ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

云南德钦县一中河泥石流成灾特征及危险性评价

宋银, 陈亮, 王研, 何清, 杨林, 巴净慧, 陈典

宋银,陈亮,王研,等. 云南德钦县一中河泥石流成灾特征及危险性评价[J]. 中国地质灾害与防治学报,2024,35(5): 103-109. DOI: 10.16031/j.cnki.issn.1003-8035.202307040
引用本文: 宋银,陈亮,王研,等. 云南德钦县一中河泥石流成灾特征及危险性评价[J]. 中国地质灾害与防治学报,2024,35(5): 103-109. DOI: 10.16031/j.cnki.issn.1003-8035.202307040
SONG Yin,CHEN Liang,WANG Yan,et al. Formation mechanism and hazard assessment of debris flow in Yizhong River, Deqin County, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2024,35(5): 103-109. DOI: 10.16031/j.cnki.issn.1003-8035.202307040
Citation: SONG Yin,CHEN Liang,WANG Yan,et al. Formation mechanism and hazard assessment of debris flow in Yizhong River, Deqin County, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2024,35(5): 103-109. DOI: 10.16031/j.cnki.issn.1003-8035.202307040

云南德钦县一中河泥石流成灾特征及危险性评价

详细信息
    作者简介:

    宋 银(1994—),男,江西宜春人,硕士,工程师,主要从事地质灾害防治工作。E-mail:473828258@qq.com

    通讯作者:

    陈 亮(1992—),男,江西赣州人,硕士,工程师,主要从事水工环地质工作。E-mail:1091337873@qq.com

  • 中图分类号: P642.23

Formation mechanism and hazard assessment of debris flow in Yizhong River, Deqin County, Yunnan Province

  • 摘要:

    云南省德钦县是我国遭受泥石流灾害最严重的地区之一。德钦县一中河曾多次暴发大规模的泥石流灾害,对沟口处居民区及G214国道造成严重破坏和巨大经济损失。为探明一中河上游源区潜在物源在暴雨+地震工况下形成泥石流灾害的危险区范围和启动机制,在现场调查和成因分析的基础上,以无人机贴近摄影成果高精度的DEM为地形数据,运用RAMMS软件对暴雨+地震工况下体积为16.05×104 m3的泥石流进行模拟,划定了一中河流域内两处危险区,并阐述了一中河泥石流灾害成灾模式。研究结果表明:一中河泥石流属于高原山区沟谷型黏性泥石流,具有规模大、高易发、危害大的特点,其成灾机制概括为高位崩滑体-碎屑流-泥石流-堰塞湖-溃决洪水的沟谷灾害链;危险区Ⅰ位于G214国道至德维路区域,危险区Ⅱ为沟口区域,此区域易发生堆积和堵塞,危险性极高;泥石流运动过程中最大流速达23.93 m/s,最大冲击力为1000 kPa,最大堆积深度为9.33 m,泥石流一次最大冲出体积约8×104 m3,危险区范围约0.31 km2。结果可为一中河泥石流治理工程提供科学依据,对德钦县地质灾害综合防治能力提升具有重要实际意义。

    Abstract:

    Deqin County in Yunnan Province is among the most severely affected regions in China by debris flow disasters. The Yizhong River in Deqin County has witnessed numerous large-scale debris flow disasters, causing significant damage and substantial economic losses to residential areas and the G214 national road. To elucidate the range of hazard zones and initiation mechanisms of debris flow disaster triggered by potential sources in the upstream Yizhong River under conditions of heavy rainfall and earthquakes, this study conducted field investigations and causal analyses. High-precision Digital Elevation Model (DEM) data derived from close-range UAV aerial photography were utilized as topographic data. The RAMMS software simulated a debris flow of 16.05×104 m3 under heavy rain and earthquake conditions. Two hazardous zones within the Yizhong River Basin were delineated, and the disaster initiation mode of debris flow in Yizhong River was expounded. The results show that the debris flow in Yizhong River belongs to the gully-type viscous debris flow typical of plateau mountainous regions, characterized by large scale, high frequency, and severe impact. Its disaster mechanism is summarized as a gully and valley disaster chain involving high-altitude landslide, debris flow, dammed lake, and flood breach. Risk zone I is located in the area from G214 national road to Dewei Road, while risk zone II is in the gully mouth area prone to accumulation and blockage, presenting high risk. During debris flow movement, the maximum flow velocity reached 23.93 m/s, maximum impact force was 1000 kPa, maximum accumulation depth was 9.33 m, and the maximum single outburst volume of debris flow was approximately 80000 m3, with a danger area of about 0.31 km2. The research results provide a scientific basis for debris flow control projects in Yizhong River and are of practical significance for improving the comprehensive prevention and control of geological hazards in Deqin County.

  • 泥石流是我国西南山区常见的一种地质灾害之一,具有突发性、危害范围广、破坏性大等特点[13]。德钦县是泥石流发育最严重的地区之一,泥石流暴发常会造成县城区公路及民房建筑冲毁,给当地居民带来巨大的经济损失。

    近年来,数值模拟方法在泥石流灾害分析预测研究中应用越来越广泛[4]。王俊豪等[5]运用 FLO2D 软件模拟德钦县直溪河泥石流不同暴雨周期下运动情况,并预测泥石流的致灾范围;宋兵等[6]利用 RAMMS 软件模拟白沙沟泥石流20年一遇泥石流流量,预测不同洪水频率下的运动状况。熊冲冲等[7]利用 RAMMS 软件对锄头沟泥石流进行模拟,得到泥石流运动参数特征;段学良等[8]运用 MASSFLOW 软件模拟杰仲沟极端条件下泥石流灾害的运动过程,并评价其危险性。因此,运用数值模拟分析方法预测泥石流的危险区范围,对泥石流防治工程因害设防具有重要的意义。

    目前,对于一中河泥石流的动力学特征进行数值模拟的研究较少,多为传统的地面调查方法和定性评价。为查清一中河上游源区潜在物源在暴雨+地震极端工况下形成泥石流灾害的影响范围和成灾机制,本文利用无人机贴近摄影高精度DEM作为地形数据,运用RAMMS软件模拟了一中河泥石流的运动过程,预测并评价其危险性及范围,对于今后一中河泥石流防灾减灾工程具有实际意义。

    德钦县位于滇西北地区,地处横断山区纵谷地带,属于典型的高山峡谷地貌。一中河位于德钦县升平镇,为芝曲河左岸一级支沟。沟口分布有德钦县第一中学、县委政府及公租房小区,G214国道和德维公路多次穿越泥石流沟流通区。一中河泥石流属于高原山区沟谷型黏性泥石流,具有规模大、高易发、危害大的特点。2019—2022年汛期曾多次发生泥石流灾害,对G214国道和沟口建筑造成严重影响。

    研究区经历了漫长的地质演变时期,构造行迹复杂,地震活跃,属于典型的高寒、高海拔、高烈度地区。流域内主要分布灰色、深灰色板岩、变质石英砂岩、硅质岩夹流纹岩。区域内活动构造运动发育,主要受第四系活动断裂德钦—中甸大断裂(F3)和鲁村东断裂(F4)影响较大(图1)。受活动断裂及次级断裂影响,岸坡岩体结构破碎,节理裂隙发育,变质作用强烈。在短时集中降雨即暴雨时期,一中河就会暴发大小规模不等的泥石流灾害。

    图  1  研究区位置及断裂分布图
    Figure  1.  Location of the study area and distribution of faults

    一中河流域平面形态为树叶状,呈东西向展布,表现为东高西低。流域面积约3.33 km2,主沟长2.58 km。最高点为4540 m,最低点为3066 m,相对高差1474 m,沟床纵坡189.80‰~765.70‰,沟域整体为冰蚀槽谷地形,沟域内相对高差大,沟谷纵坡大。一中河流域全貌如图2所示。形成区由南、北支沟组成,汇水面积仅0.45 km2,海拔介于43903314 m,高差1076 m,该段沟长1.99 km,平均纵坡为765.70‰。流通区平均纵坡为282.40‰,堆积区平均纵坡为189.80‰(图3)。沟床呈深“V”型,宽1.0~5.0 m,岸坡坡度30°~80°。由于上游源区未设工程,沟床纵坡降大,地表径流条件良好,坡面侵蚀作用强烈,裸坡区松散岩体崩塌剥落发育,为泥石流活动提供了持续的固体物源。

    图  2  一中河流域全貌图
    Figure  2.  Full overview of Yizhong River Basin
    图  3  一中河泥石流沟A—A'纵剖面图
    Figure  3.  Longitudinal profile of A—A' section of Yizhong River debris flow gully

    区内水文地质条件复杂,主要为孔隙水和裂隙水,以面状散流或泉的形式出露于基岩陡坎处。区内主要接受大气降雨补给。一中河属高寒山区季节性河流,年流量变化较大,流量0.1~5 m3/s。根据资料统计,德钦县全年平均降雨量640 mm,降雨主要集中在5—10月。最大日降雨量为74.7 mm,最大5 min降雨达7.1 mm,具有短时集中强降雨的特点。暴雨为泥石流活动提供良好的水动力条件,是一中河泥石流灾害的主要激发因素[9]

    目前,通过采用无人机贴近摄影-InSAR边坡雷达监测-地面绳桥勘测的调查技术,基本查清了一中河流域内地质灾害隐患、泥石流物源分布以及高位崩滑体的地质结构与变形特征。岸坡岩体受到风化、冻融和降雨等外动力地质作用影响,形成了多处高陡危岩带,为泥石流形成提供了丰富的固体物源。一中河泥石流物源主要包括冰碛物、滑坡、危岩崩塌、沟床堆积物、沟岸坍塌和坡面侵蚀物源,沟床堆积物为主要物源。根据此次调查,初步估算一中河泥石流松散固体物源储量约为1.141 2×106 m3,可移储量约25.23×104 m3,一次最大可移动储量约2.34×104 m3。一中河泥石流物源统计见表1

    表  1  一中河泥石流物源统计表
    Table  1.  Statistical table of sources of Yizhong River debris flow
    物源类型 冰碛物 滑坡 危岩崩塌 沟床堆积物 沟岸坍塌 坡面侵蚀 合计
    面积/(104 m2 4.0 4.30 10.94 1.24 0.30 31.20 51.98
    体积/(104 m3 30.0 40.12 27.25 3.70 0.80 12.25 114.12
    可移储量/(104 m3 2.75 9.52 8.98 1.95 0.80 1.23 25.23
    一次最大可移储量/(104 m3 0.14 0.55 0.90 0.39 0.24 0.12 2.34
    下载: 导出CSV 
    | 显示表格

    一中河泥石流具有高海拔高纵坡降特性,属于典型的高原山区暴雨沟谷型黏性泥石流,泥石流运动分区特征明显[10]。根据一中河沟谷的地形、水流条件和物源的分布特征,可分为泥石流的形成区、流通区和堆积区,如图2所示。此外,一中河泥石流运动学特征具有明显的链式规律,一般按高程从高到低可分为:高位启动区、惯性加速区、动力侵蚀区和流通堆积区[11]。其中,高位启动区为跌水坎以上基岩裸坡区,发育多个高位崩滑体,因位置高而具有较大的势能。跌水坎以下至G214国道处为惯性加速区和动力侵蚀区,以侧向侵蚀、铲刮作用为主,多发育岸坡塌滑和坡面侵蚀。G214国道以下至沟口为流通堆积区。

    2022年汛期暴发了5次泥石流,每次持续时间30~50 min。通过调查发灾时的泥石流流体情况,现场测得泥石流容重为2.2 t/m3,龙头高达2.5 m,弯道超高达1.2 m,泥石流一次最大冲出量达20000 m3,堆积物多为卵砾石,无分选,磨圆度差。在G214国道以下的桥洞渡槽易发生堵塞。一中河泥石流暴发特点为历时短、流速快,堵塞严重,弯道超高和龙头较高,具有阵性,沿途揭底拉槽现象明显,铲刮作用强烈,规模不断补给壮大。

    根据一中河泥石流不同物源条件和启动机制分类,可分为三种成因类型(图4):一是暴雨型泥石流,松散堆积层在短时集中降雨工况下,地表径流易形成暴雨型泥石流;二是溃决型泥石流,由于一中河沟谷侵蚀切割较深,岸坡岩体易发生坍塌堵塞沟道,演变为溃决型泥石流;三是崩滑流型泥石流,上游源区发育高位危岩带及崩滑体,在暴雨+地震极端工况下,可能发生高位岩体崩滑-碎屑流-泥石流链式灾害[1216]

    图  4  一中河泥石流启动机制
    Figure  4.  Starting mechanism of Yizhong River debris flow

    综合上述三种类型的泥石流启动机制,根据一中河泥石流高位崩滑体的失稳机理、分布位置、启动特征等,对沟域内提供物源的链式灾害进行分析,归纳其成灾机制为高位崩滑体-碎屑流-泥石流-堰塞湖-溃决洪水的沟谷灾害链(图5)。在暴雨+地震极端工况下,发生此类链式灾害的风险极大。崩滑体位于流域的顶部,具有较大的势能,失稳碰撞解体后转化为碎屑流,以较高的速度冲向下游。一中河频繁暴发的泥石流侵蚀冲刷坡脚,导致沟岸坡体失稳,汇入沟道转化为泥石流。泥石流运动过程中不断铲刮沿程碎屑物质,补给固体物源,从而壮大泥石流的规模,这样不仅改变了流体性质和运动特征,而且急剧增加了暴发泥石流链式灾害的可能性[17]

    图  5  一中河泥石流灾害成灾机制示意图
    Figure  5.  Schematic diagram of disaster mechanism of Yizhong River debris flow

    RAMMS软件中泥石流模块能够较好地模拟泥石流的运动过程,获得最大流速、堆积深度和冲击力等动力学特征参数[18]。经研究表明,泥石流运动过程中会受各种因素影响而改变流体的性质。考虑到泥石流运动过程中固体颗粒之间的摩擦阻力,本文采用Voellmy流变模型,该模型是基于Voellmy摩擦流变学。模型如下:

    $$ S = \mu N + \frac{{\rho g{u^2}}}{\varepsilon } $$ (1)

    式中:S——摩擦阻力/Pa;

    u——流速/(m·s−1);

    ρ——密度/(kg·m−3);

    g——重力加速度/(m·s−2);

    μ——摩擦系数;

    ε——湍流系数/(m·s−2);

    N——正应力/Pa。

    摩擦系数反映流动的行为。摩擦系数(μ)决定了流体开始停止流动的时刻,湍流系数(ε)决定了流体快速流动的时刻[1920]。该模型被广泛用于模拟山区沟谷型泥石流的运动过程。为预测一中河上游源区潜在高位崩滑体失稳后沿途铲刮形成泥石流链式灾害的危险性,本次模拟工况采取暴雨+地震的极端工况,设计暴雨频率为1%,地震强度为Ⅷ级。地震为上游潜在高位崩滑体失稳并参与泥石流活动提供必要条件。

    前人研究表明,Voellmy模型μ取值范围为0.1~0.3,ε取值范围为150~250 m/s2。通过多次与已发生泥石流灾害对比,本文选取模拟参数μ=0.1,ε=200 m/s2ρ2200 kg/m3,物源体积为16.05×104 m3。泥石流正应力(N)为软件自动计算,随着泥石流流体厚度的增加而增大。

    根据初步估算一中河流域上游源区潜在物源体积为16.05×104 m3,对此进行暴雨+地震极端工况下泥石流运动过程模拟预测,历时t=2135 s,并分析其影响范围和危险性。泥石流运动过程中最大流速、最大堆积深度和最大冲击力分布,如图6所示。

    图  6  暴雨+地震极端工况下一中河泥石流模拟结果
    Figure  6.  Simulation results of Yizhong River debris flow under extreme conditions of heavy rainfall and earthquake

    由模拟结果可知,泥石流流速、堆积深度和冲击力等变化特征主要受地形影响,泥石流堆积呈不规则扇形,总体表现出冲刷-淤积-运动-堆积的特点。在暴雨+地震极端工况下一中河泥石流最大流动速度达23.93 m/s,最大堆积深度达9.33 m,最大冲击力为1000 kPa。经过拦挡坝之后,运动速度并没有明显减小,从G214国道处以8~15 m/s的速度冲向下游,沿途泥石流漫槽,在沟口形成宽度约300 m的堆积扇,泥石流冲出体积约8×104 m3

    由于G214国道以下渡槽的排导能力有限,泥石流会漫出渡槽,运动至下游沟口时会冲进县城区,致灾影响范围较大。将对下游居民区、德钦一中和县政府等地区造成巨大的威胁,并且随着泥石流物源增加,泥石流影响范围和冲出量也不断扩大,甚至可能堵塞芝曲河。

    结合泥石流现场调查情况,通过对暴雨+地震极端工况下一中河泥石流运动过程的模拟,得到泥石流运动速度、堆积深度和冲击力等动力学参数分布特征,总体表现出冲刷-淤积-运动-堆积的规律,预测并划定了两处危险区,如图7所示。

    图  7  一中河泥石流危险区范围
    Figure  7.  Risk zone of Yizhong River debris flow

    危险区Ⅰ位于G214国道至德维路区域,此处沟道变窄,泥石流流动速度较大,渡槽及涵洞易发生堵塞和漫槽现象,影响范围约0.13 km2

    危险区Ⅱ位于沟口区域,此处弯道较多,易发生堆积,影响范围约0.18 km2。因此,在暴雨+地震极端工况下,此区域危险性较高,须提高G214国道下游渡槽的排导能力,应采取有效的工程防治措施。

    (1)G214国道在流通区穿过,危险区Ⅰ位于国道至德维路区域,此处沟道变窄,流速较大,破坏力强。最大流速达23.93 m/s,最大冲击力为1000 kPa。影响范围达0.13 km2。泥石流冲出的泥砂砾石会造成国道被冲埋。因此,提高G214国道以下渡槽的排导能力为首要工作。

    (2)危险区Ⅱ为沟口区域,此区建筑物较集中,涉及德钦县第一中学、县委政府和公租房小区等地区。泥石流沟口处弯道较多,且此区域易发生堆积,最大泥深为9.33 m,泥石流冲出体积约8×104 m3,影响范围达0.18 km2。应加强对渡槽基础的防护。

    (3)根据一中河泥石流不同启动机制,分为暴雨型泥石流、溃决型泥石流和崩滑流型泥石流三种成因类型。其成灾机制为暴雨+地震极端工况下高位岩体发生崩塌、滑坡后转变为碎屑流,沿程铲刮沟床松散物源,泥石流规模不断壮大,进而引发溃坝或堵塞河道等次生地质灾害链。对于一中河泥石流链式灾害的形成特征与演化机制,其防治工程应重点关注成链过程,采取有效的灾害链防灾减灾工程措施,为避险搬迁与应急处置方案提供理论依据。

  • 图  1   研究区位置及断裂分布图

    Figure  1.   Location of the study area and distribution of faults

    图  2   一中河流域全貌图

    Figure  2.   Full overview of Yizhong River Basin

    图  3   一中河泥石流沟A—A'纵剖面图

    Figure  3.   Longitudinal profile of A—A' section of Yizhong River debris flow gully

    图  4   一中河泥石流启动机制

    Figure  4.   Starting mechanism of Yizhong River debris flow

    图  5   一中河泥石流灾害成灾机制示意图

    Figure  5.   Schematic diagram of disaster mechanism of Yizhong River debris flow

    图  6   暴雨+地震极端工况下一中河泥石流模拟结果

    Figure  6.   Simulation results of Yizhong River debris flow under extreme conditions of heavy rainfall and earthquake

    图  7   一中河泥石流危险区范围

    Figure  7.   Risk zone of Yizhong River debris flow

    表  1   一中河泥石流物源统计表

    Table  1   Statistical table of sources of Yizhong River debris flow

    物源类型 冰碛物 滑坡 危岩崩塌 沟床堆积物 沟岸坍塌 坡面侵蚀 合计
    面积/(104 m2 4.0 4.30 10.94 1.24 0.30 31.20 51.98
    体积/(104 m3 30.0 40.12 27.25 3.70 0.80 12.25 114.12
    可移储量/(104 m3 2.75 9.52 8.98 1.95 0.80 1.23 25.23
    一次最大可移储量/(104 m3 0.14 0.55 0.90 0.39 0.24 0.12 2.34
    下载: 导出CSV
  • [1] 刘希林,唐川. 泥石流危险性评价[M]. 北京:科学出版社,1995. [LIU Xilin,TANG Chuan. Danger assessment on debris flow[M]. Beijing:Science Press,1995. (in Chinese)]

    LIU Xilin, TANG Chuan. Danger assessment on debris flow[M]. Beijing: Science Press, 1995. (in Chinese)

    [2] 殷跃平. 链状地质灾害的特征与防范应对[J]. 中国地质灾害与防治学报,2017,28(3):3. [YIN Yueping. Characteristics of chain geological disasters and countermeasures[J]. The Chinese Journal of Geological Hazard and Control,2017,28(3):3. (in Chinese with English abstract)]

    YIN Yueping. Characteristics of chain geological disasters and countermeasures[J]. The Chinese Journal of Geological Hazard and Control, 2017, 28(3): 3. (in Chinese with English abstract)

    [3] 于国强,张霞,顾小凡,等. 基底侵蚀作用对黄土坡面泥流动力过程影响机制研究[J/OL]. 中国地质,(2024-07-05)[2024-07-28]. [YU Guoqiang,ZHANG Xia,GU Xiaofan,et al. Influence of the basal erosion on kinetic process of loess slope debris flow[J/OL]. Geology in China,(2024-07-05)[2024-07-28]. http://kns.cnki.net/kcms/detail/11.1167.p.20240704.1646.002.html. (in Chinese with English abstract)]

    YU Guoqiang, ZHANG Xia, GU Xiaofan, et al. Influence of the basal erosion on kinetic process of loess slope debris flow[J/OL]. Geology in China, (2024-07-05)[2024-07-28]. http://kns.cnki.net/kcms/detail/11.1167.p.20240704.1646.002.html. (in Chinese with English abstract)

    [4] 乔成,欧国强,潘华利,等. 泥石流数值模拟方法研究进展[J]. 地球科学与环境学报,2016,38(1):134 − 142. [QIAO Cheng,OU Guoqiang,PAN Huali,et al. Review on numerical modeling methods of debris flow[J]. Journal of Earth Sciences and Environment,2016,38(1):134 − 142. (in Chinese with English abstract)]

    QIAO Cheng, OU Guoqiang, PAN Huali, et al. Review on numerical modeling methods of debris flow[J]. Journal of Earth Sciences and Environment, 2016, 38(1): 134 − 142. (in Chinese with English abstract)

    [5] 王俊豪,管建军,魏云杰,等. 德钦县城直溪河泥石流成灾模式及运动过程模拟[J]. 水文地质工程地质,2021,48(6):187 − 195. [WANG Junhao,GUAN Jianjun,WEI Yunjie,et al. A study of the disaster model and movement process simulation of debris flow in the Zhixi River of Deqin County[J]. Hydrogeology & Engineering Geology,2021,48(6):187 − 195. (in Chinese with English abstract)]

    WANG Junhao, GUAN Jianjun, WEI Yunjie, et al. A study of the disaster model and movement process simulation of debris flow in the Zhixi River of Deqin County[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 187 − 195. (in Chinese with English abstract)

    [6] 宋兵,沈军辉,李金洋,等. RAMMS在泥石流运动模拟中的应用——以白沙沟泥石流为例[J]. 泥沙研究,2018,43(1):32 − 37. [SONG Bing,SHEN Junhui,LI Jinyang,et al. Application of RAMMS model on simulation of debris flow in the Baisha Gully[J]. Journal of Sediment Research,2018,43(1):32 − 37. (in Chinese with English abstract)]

    SONG Bing, SHEN Junhui, LI Jinyang, et al. Application of RAMMS model on simulation of debris flow in the Baisha Gully[J]. Journal of Sediment Research, 2018, 43(1): 32 − 37. (in Chinese with English abstract)

    [7] 熊冲冲,胡卸文,刘丁毅,等. 基于RAMMS锄头沟泥石流运动过程模拟[J]. 四川地质学报,2021,41(1):107 − 111. [XIONG Chongchong,HU Xiewen,LIU Dingyi,et al. Simulation of debris flow activity in the Chutou gully based on RAMMS[J]. Acta Geologica Sichuan,2021,41(1):107 − 111. (in Chinese with English abstract)]

    XIONG Chongchong, HU Xiewen, LIU Dingyi, et al. Simulation of debris flow activity in the Chutou gully based on RAMMS[J]. Acta Geologica Sichuan, 2021, 41(1): 107 − 111. (in Chinese with English abstract)

    [8] 段学良,马凤山,郭捷,等. 基于Massflow模型的西藏仁布杰仲沟泥石流运动特征分析[J]. 中国地质灾害与防治学报,2019,30(6):25 − 33. [DUAN Xueliang,MA Fengshan,GUO Jie,et al. Movement characteristics of Jiezhonggou debris flow of Renbu,Tibet based on massflow model[J]. The Chinese Journal of Geological Hazard and Control,2019,30(6):25 − 33. (in Chinese with English abstract)]

    DUAN Xueliang, MA Fengshan, GUO Jie, et al. Movement characteristics of Jiezhonggou debris flow of Renbu, Tibet based on massflow model[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(6): 25 − 33. (in Chinese with English abstract)

    [9] 刘珍. 云南德钦县城泥石流物源汇集模式探讨[J]. 云南地质,2020,39(2):284 − 287. [LIU Zhen. A probe into the convergence model of debris flow in Deqin,Yunnan[J]. Yunnan Geology,2020,39(2):284 − 287. (in Chinese with English abstract)]

    LIU Zhen. A probe into the convergence model of debris flow in Deqin, Yunnan[J]. Yunnan Geology, 2020, 39(2): 284 − 287. (in Chinese with English abstract)

    [10] 王研. 云南省德钦县一中河泥石流形成机制和防治对策[D]. 北京:中国地质大学(北京),2016. [WANG Yan. The forming conditions and engineering revention of Yizhong River debris flow in Yunnan Province Deqin County[D]. Beijing:China University of Geosciences,2016. (in Chinese with English abstract)]

    WANG Yan. The forming conditions and engineering revention of Yizhong River debris flow in Yunnan Province Deqin County[D]. Beijing: China University of Geosciences, 2016. (in Chinese with English abstract)

    [11] 张楠. 舟曲三眼峪沟泥石流灾害形成机理及综合防治研究[D]. 武汉:中国地质大学,2018. [ZHANG Nan. Study on formation mechanism and comprehensive prevention of debris flow disasters in Sanyanyu Valley,Zhouqu[D]. Wuhan:China University of Geosciences,2018. (in Chinese with English abstract)]

    ZHANG Nan. Study on formation mechanism and comprehensive prevention of debris flow disasters in Sanyanyu Valley, Zhouqu[D]. Wuhan: China University of Geosciences, 2018. (in Chinese with English abstract)

    [12] 杨兴国,曹志翔,邢会歌,等. 冰碛土滑坡—泥石流—堰塞湖灾害链发展过程机理与模拟技术研究构想[J]. 工程科学与技术,2022,54(3):1 − 13. [YANG Xingguo,CAO Zhixiang,XING Huige,et al. Research framework of the program:dynamic evolution mechanism and simulation of moraine landslide —debris flow —dammed lake disaster chain[J]. Advanced Engineering Sciences,2022,54(3):1 − 13. (in Chinese with English abstract)]

    YANG Xingguo, CAO Zhixiang, XING Huige, et al. Research framework of the program: dynamic evolution mechanism and simulation of moraine landslide —debris flow —dammed lake disaster chain[J]. Advanced Engineering Sciences, 2022, 54(3): 1 − 13. (in Chinese with English abstract)

    [13] 王翔弘绅,胡桂胜,杨志全,等. 云南维西哈达沟中频泥石流特征及堵溃危险性分析[J]. 中国地质灾害与防治学报,2023,34(2):42 − 52. [WANG Xianghongshen,HU Guisheng,YANG Zhiquan,et al. Characteristics of intermediate frequency debris flow and analysis of the hazard of blockage in Hada gully,Weixi County of Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(2):42 − 52. (in Chinese with English abstract)]

    WANG Xianghongshen, HU Guisheng, YANG Zhiquan, et al. Characteristics of intermediate frequency debris flow and analysis of the hazard of blockage in Hada gully, Weixi County of Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(2): 42 − 52. (in Chinese with English abstract)

    [14] 赵聪,梁京涛,铁永波,等. 西藏雅鲁藏布江峡谷特大巨型泥石流活动与泥沙输移特征研究[J]. 中国地质灾害与防治学报,2024,35(4):45 − 55. [ZHAO Cong,LIANG Jingtao,TIE Yongbo,et al. Study on the activities of the massive debris flows and sediment transport characteristics in the Grand Bend of the Yarlung Zangbo River Gorge, Xizang[J]. The Chinese Journal of Geological Hazard and Control,2024,35(4):45 − 55. (in Chinese with English abstract)]

    ZHAO Cong, LIANG Jingtao, TIE Yongbo, et al. Study on the activities of the massive debris flows and sediment transport characteristics in the Grand Bend of the Yarlung Zangbo River Gorge, Xizang[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(4): 45 − 55. (in Chinese with English abstract)

    [15] 袁东, 张广泽, 王栋, 等. 西部山区交通廊道泥石流发育特征及选线对策[J]. 地质通报,2023,42(5):743 − 752. [YUAN Dong, ZHANG Guangze, WANG Dong, et al. Analysis on development characteristics of debris flow and route selection countermeasures along the traffic lines in mountain areas of Western China[J]. Geological Bulletin of China,2023,42(5):743 − 752. (in Chinese with English abstract)]

    YUAN Dong, ZHANG Guangze, WANG Dong, et al. Analysis on development characteristics of debris flow and route selection countermeasures along the traffic lines in mountain areas of Western China[J]. Geological Bulletin of China, 2023, 42(5): 743 − 752. (in Chinese with English abstract)

    [16] 杨强,王高峰,李金柱,等. 白龙江中上游泥石流形成条件与成灾模式探讨[J]. 中国地质灾害与防治学报,2022,33(6):70 − 79. [YANG Qiang,WANG Gaofeng,LI Jinzhu,et al. Formation conditions and the disaster modes of debris flows along middle and upper reaches of the Bailongjiang River Basin[J]. The Chinese Journal of Geological Hazard and Control,2022,33(6):70 − 79. (in Chinese with English abstract)]

    YANG Qiang, WANG Gaofeng, LI Jinzhu, et al. Formation conditions and the disaster modes of debris flows along middle and upper reaches of the Bailongjiang River Basin[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 70 − 79. (in Chinese with English abstract)

    [17] 张宪政,铁永波,宁志杰,等. 四川汶川县板子沟“6•26” 特大型泥石流成因特征与活动性研究[J]. 水文地质工程地质,2023,50(5):134 − 145. [ZHANG Xianzheng,TIE Yongbo,NING Zhijie,et al. Characteristics and activity analysis of the catastrophic “6•26” debris flow in the Banzi catchment, Wenchuan County of Sichuan Province[J]. Hydrogeology & Engineering Geology,2023,50(5):134 − 145. (in Chinese with English abstract)]

    ZHANG Xianzheng, TIE Yongbo, NING Zhijie, et al. Characteristics and activity analysis of the catastrophic “6•26” debris flow in the Banzi catchment, Wenchuan County of Sichuan Province[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 134 − 145. (in Chinese with English abstract)

    [18] 庞海松,谢骏锦,张小明,等. 基于RAMMS数值模拟的短时强降雨型泥石流危险性评价[J]. 地质科技通报,2024,43(2):215 − 225. [PANG Haisong,XIE Junjin,ZHANG Xiaoming,et al. Hazard assessment of debris flow induced by short-time heavy rainfall based on RAMMS numerical simulation[J]. Bulletin of Geological Science and Technology,2024,43(2):215 − 225. (in Chinese with English abstract)]

    PANG Haisong, XIE Junjin, ZHANG Xiaoming, et al. Hazard assessment of debris flow induced by short-time heavy rainfall based on RAMMS numerical simulation[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 215 − 225. (in Chinese with English abstract)

    [19] 史继帅,姜亮,翟胜强. 四川甘洛县黑西洛沟“8•31” 泥石流动力过程[J]. 中国地质灾害与防治学报,2024,35(3):52 − 60. [SHI Jishuai,JIANG Liang,ZHAI Shengqiang. Dynamic process of the “8•31” debris flow in Luoxi gulley of Ganluo County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2024,35(3):52 − 60. (in Chinese with English abstract)]

    SHI Jishuai, JIANG Liang, ZHAI Shengqiang. Dynamic process of the “8•31” debris flow in Luoxi gulley of Ganluo County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 52 − 60. (in Chinese with English abstract)

    [20] 蒋涛,崔圣华,许向宁,等. 基于遥感解译的典型强震区泥石流物源发育及演化——以四川都汶高速沿线为例[J]. 地质通报,2024,43(7):1243 − 1254. [JIANG Tao, CUI Shenghua, XU Xiangning, et al. Distribution and evolution of debris flow in a typic meizoseismal area based on remote sensing: A case study of the Sichuan Duwen Expressway[J]. Geological Bulletin of China,2024,43(7):1243 − 1254. (in Chinese with English abstract)]

    JIANG Tao, CUI Shenghua, XU Xiangning, et al. Distribution and evolution of debris flow in a typic meizoseismal area based on remote sensing: A case study of the Sichuan Duwen Expressway[J]. Geological Bulletin of China, 2024, 43(7): 1243 − 1254. (in Chinese with English abstract)

图(7)  /  表(1)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  10
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-27
  • 修回日期:  2023-11-16
  • 录用日期:  2024-07-03
  • 网络出版日期:  2024-07-08
  • 刊出日期:  2024-10-24

目录

/

返回文章
返回