloud model evaluation of autonomous capability of ground-attack UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(12): 3500 − 3510. (in Chinese with English abstract)

    [23] 曾超,崔鹏,葛永刚,等. 四川汶川七盘沟“7•11” 泥石流破坏建筑物的特征与力学模型[J]. 地球科学与环境学报,2014,36(2):81 − 91. [ZENG Chao,CUI Peng,GE Yonggang,et al. Characteristics and mechanism of buildings damaged by debris flows on 11 July,2013 in qipangou of Wenchuan,Sichuan[J]. Journal of Earth Sciences and Environment,2014,36(2):81 − 91. (in Chinese with English abstract)]

    ZENG Chao, CUI Peng, GE Yonggang, et al. Characteristics and mechanism of buildings damaged by debris flows on 11 July, 2013 in qipangou of Wenchuan, Sichuan[J]. Journal of Earth Sciences and Environment, 2014, 36(2): 81 − 91. (in Chinese with English abstract)

    [24]

    HU Tao,HUANG Runqiu. A catastrophic debris flow in the Wenchuan Earthquake area,July 2013:Characteristics,formation,and risk reduction[J]. Journal of Mountain Science,2017,14(1):15 − 30. DOI: 10.1007/s11629-016-3965-8

    [25] 袁亚东. 强震区“宽缓” 型沟道物源起动机理及动储量评价研究——以七盘沟为例[D]. 绵阳:西南科技大学,2020. [YUAN Yadong. Study on provenance starting mechanism and dynamic reserve evaluation of “wide and slow” channel in strong earthquake area:Taking Qipangou as an example[D]. Mianyang:Southwest University of Science and Technology,2020. (in Chinese with English abstract)]

    YUAN Yadong. Study on provenance starting mechanism and dynamic reserve evaluation of “wide and slow” channel in strong earthquake area: Taking Qipangou as an example[D]. Mianyang: Southwest University of Science and Technology, 2020. (in Chinese with English abstract)

    [26]

    HU Xudong,YANG Feng,HU Kaiheng,et al. Estimating the debris-flow magnitude using landslide sediment connectivity,Qipan catchment,Wenchuan County,China[J]. Catena,2023,220:106689. DOI: 10.1016/j.catena.2022.106689

    [27] 七盘沟泥石流勘查报告[R]. 四川:四川省蜀通岩土工程公司,2013 [Investigation of emergency actions to mitigate debris flow hazards in the Qipan Gully, Wenchuan County, Aba Prefecture, Sichuan Province[R]. Sichuan: Sichuan Shutong geotechnical engineering company,2013. (in Chinese)]

    Investigation of emergency actions to mitigate debris flow hazards in the Qipan Gully, Wenchuan County, Aba Prefecture, Sichuan Province[R]. Sichuan: Sichuan Shutong geotechnical engineering company, 2013. (in Chinese)

    [28] 张伟 , 吴鄂, 刘宁鉴. 七盘沟滑坡泥石流勘查报告[R]. 四川:四川省华地建设工程有限责任公司. 2008. [ZHANG Wei, WU E, LIU Ningjian. Field investigation report on emergency management project of landslide and debris flow in the Qipan gully in Wenchuan county,Aba Prefecture,Sichuan Province[R]. the Sichuan Huadi Construction Engineering Co. Ltd,2008. (in Chinese)]

    ZHANG Wei, WU E, LIU Ningjian. Field investigation report on emergency management project of landslide and debris flow in the Qipan gully in Wenchuan county, Aba Prefecture, Sichuan Province[R]. the Sichuan Huadi Construction Engineering Co. Ltd, 2008. (in Chinese)

    [29]

    SHI Qingyun,TANG Chuan,GONG Lingfeng,et al. Activity evolution of landslides and debris flows after the Wenchuan earthquake in the Qipan catchment,Southwest China[J]. Journal of Mountain Science,2021,18(4):932 − 951. DOI: 10.1007/s11629-020-6494-4

    [30] 李敬强,樊天辰,周妍汝,等. 基于云模型的民航监察员队伍能力综合评价[J]. 北京航空航天大学学报,2022,48(12):2425 − 2433. [LI Jingqiang,FAN Tianchen,ZHOU Yanru,et al. Comprehensive evaluation on capability of civil aviation supervisor team based on cloud model[J]. Journal of Beijing University of Aeronautics and Astronautics,2022,48(12):2425 − 2433. (in Chinese with English abstract)]

    LI Jingqiang, FAN Tianchen, ZHOU Yanru, et al. Comprehensive evaluation on capability of civil aviation supervisor team based on cloud model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2425 − 2433. (in Chinese with English abstract)

    [31]

    YANG Fan,FAN Xuanmei,SIVA SUBRAMANIAN S,et al. Catastrophic debris flows triggered by the 20 August 2019 rainfall,a decade since the Wenchuan earthquake,China[J]. Landslides,2021,18(9):3197 − 3212. DOI: 10.1007/s10346-021-01713-6

    [32]

    ZHU Jing,TANG Chuan,CHANG Ming,et al. Field observations of the disastrous 11 July 2013 debris flows in qipan gully,Wenchuan area,southwestern China[C]//Engineering Geology for Society and Territory - Volume 2. Cham:Springer International Publishing,2015:531 − 535.

    [33]

    CHEN Ming,TANG Chuan,LI Mingwei,et al. Changes of surface recovery at coseismic landslides and their driving factors in the Wenchuan earthquake-affected area[J]. Catena,2022,210:105871. DOI: 10.1016/j.catena.2021.105871

    [34]

    ZHANG Xianzheng,TANG Chenxiao,LI Ning,et al. Investigation of the 2019 Wenchuan County debris flow disaster suggests nonuniform spatial and temporal post-seismic debris flow evolution patterns[J]. Landslides,2022,19(8):1935 − 1956. DOI: 10.1007/s10346-022-01896-6

    [35]

    GUZZETTI F,ARDIZZONE F,CARDINALI M,et al. Distribution of landslides in the upper Tiber River Basin,central Italy[J]. Geomorphology,2008,96(1/2):105 − 122.

    [36] 叶小兵. 强震区震后泥石流坡面物源起动机制研究[D]. 绵阳:西南科技大学,2020. [YE Xiaobing. Study on provenance starting mechanism of debris flow slope after earthquake in strong earthquake area[D]. Mianyang:Southwest University of Science and Technology,2020. (in Chinese with English abstract)]

    YE Xiaobing. Study on provenance starting mechanism of debris flow slope after earthquake in strong earthquake area[D]. Mianyang: Southwest University of Science and Technology, 2020. (in Chinese with English abstract)

    [37] 王念秦,韩波,庞琦,等. 泥石流防治工程效果后评价初探[J]. 工程地质学报,2015,23(2):219 − 226. [WANG Nianqin,HAN Bo,PANG Qi,et al. Post-evaluation model on effectiveness of debris flow control[J]. Journal of Engineering Geology,2015,23(2):219 − 226. (in Chinese with English abstract)]

    WANG Nianqin, HAN Bo, PANG Qi, et al. Post-evaluation model on effectiveness of debris flow control[J]. Journal of Engineering Geology, 2015, 23(2): 219 − 226. (in Chinese with English abstract)

    [38] 张文涛,柳金峰,游勇,等. 泥石流防治工程损毁度评价——以汶川地区为例[J]. 中国地质灾害与防治学报,2022,33(4):77 − 83. [ZHANG Wentao,LIU Jinfeng,YOU Yong,et al. Damage evaluation of control works against debris flow:A case study in Wenchuan area[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):77 − 83. (in Chinese with English abstract)]

    ZHANG Wentao, LIU Jinfeng, YOU Yong, et al. Damage evaluation of control works against debris flow: A case study in Wenchuan area[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 77 − 83. (in Chinese with English abstract)

图(7)  /  表(4)
计量
  • 文章访问数:  344
  • HTML全文浏览量:  12
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-07
  • 修回日期:  2023-12-10
  • 录用日期:  2024-12-30
  • 网络出版日期:  2025-01-03
  • 刊出日期:  2025-02-24

目录

/

返回文章
返回