ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

甘肃舟曲江顶崖滑坡堆积层剪切特性与强度参数分析

张卫雄, 杨校辉, 丁保艳, 朱文杰, 任永忠

张卫雄,杨校辉,丁保艳,等. 甘肃舟曲江顶崖滑坡堆积层剪切特性与强度参数分析[J]. 中国地质灾害与防治学报,2025,36(1): 65-72. DOI: 10.16031/j.cnki.issn.1003-8035.202305040
引用本文: 张卫雄,杨校辉,丁保艳,等. 甘肃舟曲江顶崖滑坡堆积层剪切特性与强度参数分析[J]. 中国地质灾害与防治学报,2025,36(1): 65-72. DOI: 10.16031/j.cnki.issn.1003-8035.202305040
ZHANG Weixiong,YANG Xiaohui,DING Baoyan,et al. Analysis of shear characteristics and strength parameters in Jiangdingya landslide, Zhouqu County[J]. The Chinese Journal of Geological Hazard and Control,2025,36(1): 65-72. DOI: 10.16031/j.cnki.issn.1003-8035.202305040
Citation: ZHANG Weixiong,YANG Xiaohui,DING Baoyan,et al. Analysis of shear characteristics and strength parameters in Jiangdingya landslide, Zhouqu County[J]. The Chinese Journal of Geological Hazard and Control,2025,36(1): 65-72. DOI: 10.16031/j.cnki.issn.1003-8035.202305040

甘肃舟曲江顶崖滑坡堆积层剪切特性与强度参数分析

基金项目: 甘肃省科技重大专项(23ZDFA007);甘肃省地质矿产勘查开发局创新基金项目(2020CX09;2022CX13);甘肃省自然资源厅科技创新项目(202222);甘肃省教育厅青年博士基金项目(2021QB-126)
详细信息
    作者简介:

    张卫雄(1971—),男,正高级工程师,主要从事矿产资源开发与地质灾害防治等工作。E-mail:1653015716@qq.com

    通讯作者:

    杨校辉(1986—),男,博士,副教授,主要从事地基处理与支挡结构等方面的教学与研究工作。E-mail:yxhui86@126.com

  • 中图分类号: P642.22

Analysis of shear characteristics and strength parameters in Jiangdingya landslide, Zhouqu County

  • 摘要:

    研究古滑坡中堆积层的强度特性是进行滑坡稳定性验算及其防治的重要环节,为合理确定古滑坡堆积层稳定性分析中的强度参数,依托甘肃舟曲江顶崖古滑坡治理工程,以滑体土(碎石土)、滑带土(含砾黏土)为研究对象,分别取2个典型地段采用平推法进行现场大型剪切试验。将试验结果与基于工程类比法的力学参数建议值进行了对比分析,结果发现:(1)滑带土剪切应变较小时,剪应力-剪切位移关系曲线有交叉现象,土样的剪应力随正应力与剪应变的增大呈现递增;(2)滑体土正应力越大,应变软化表现得越明显;(3)滑坡土的残余强度较峰值强度有一定衰减,但主要表现为黏聚力的减弱,其内摩擦角几乎没有变化,是因为在滑体土发生剪切后,滑带土中的胶结物被破坏,胶结作用减弱;泄流坡滑体土的天然残余强度参数内摩擦角在18.2°到24.6°之间,黏聚力在10.2 kPa到12.4 kPa之间,滑体土的残余强度参数与工程类比值得到的参数更加接近;(4)舟曲江顶崖堆积层滑坡滑带土和滑体土的岩体力学参数建议值:滑带土黏聚力7.0~14.8 kPa,内摩擦角15.0°~17.5°;滑体土黏聚力15.8~30.9 kPa,内摩擦角23.9°~24.4°。

    Abstract:

    Studying the strength characteristics of the accumulation layer in ancient landslides is an important aspect of landslide stability analysis and control. In order to reasonably determine the strength parameters in the stability analysis of ancient landslide accumulation layers, this study focuses on the Jiangdingya ancient landslide treatment project in Zhouqu County, Gansu Province. The study targets the the sliding body soil (gravel soil) and sliding zone soil (gravelly clay) and conducts large-scale field shear tests at two typical sections using the horizontal pushing method. The test results are compared and analyzed with the suggested mechanical parameters based on engineering analogy method. Based on the above research, the following conclusions are drawn: (1) When the shear strain of the sliding zone soil is small, the shear stress-shear displacement relationship curve has crossed, and the shear stress of the soil sample increases with the increase of normal stress and shear strain; (2) The larger the normal stress of the sliding body soil, the more significant the strain softening behavior; (3) The residual strength of the landslide soil has a certain attenuation compared to the peak strength, mainly manifested as a weakening of cohesion, while the internal friction angle remains almost unchanged. This is because the cementitious material in the sliding zone soil is destroyed after shear deformation, leading to a weakening of cementation. The natural residual strength parameters of the sliding body soil on the discharge slope are: the internal friction angle ranges from 18.2° to 24.6°, and the cohesion ranges from 10.2 kPa to 12.4 kPa. The residual strength parameters of the sliding body soil are closer to the values obtained by the engineering analogy method; (4) The recommended values of rock mass mechanical parameters for the sliding zone soil and sliding body soil of the accumulation layer landslide at Jiangdingya are as follows : For the sliding zone soil, the cohesion ranges from 7.0 kPa to 14.8 kPa, and the internal friction angle ranges from 15.0° to 17.5°; for the sliding body soil, the cohesion ranges from 15.8 kPa to 30.9 kPa, and the internal friction angles from 23.9° to 24.4°.

  • 在人类活动以及极端气候的影响下,古滑坡复活时有发生[1]。如四川盐源玻璃村一古滑坡,滑带土体强度在地下水和降雨的影响下逐渐削弱,导致抗剪强度降低,从而诱发滑坡复活,造成了重大经济损失[2];川西鲜水河呷拉宗古滑坡受断裂活动和降雨的影响发生复活,严重威胁下游大坝和城镇的安全[3];再如,2014年,位于美国华盛顿Oso社区的一个古滑坡复活启动,造成数十人伤亡,成为美国历史上滑坡造成的最惨重的案例[4]。近年来,舟曲地区滑坡[57]和泥石流[8]等地质灾害多发,给国家和当地人民造成了严重的经济损失,对基础设施工程的安全使用及人们的生命财产安全构成严重威胁。虽然古滑坡一般处于稳定状态,但在降雨、地震等外部作用下极有可能再次滑动。因此,有必要给出的舟曲地区滑坡滑带土和滑体土的岩体力学参数建议值,从而才能更好地针对古滑坡进行稳定性验算,以采取相应的防治措施。

    滑坡体的稳定性分析评价受岩土体强度参数的取值影响较大[811]。而岩土体强度参数值常通过室内直剪试验和现场剪切试验得出。现如今,通过室内直剪试验对岩土体强度特性有了深入研究[1213],但其存在诸多不足,比如一般情况下室内直剪试验的试样尺寸较小、剪切面不一定是最薄弱结构面,且会受到运输所带来的原状土样的干扰等[14]。而现场剪切试验结果更接近实际工况,邢皓枫等[15]基于现场直剪试验,分别对剪应力与位移、正应力的关系曲线进行分析和总结。张娟等[16]选取黄土塬开挖平台的非扰动黄土为试样,进行原位直接剪切试验。此外,朱彦鹏等[17]和邢皓枫等[15]的团队分别经过大量工程实践,通过使用不同方法获得的抗剪强度参数对边坡进行稳定性分析,均认为现场直剪试验获得的参数更有利于边坡稳定性分析,因此,现场原位直剪试验在舟曲地区堆积层滑坡的治理工程中是十分必要的。但上述研究多是关于黄土边坡土样的试验研究[1819],目前仍缺乏主要由含砾黏土和碎石土组成的堆积层滑坡现场原位剪切试验,给出舟曲地区堆积层滑坡岩土体的抗剪强度参数建议值迫在眉睫。

    综上,本文以舟曲江顶崖堆积层滑坡岩土体为研究对象,通过现场原位剪切试验进一步探索其滑带土和滑体土的剪切特性,以期为类似堆积层滑坡的防治提供依据。

    在降雨、江水冲刷作用下,江顶崖滑坡曾分别于1991年、2007年和2010年发生了三次大规模复活,致使白龙江舟曲段该滑坡附近流域的人民群众的生命财产安全受到严重侵害。2018年7月12日,受连续强降雨作用影响,舟曲县江顶崖古滑坡再次复活[2021],本次复活滑坡(H1滑坡)为江顶崖古滑坡(H滑坡)中部的复活块体(图1),滑坡呈“长舌形”,纵向长580 m,前、中、后宽度分别约300,190,185 m,滑体平均厚度40~50 m,体积4.80×106~5.50×106 m3,滑坡基本特征见表1,滑坡岩土体物理力学性质参数见表2。本次滑坡前缘滑入白龙江,严重挤压河道,致使原本宽约36 m的江面最窄处仅剩5 m,白龙江上游水位上升7~8 m,导致附近水电站、村落中部分房屋被淹。

    图  1  舟曲江顶崖堆积体滑坡
    Figure  1.  Landslide of Jiangdingya accumulation in Zhouqu County[22]
    表  1  滑坡基本特征
    Table  1.  Basic characteristics of landslide
    编号 类型 规模 主滑
    方向
    /(°)
    前缘
    高程
    /m
    后缘
    高程
    /m
    滑面形态 滑带特征 滑床特征 规模

    /m

    /m
    平均
    厚度/m
    体积
    /(104 m3
    H 堆积层滑坡 1041 350 40.2 1493 221 1241 1593 折线形 炭质板岩碎屑 上部灰岩全风化层,
    中下部碎石土
    特大型
    H1 堆积层滑坡 553 210 26.5 382 225 1241 1418 折线形 黑色含砾黏土 碎石土 大型
    下载: 导出CSV 
    | 显示表格
    表  2  滑坡岩土体物理力学性质参数
    Table  2.  Parameters of physical and mechanical properties of rock and soil mass of landslide
    强度指标 滑带土 滑体土
    含水率/% 11.85 13.1
    天然密度/(g·cm−3 2.02 1.99
    干密度/(g·cm−3 1.63 1.74
    内摩擦角/(°) 16.40 21.8
    黏聚力/kPa 6.40 11.3
    下载: 导出CSV 
    | 显示表格

    复活滑坡的滑体主要由两层土体组成,上部为碎石土,主要呈黄褐色或红褐色,土体组成粒径大小悬殊,局部含1~2 m的大块石,土体结构松散,压实度较低,见图2(a);下部以灰黑色炭质板岩碎屑为主,岩质较软,极易发生破碎,遇水易崩解,原始成因为断层破碎带物质,见图2(b)。

    图  2  滑坡滑体土与滑带土
    Figure  2.  Site photo of landslide sliding body soil and sliding zone soil[22]

    复活滑坡的后缘滑带土主要为灰黑色含砾黏土,土体呈软塑状,含少量细颗粒角砾,断面可见明显擦痕及镜面,含水量高,手可捏成泥状,厚度约0.8 m;在滑坡中前部的灰黑色含砾黏土中,除含角砾外,还含少量碎石,厚度约0.5~1.1 m。

    滑带土和滑体土试验点位均选在江顶崖堆积层滑坡后缘(图3)。滑带土和滑体土现场直剪试验各1组,每组试件共6块。避免表面扰动岩层影响试验结果,在试验点处先挖2.2 m×12 m×1.5 m的试坑,然后在试坑内凿出尺寸为0.5 cm×0.5 cm×0.35 cm的6块试件,试件要求新鲜完整,试件间距不小于试件边长的1.5倍(为方便进行多次直剪试验,预留适宜的空间)。为防止试件在试验过程中发生破坏和便于安装试验仪器设备,在试件上套上专门加工的透明剪切盒,透明剪切盒相比常规的钢筋混凝土养护层更加简便。按照规范要求,用现场滑坡土配合细砂充填土样与剪切盒之间的缝隙至密实。

    图  3  直剪试验位置与试验现场
    Figure  3.  Direct shear experimental location and test site

    本试验采用平推法进行,根据试件的风化程度和岩体完整性,两组试件分别在100,200,300,400,500,600 kPa的法向荷载下进行水平剪切。其中法向荷载施加于试件中心,方向与预定剪切面垂直,剪切荷载施加方向平行于预定剪切面并通过试件中心。

    试验时,首先施加垂直荷载,垂直荷载分4级逐级加载到最大值,且每级间隔5 min,在垂直荷载引起的法向变形达到相对稳定后再施加水平剪切荷载。在施加水平荷载时,按照施加荷载前所预估的最大荷载的8%~10%分级等量地施加,水平荷载施加的间隔时间和垂直荷载相同。直至剪切试验完成,每一级荷载施加前、后都要各测读1次垂直变形量和剪切变形量。试件的垂直变形量和剪切变形量由分别设置在垂直方向及水平方向的百分表量测。百分表的量程为0~100 mm。

    现场剪切试验推力方向与滑坡主滑方向一致。除正应力为500 kPa的试件在加载过程中损坏外,滑带土其余5个试件在剪切过程中的剪应力(τ)-剪切位移(s)曲线见图4

    图  4  现场剪切试验条件下滑带土$ \tau-s $关系曲线
    Figure  4.  $ \tau-s $ curves of slide zone soil under field shear test conditions

    试件属于含砾黏土,主要由炭质板岩碎屑挤压揉搓泥化而形成的,土体含水量高。分析图4可知,滑带土试件强度较低,在不同正应力即固结压力下的剪应力-剪切位移关系曲线随正应力的增大,逐渐由应变软化型向硬化型转变。试验初始阶段,随着剪切位移的增加,试件的强度迅速增大,且有效法向应力越大,强度增加越快。直到剪切位移大于2 mm后,正应力较小的试件开始应变软化,剪应力略微减小。正应力较大的试件,随着剪应变的继续增加,剪应力仍然继续增加,但增加幅度明显减小,曲线斜率变缓。究其原因,可能是由试件受荷经历压密-贯通-剪切破坏过程导致。剪切应变较小时,曲线有交叉现象,这与土体的结构性有关。是因为剪应力较弱时,初始结构很紧密,随着初始应力增加,土体发生应变软化,即产生剪胀效应。随着剪切应变的增加,土样的剪应力随正应力的增大呈现递增的关系。

    滑体土的现场剪切试验场地位于滑坡中部,推力方向与滑坡主滑方向一致。现场测试的土体剪切试验如图3所示。滑体土现场剪切试验的剪应力-剪切位移曲线见图5

    图  5  现场剪切试验条件下滑体土$ \tau-s $关系曲线
    Figure  5.  $ \tau-s $ curves of slide body soil under field shear test conditions

    试验区滑体土为碎石土,泥土充填,含水率较低,压实度较低。分析图5可知,正应力较大时,与滑带土不同,滑体土的$ \tau-s $关系曲线存在峰值强度,其中正应力为300 kPa、600 kPa的试件存在明显的峰值强度。除正应力为400 kPa的试件,截至破坏剪应力没有明显的峰值现象,近似呈塑性破坏的特征,其余各试件在不同正应力下的剪应力-剪切位移关系曲线均呈先增大后减小的变化趋势。这是因为滑体土的原状土主要是碎石土,其均匀程度等初始状态不一样,对于表现为塑性的滑体土原状土试样,随着剪应力增大,剪应力−剪切位移曲线持续增大或者在初始峰值点之后趋于平缓,且无明显剪应力下降现象,表现为剪切塑性及硬化特征[2324]。在施加剪应力初期,试件具有一定的抗剪能力;随着剪应力的增加,剪切位移逐渐增大,直到达到屈服极限;剪应力继续增加,达到峰值强度开始出现下降。试样的正应力越大,应变软化表现得越明显。正应力较小时,滑体土的剪应力-剪切位移曲线与滑带土的相似,试样的峰值强度与残余强度相差不大,达到峰值强度后,曲线缓慢下降,试样的破坏属于塑性破坏。另外,剪切试验中试件在正应力的作用下抗剪强度得到一定的提高,但是由于碎石土的非均质性,导致试件的剪应力-剪切位移曲线产生明显不规则的变化。而由于滑带土试件属于含砾黏土,致密,故其$ \tau-s $关系曲线变化较为规则。

    根据现场剪切试验数据整理分析,绘制出滑带土试样及滑体土试样的剪应力(τ)-正应力(σ)关系曲线(抗剪峰值强度),见图6。分析图6可知,相同正应力下,试验区滑体土的抗剪峰值强度整体高于滑带土的抗剪峰值强度,这与滑带土的土质特性及含水率密切相关,含水率通过内聚力和内摩擦角控制峰值的抗剪强度大小[25],在进行滑坡处理时应特别注意。

    图  6  现场试验试样的τ-σ关系曲线
    Figure  6.  τ-σ relationship curve of field test specimens

    运用最小二乘法对曲线进行拟合,剪应力-正应力关系曲线近似呈直线。6个滑带土试样基本沿预剪面剪断破坏,用最小二乘法拟合出τ-σ关系曲线具有较高的相关性,得到峰值强度参数为φ=24.4°,c=30.9 kPa;滑体土组的6个试样也基本沿预剪面剪断破坏,用最小二乘法拟合出τ-σ关系曲线具有较高的相关性,得到峰值强度参数为φ=19.7°,c=14.7 kPa。同理,可得到滑体土试件残余强度指标。两种试样的抗剪强度指标见表3

    表  3  抗剪强度参数
    Table  3.  Shear strength parameters
    试验
    类型
    试件类型 抗剪峰值强度 残余强度
    c/kPa φ/(°) c/kPa φ/(°)
    现场
    试验
    滑带土 14.7 19.7
    滑体土 30.9 24.4 15.8 23.9
    下载: 导出CSV 
    | 显示表格

    试样的抗剪强度与法向压力的大小有关,随着法向压力的增大,峰值强度与残余强度均增大。分析表2图6可知,残余强度较峰值强度有一定衰减。

    同为舟曲地区的泄流坡滑坡具有与江顶崖古滑坡类似的岩土体,因此,泄流坡滑坡岩土体的残余抗剪强度值可以作为江顶崖古滑坡岩土体参数工程类比的依据,根据《舟曲县南峪乡江顶崖滑坡灾害应急治理工程勘察报告》[22],给出表4所示江顶崖滑坡滑体土及滑带土的工程类比值综合取值表。对比分析表3表4可知,滑体土的抗剪峰值强度参数为φ=24.4°,c=30.9 kPa,滑体土的残余强度参数为φ=23.9°,c=15.8 kPa,泄流坡滑体土的天然残余强度参数为φ=18.2°~24.6°,c=10.2~12.4 kPa。相比于滑体土的抗剪峰值强度参数,其残余强度参数与工程类比值得到的参数更加接近且相差无几。

    表  4  工程类比值综合取值表
    Table  4.  Comprehensive values of engineering ratio[16]
    试件类型 状态 强度指标 工程类比值
    泄流坡(残剪)
    滑带土 天然 c/kPa 7.0~8.4
    φ/(°) 14.8~15.4
    饱和 c/kPa 5.3~6.7
    φ/(°) 12.1~13.3
    滑体土 天然 c/kPa 10.2~12.4
    φ/(°) 18.2~24.6
    饱和 c/kPa 7.3~10.1
    φ/(°) 16.9~22.8
    下载: 导出CSV 
    | 显示表格

    因此,综合现场原位剪切试验和工程类比值综合取值的结果,给出的舟曲江顶崖堆积层滑坡滑带土和滑体土的岩体力学参数建议值为:滑带土黏聚力7.0~14.8 kPa,内摩擦角15.0°~17.5°;滑体土黏聚力15.8~30.9 kPa,内摩擦角23.9°~24.4°。

    (1)滑带土剪切应变较小时,剪应力-剪切位移关系曲线有交叉现象,随着剪切应变的增加,土样的剪应力随正应力的增大呈现递增关系。

    (2)正应力较小时,滑体土的剪应力-剪切位移曲线与滑带土的相似。滑体土正应力越大,应变软化表现的越明显。滑体土峰值强度与残余强度相差不大。

    (3)滑坡土样的抗剪强度与法向压力的大小有关,随着法向压力的增大,峰值强度与残余强度均有不同程度的增大。

    (4)滑体土的残余强度较峰值强度虽有一定衰减,但主要表现为黏聚力的减弱,其内摩擦角几乎没有变化,是因为在滑体土发生剪切后,滑带土中的胶结物被破坏,胶结作用减弱。

    (5)综合现场原位剪切试验和工程类比值综合取值的结果,给出的舟曲江顶崖堆积层滑坡滑带土和滑体土的岩体力学参数建议值为:滑带土黏聚力7.0~14.8 kPa,内摩擦角15.0°~17.5°;滑体土黏聚力15.8~30.9 kPa,内摩擦角23.9°~24.4°。

  • 图  1   舟曲江顶崖堆积体滑坡

    Figure  1.   Landslide of Jiangdingya accumulation in Zhouqu County[22]

    图  2   滑坡滑体土与滑带土

    Figure  2.   Site photo of landslide sliding body soil and sliding zone soil[22]

    图  3   直剪试验位置与试验现场

    Figure  3.   Direct shear experimental location and test site

    图  4   现场剪切试验条件下滑带土$ \tau-s $关系曲线

    Figure  4.   $ \tau-s $ curves of slide zone soil under field shear test conditions

    图  5   现场剪切试验条件下滑体土$ \tau-s $关系曲线

    Figure  5.   $ \tau-s $ curves of slide body soil under field shear test conditions

    图  6   现场试验试样的τ-σ关系曲线

    Figure  6.   τ-σ relationship curve of field test specimens

    表  1   滑坡基本特征

    Table  1   Basic characteristics of landslide

    编号 类型 规模 主滑
    方向
    /(°)
    前缘
    高程
    /m
    后缘
    高程
    /m
    滑面形态 滑带特征 滑床特征 规模

    /m

    /m
    平均
    厚度/m
    体积
    /(104 m3
    H 堆积层滑坡 1041 350 40.2 1493 221 1241 1593 折线形 炭质板岩碎屑 上部灰岩全风化层,
    中下部碎石土
    特大型
    H1 堆积层滑坡 553 210 26.5 382 225 1241 1418 折线形 黑色含砾黏土 碎石土 大型
    下载: 导出CSV

    表  2   滑坡岩土体物理力学性质参数

    Table  2   Parameters of physical and mechanical properties of rock and soil mass of landslide

    强度指标 滑带土 滑体土
    含水率/% 11.85 13.1
    天然密度/(g·cm−3 2.02 1.99
    干密度/(g·cm−3 1.63 1.74
    内摩擦角/(°) 16.40 21.8
    黏聚力/kPa 6.40 11.3
    下载: 导出CSV

    表  3   抗剪强度参数

    Table  3   Shear strength parameters

    试验
    类型
    试件类型 抗剪峰值强度 残余强度
    c/kPa φ/(°) c/kPa φ/(°)
    现场
    试验
    滑带土 14.7 19.7
    滑体土 30.9 24.4 15.8 23.9
    下载: 导出CSV

    表  4   工程类比值综合取值表

    Table  4   Comprehensive values of engineering ratio[16]

    试件类型 状态 强度指标 工程类比值
    泄流坡(残剪)
    滑带土 天然 c/kPa 7.0~8.4
    φ/(°) 14.8~15.4
    饱和 c/kPa 5.3~6.7
    φ/(°) 12.1~13.3
    滑体土 天然 c/kPa 10.2~12.4
    φ/(°) 18.2~24.6
    饱和 c/kPa 7.3~10.1
    φ/(°) 16.9~22.8
    下载: 导出CSV
  • [1] 唐家凯,吴玮江,刘韬,等. 甘肃灵台县南店子滑坡活动特征及成因分析[J]. 中国地质灾害与防治学报,2023,34(6):20 − 29. [TANG Jiakai,WU Weijiang,LIU Tao,et al. Characteristics and causes analysis of Nandianzi landslide in Lingtai County,Gansu Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(6):20 − 29. (in Chinese with English abstract)]

    TANG Jiakai, WU Weijiang, LIU Tao, et al. Characteristics and causes analysis of Nandianzi landslide in Lingtai County, Gansu Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(6): 20 − 29. (in Chinese with English abstract)

    [2] 何坤,胡卸文,马国涛,等. 四川省盐源玻璃村特大型玄武岩古滑坡复活机制[J]. 岩土力学,2020,41(10):3443 − 3455. [HE Kun,HU Xiewen,MA Guotao,et al. The reactivated mechanism of Boli Village giant ancient basalt landslide in Yanyuan,Sichuan[J]. Rock and Soil Mechanics,2020,41(10):3443 − 3455. (in Chinese with English abstract)]

    HE Kun, HU Xiewen, MA Guotao, et al. The reactivated mechanism of Boli Village giant ancient basalt landslide in Yanyuan, Sichuan[J]. Rock and Soil Mechanics, 2020, 41(10): 3443 − 3455. (in Chinese with English abstract)

    [3] 刘筱怡,张永双,郭长宝,等. 川西鲜水河呷拉宗古滑坡发育特征与形成演化过程[J]. 地质学报,2019,93(7):1767 − 1777. [LIU Xiaoyi,ZHANG Yongshuang,GUO Changbao,et al. Development characteristics and evolution process of the Garazong ancient rockslide along the Xianshuihe River in western Sichuan[J]. Acta Geologica Sinica,2019,93(7):1767 − 1777. (in Chinese with English abstract)] DOI: 10.3969/j.issn.0001-5717.2019.07.015

    LIU Xiaoyi, ZHANG Yongshuang, GUO Changbao, et al. Development characteristics and evolution process of the Garazong ancient rockslide along the Xianshuihe River in western Sichuan[J]. Acta Geologica Sinica, 2019, 93(7): 1767 − 1777. (in Chinese with English abstract) DOI: 10.3969/j.issn.0001-5717.2019.07.015

    [4]

    IVERSON R M,GEORGE D L,ALLSTADT K,et al. Landslide mobility and hazards:Implications of the 2014 Oso disaster[J]. Earth and Planetary Science Letters,2015,412:197 − 208. DOI: 10.1016/j.jpgl.2014.12.020

    [5] 窦晓东,张泽林. 甘肃舟曲垭豁口滑坡复活机理及成因探讨[J]. 中国地质灾害与防治学报,2021,32(2):9 − 18. [DOU Xiaodong,ZHANG Zelin. Mechanism and causal analysis on the Yahuokou landslide reactivation and causes (Zhouqu County,Gansu,China)[J]. The Chinese Journal of Geological Hazard and Control,2021,32(2):9 − 18. (in Chinese with English abstract)]

    DOU Xiaodong, ZHANG Zelin. Mechanism and causal analysis on the Yahuokou landslide reactivation and causes (Zhouqu County, Gansu, China)[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(2): 9 − 18. (in Chinese with English abstract)

    [6] 吴玮江,王国亚,张国信,等. 甘肃岷县永光1#流滑型黄土滑坡的远程滑动特征[J]. 中国地质灾害与防治学报,2023,34(6):3 − 12. [WU Weijiang,WANG Guoya,ZHANG Guoxin,et al. Long-runout characteristics of the Yongguang 1# loess flowslide in Minxian County,Gansu Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(6):3 − 12. (in Chinese with English abstract)]

    WU Weijiang, WANG Guoya, ZHANG Guoxin, et al. Long-runout characteristics of the Yongguang 1# loess flowslide in Minxian County, Gansu Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(6): 3 − 12. (in Chinese with English abstract)

    [7] 刘兴荣,魏新平,陈豫津,等. 基于增量加载法的泥石流拦挡坝抗冲击力数值模拟——以甘肃舟曲三眼峪沟泥石流拦挡坝为例[J]. 中国地质灾害与防治学报,2021,32(2):78 − 83. [LIU Xingrong,WEI Xinping,CHEN Yujin,et al. Numerical simulation of impact resistance of debris flow dam:A case study of the debris flow dam in Sanyanyu Gully,Zhouqu County,Gansu Province[J]. The Chinese Journal of Geological Hazard and Control,2021,32(2):78 − 83. (in Chinese with English abstract)]

    LIU Xingrong, WEI Xinping, CHEN Yujin, et al. Numerical simulation of impact resistance of debris flow dam: A case study of the debris flow dam in Sanyanyu Gully, Zhouqu County, Gansu Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(2): 78 − 83. (in Chinese with English abstract)

    [8] 范志强,唐辉明,谭钦文,等. 滑带土环剪试验及其对水库滑坡临滑强度的启示[J]. 岩土工程学报,2019,41(9):1698 − 1706. [FAN Zhiqiang,TANG Huiming,TAN Qinwen,et al. Ring shear tests on slip soils and their enlightenment to critical strength of reservoir landslides[J]. Chinese Journal of Geotechnical Engineering,2019,41(9):1698 − 1706. (in Chinese with English abstract)]

    FAN Zhiqiang, TANG Huiming, TAN Qinwen, et al. Ring shear tests on slip soils and their enlightenment to critical strength of reservoir landslides[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1698 − 1706. (in Chinese with English abstract)

    [9] 张怡颖,郭长宝,杨志华,等. 四川茂县周场坪深层滑坡滑带土环剪试验强度研究[J]. 工程地质学报,2021,29(3):764 − 776. [ZHANG Yiying,GUO Changbao,YANG Zhihua,et al. Study on shear strength of deep-seated sliding zone soil of Zhouchangping landslide in Maoxian,Sichuan[J]. Journal of Engineering Geology,2021,29(3):764 − 776. (in Chinese with English abstract)]

    ZHANG Yiying, GUO Changbao, YANG Zhihua, et al. Study on shear strength of deep-seated sliding zone soil of Zhouchangping landslide in Maoxian, Sichuan[J]. Journal of Engineering Geology, 2021, 29(3): 764 − 776. (in Chinese with English abstract)

    [10] 张玉,徐卫亚,李德亮. 大型滑坡演化机制及滑带剪切特性试验研究[J]. 岩石力学与工程学报,2013,32(增刊1):2606 − 2616. [ZHANG Yu,XU Weiya,LI Deliang. Experimental study on evolution mechanism of large landslide and shear characteristics of sliding zone[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(Sup 1):2606 − 2616. (in Chinese with English abstract)]

    ZHANG Yu, XU Weiya, LI Deliang. Experimental study on evolution mechanism of large landslide and shear characteristics of sliding zone[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(Sup 1): 2606 − 2616. (in Chinese with English abstract)

    [11] 张永双,郭长宝,周能娟. 金沙江支流冲江河巨型滑坡及其局部复活机理研究[J]. 岩土工程学报,2013,35(3):445 − 453. [ZHANG Yongshuang,GUO Changbao,ZHOU Nengjuan. Characteristics of Chongjianghe landslide at a branch of Jinsha River and its local reactivation mechanism[J]. Chinese Journal of Geotechnical Engineering,2013,35(3):445 − 453. (in Chinese with English abstract)]

    ZHANG Yongshuang, GUO Changbao, ZHOU Nengjuan. Characteristics of Chongjianghe landslide at a branch of Jinsha River and its local reactivation mechanism[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 445 − 453. (in Chinese with English abstract)

    [12] 刘斯宏,臧德记,汪易森,等. 便携式现场和室内两用直剪仪的研制[J]. 岩土工程学报,2010,32(6):938 − 943. [LIU Sihong,ZANG Deji,WANG Yisen,et al. Development of a portable direct shear apparatus for both in situ and laboratory tests[J]. Chinese Journal of Geotechnical Engineering,2010,32(6):938 − 943. (in Chinese with English abstract)]

    LIU Sihong, ZANG Deji, WANG Yisen, et al. Development of a portable direct shear apparatus for both in situ and laboratory tests[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6): 938 − 943. (in Chinese with English abstract)

    [13] 李东升,刘东升. 固结煤矸石抗剪强度特征试验[J]. 重庆大学学报,2015,38(3):58 − 65. [LI Dongsheng,LIU Dongsheng. Experimental research on the shear strength of consolidation gangue[J]. Journal of Chongqing University,2015,38(3):58 − 65. (in Chinese with English abstract)] DOI: 10.11835/j.issn.1000-582X.2015.03.008

    LI Dongsheng, LIU Dongsheng. Experimental research on the shear strength of consolidation gangue[J]. Journal of Chongqing University, 2015, 38(3): 58 − 65. (in Chinese with English abstract) DOI: 10.11835/j.issn.1000-582X.2015.03.008

    [14] 张建华,姚志华,冯世清,等. 基于现场和室内剪切试验的原状黄土强度特性研究[J]. 水利水电技术(中英文),2021,52(6):188 − 197. [ZHANG Jianhua,YAO Zhihua,FENG Shiqing,et al. Strength characteristics of undisturbed loess based on field and laboratory shear tests[J]. Water Resources and Hydropower Engineering,2021,52(6):188 − 197. (in Chinese with English abstract)]

    ZHANG Jianhua, YAO Zhihua, FENG Shiqing, et al. Strength characteristics of undisturbed loess based on field and laboratory shear tests[J]. Water Resources and Hydropower Engineering, 2021, 52(6): 188 − 197. (in Chinese with English abstract)

    [15] 邢皓枫,刘振红,叶观宝,等. 南水北调西线工程现场剪切试验及成果分析[J]. 岩土力学,2007,28(增刊1):69 − 73. [XING Haofeng,LIU Zhenhong,YE Guanbao,et al. Field shear test and result analysis of the west route project of south-to-north water Transfer Project[J]. Rock and Soil Mechanics,2007,28(Sup 1):69 − 73. (in Chinese with English abstract)]

    XING Haofeng, LIU Zhenhong, YE Guanbao, et al. Field shear test and result analysis of the west route project of south-to-north water Transfer Project[J]. Rock and Soil Mechanics, 2007, 28(Sup 1): 69 − 73. (in Chinese with English abstract)

    [16] 张娟,李博融,曹升亮,等. 黄土边坡原位直剪与抗滑桩模型试验[J]. 中国公路学报,2019,32(8):35 − 48. [ZHANG Juan,LI Borong,CAO Shengliang,et al. Model test of vertical shear and anti-slide pile in situ on loess slope[J]. China Journal of Highway and Transport,2019,32(8):35 − 48. (in Chinese with English abstract)]

    ZHANG Juan, LI Borong, CAO Shengliang, et al. Model test of vertical shear and anti-slide pile in situ on loess slope[J]. China Journal of Highway and Transport, 2019, 32(8): 35 − 48. (in Chinese with English abstract)

    [17] 朱彦鹏,张强,马天忠,等. 舟曲某千枚岩与砾石土质高边坡现场剪切试验及稳定性分析研究[J]. 防灾减灾工程学报,2015,35(3):404 − 410. [ZHU Yanpeng,ZHANG Qiang,MA Tianzhong,et al. Field shearing test and stability analysis of a Zhouqu phyllite and gravel soil high slope[J]. Journal of Disaster Prevention and Mitigation Engineering,2015,35(3):404 − 410. (in Chinese with English abstract)]

    ZHU Yanpeng, ZHANG Qiang, MA Tianzhong, et al. Field shearing test and stability analysis of a Zhouqu phyllite and gravel soil high slope[J]. Journal of Disaster Prevention and Mitigation Engineering, 2015, 35(3): 404 − 410. (in Chinese with English abstract)

    [18] 胡再强,林山,李宏儒,等. 洛川Q2黄土残余强度影响因素试验研究[J]. 岩土工程学报,2017,39(增刊1):6 − 11. [HU Zaiqiang,LIN Shan,LI Hongru,et al. Experimental study on influencing factors of residual strength of Q2 loess in Luochuan[J]. Chinese Journal of Geotechnical Engineering,2017,39(Sup 1):6 − 11. (in Chinese with English abstract)]

    HU Zaiqiang, LIN Shan, LI Hongru, et al. Experimental study on influencing factors of residual strength of Q2 loess in Luochuan[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(Sup 1): 6 − 11. (in Chinese with English abstract)

    [19] 张永双,吴瑞安,郭长宝,等. 古滑坡复活问题研究进展与展望[J]. 地球科学进展,2018,33(7):728 − 740. [ZHANG Yongshuang,WU Ruian,GUO Changbao,et al. Research progress and prospect on reactivation of ancient landslides[J]. Advances in Earth Science,2018,33(7):728 − 740. (in Chinese with English abstract)] DOI: 10.11867/j.issn.1001-8166.2018.07.0728

    ZHANG Yongshuang, WU Ruian, GUO Changbao, et al. Research progress and prospect on reactivation of ancient landslides[J]. Advances in Earth Science, 2018, 33(7): 728 − 740. (in Chinese with English abstract) DOI: 10.11867/j.issn.1001-8166.2018.07.0728

    [20] 张卫雄,翟向华,丁保艳,等. 甘肃舟曲江顶崖滑坡成因分析与综合治理措施[J]. 中国地质灾害与防治学报,2020,31(5):7 − 14. [ZHANG Weixiong,ZHAI Xianghua,DING Baoyan,et al. Causative analysis and comprehensive treatment of the Jiangdingya Landslide in Zhouqu County of Gansu Province[J]. The Chinese Journal of Geological Hazard and Control,2020,31(5):7 − 14. (in Chinese with English abstract)]

    ZHANG Weixiong, ZHAI Xianghua, DING Baoyan, et al. Causative analysis and comprehensive treatment of the Jiangdingya Landslide in Zhouqu County of Gansu Province[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(5): 7 − 14. (in Chinese with English abstract)

    [21] 韩旭东, 付杰, 李严严, 等. 舟曲江顶崖滑坡的早期判识及风险评估研究[J]. 水文地质工程地质,2021,48(6):180 − 186. [HAN Xudong, FU Jie, LI Yanyan, et al. A study of the early identification and risk assessment of the Jiangdingya landslide in Zhouqu county[J]. Hydrogeology & Engineering Geology,2021,48(6):180 − 186. (in Chinese with English abstract)]

    HAN Xudong, FU Jie, LI Yanyan, et al. A study of the early identification and risk assessment of the Jiangdingya landslide in Zhouqu county[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 180 − 186. (in Chinese with English abstract)

    [22] 窦晓东,贾强,刘心彪,等. 舟曲县南峪乡江顶崖滑坡灾害应急治理工程勘察报告[R]. 兰州:甘肃省地质环境监测院,2018. [DOU Xiaodong,JIA Qiang,LIU Xinbiao, et al. Investigation report on emergency treatment project of Jiangdingya landslide disaster in Nanyu Township, Zhouqu County[R]. Lanzhou:Gansu Provincial Institute of Geological Environment Monitoring, 2018. (in Chinese)]

    DOU Xiaodong, JIA Qiang, LIU Xinbiao, et al. Investigation report on emergency treatment project of Jiangdingya landslide disaster in Nanyu Township, Zhouqu County[R]. Lanzhou: Gansu Provincial Institute of Geological Environment Monitoring, 2018. (in Chinese)

    [23] 肖卫国,兑关锁,陈铁林,等. 剪胀和破坏耦合的节理岩体本构模型的研究[J]. 岩石力学与工程学报,2009,28(12):2535 − 2543. [XIAO Weiguo,DUI Guansuo,CHEN Tielin,et al. A study of constitutive model coupling dilatancy and degradation for jointed rock[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(12):2535 − 2543. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-6915.2009.12.021

    XIAO Weiguo, DUI Guansuo, CHEN Tielin, et al. A study of constitutive model coupling dilatancy and degradation for jointed rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(12): 2535 − 2543. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2009.12.021

    [24] 唐志成,夏才初,肖素光. 节理剪切应力–位移本构模型及剪胀现象分析[J]. 岩石力学与工程学报,2011,30(5):917 − 925. [TANG Zhicheng,XIA Caichu,XIAO Suguang. Constitutive model for joint shear stress-displacement and analysis of dilation[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(5):917 − 925. (in Chinese with English abstract)]

    TANG Zhicheng, XIA Caichu, XIAO Suguang. Constitutive model for joint shear stress-displacement and analysis of dilation[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(5): 917 − 925. (in Chinese with English abstract)

    [25] 高丙丽, 韦兆恒, 任建喜, 等. 降雨作用下考虑结构面劣化的边坡块体稳定性评价[J]. 土木工程学报,2024,57(10):95 − 107. [GAO Bingli, WEI Zhaoheng, REN Jianxi, et al. Stability evaluation of slope block considering structural plane degradation under rainfall[J]. Journal of Civil Engineering,2024,57(10):95 − 107. (in Chinese with English abstract)]

    GAO Bingli, WEI Zhaoheng, REN Jianxi, et al. Stability evaluation of slope block considering structural plane degradation under rainfall[J]. Journal of Civil Engineering, 2024, 57(10): 95 − 107. (in Chinese with English abstract)

图(6)  /  表(4)
计量
  • 文章访问数:  213
  • HTML全文浏览量:  6
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-25
  • 修回日期:  2024-04-23
  • 录用日期:  2024-06-13
  • 刊出日期:  2025-02-24

目录

/

返回文章
返回
x 关闭 永久关闭