ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

甘肃舟曲县江顶崖滑坡抗滑桩变形监测与治理效果分析

姜鑫, 张卫雄, 杨校辉, 陈昆全, 丁保艳

姜鑫,张卫雄,杨校辉,等. 甘肃舟曲县江顶崖滑坡抗滑桩变形监测与治理效果分析[J]. 中国地质灾害与防治学报,2024,35(5): 174-182. DOI: 10.16031/j.cnki.issn.1003-8035.202305037
引用本文: 姜鑫,张卫雄,杨校辉,等. 甘肃舟曲县江顶崖滑坡抗滑桩变形监测与治理效果分析[J]. 中国地质灾害与防治学报,2024,35(5): 174-182. DOI: 10.16031/j.cnki.issn.1003-8035.202305037
JIANG Xin,ZHANG Weixiong,YANG Xiaohui,et al. Analysis of monitoring and treatment effect of anti-sliping piles for the landslide at Jiangdingya, Zhouqu County[J]. The Chinese Journal of Geological Hazard and Control,2024,35(5): 174-182. DOI: 10.16031/j.cnki.issn.1003-8035.202305037
Citation: JIANG Xin,ZHANG Weixiong,YANG Xiaohui,et al. Analysis of monitoring and treatment effect of anti-sliping piles for the landslide at Jiangdingya, Zhouqu County[J]. The Chinese Journal of Geological Hazard and Control,2024,35(5): 174-182. DOI: 10.16031/j.cnki.issn.1003-8035.202305037

甘肃舟曲县江顶崖滑坡抗滑桩变形监测与治理效果分析

基金项目: 甘肃省科技重大专项(23ZDFA007);甘肃省地质矿产勘查开发局创新基金项目(2020CX09;2022CX12;2022CX13);甘肃省自然资源厅科技创新项目(202222)
详细信息
    作者简介:

    姜 鑫(1982—),男,本科,高级工程师,主要从事地灾防治工作。E-mail:47324926@qq.com

    通讯作者:

    杨校辉(1986—),男,博士,副教授,主要从事地基处理与支挡结构等方面的教学与研究工作。E-mail:yxhui86@126.com

  • 中图分类号: P642.22

Analysis of monitoring and treatment effect of anti-sliping piles for the landslide at Jiangdingya, Zhouqu County

  • 摘要:

    为研究白龙江流域舟曲段堆积体滑坡治理中抗滑桩的承载特性及其治理效果,以舟曲江顶崖滑坡治理工程为对象,在滑坡前缘中部和两侧的3根抗滑桩迎滑面和背滑面的中部与角部分别布置钢筋应力计,获取现场3 a的动态数据,并通过ABAQUS对治理后的滑坡体进行数值模拟分析。结果表明:(1)当前桩身钢筋的应力增长速率较施工结束时明显减缓,低于抗拉强度设计值,且钢筋仍处于弹性工作状态,这表明抗滑桩对滑坡的治理效果较好;(2)江顶崖滑坡多级滑面的滑动导致抗滑桩不仅受到滑坡推力的作用,其表面还受到了岩土体的摩擦力作用,具体表现为3根试验桩的迎滑面与背滑面两侧的钢筋在5 m、10 m、20 m深度处均主要表现为拉应力,这与现行规范抗滑桩设计时截面前后两侧拉压应力状态相反的情况不符,是因为应力具有叠加效应,当摩擦力对桩产生的拉应力大于弯曲压应力时,会使得该侧的钢筋应力整体表现为拉应力,从而出现抗滑桩前后两侧钢筋均受拉的应力状态;(3)治理工程完工后,通过数值模拟对滑坡的水平位移进行分析,发现滑坡的最大水平位移为33.93 mm,表明滑坡支护结构加固作用较好,滑坡体在经过加固后处于基本稳定状态,且桩土之间形成了新的变形协调。研究成果可为该区域堆积体滑坡治理工程的设计提供科学依据。

    Abstract:

    In order to study the bearing characteristics and treatment effects of anti-sliping piles in the treatment of accumulation landslides in the Bailong River Basin, Zhouqu section, Zhouqu Jiangdingya landslide treatment project was taken as the object. Steel bar stress gauges were arranged at the middle and corners of the upstream and downstream sliding surfaces of the three anti-sliping piles at the front edge of the landslide, and dynamic data from three years were obtained on site. Numerical simulation analysis was conducted on the treated landslide using ABAQUS. The results show that: (1) The stress growth rate of pile reinforcement has significantly slowed down compared to the end of construction, which is lower than the design value of tensile strength, and the rebar is still in an elastic working state, indicating that the treatment effect of anti-sliding piles on the landslide control is good; (2) The multi-level sliding of Jiangdingya landslide causes the anti-sliding piles to not only be effected by the landslide thrust, but also by the frictional force of the rock and soil body. Specifically, the steel bars on both sides of the sliding and backing surfaces of the three test piles is mainly tensile stress at depths of 5 m, 10 m and 20 m, which is opposite to the stress state of tension and compression on both sides of the section when designing anti-sliding piles according to current standards. This discrepancy is due to the superposition effect of stress. When the tensile stress generated by friction force on the pile is greater than the bending compressive stress, the overall stress of the steel bar on that side will be tensile stress. (3) After the completion of the treatment project, the horizontal displacement of the landslide is analyzed by numerical simulation. It was found that the maximum horizontal displacement of the landslide was 33.93 mm, indicating that the reinforcement of the landslide support structure is good. The landslide body is in a stable state after reinforcement, and a new deformation coordination between piles and soil has been formed. The research results can provide scientific basis for the design of accumulation landslide control project in this area.

  • 地面形变作为一种缓变性地质灾害,主要具有缓变性、滞后性、区域性、差异性、长期性以及不可逆等特点,始终威胁着城市安全及经济社会的可持续发展[1]

    传统的形变监测方法成本高、效率低、受天气影响,且需建立监测网,无法快速开展大面积监测[2]。合成孔径雷达干涉测量技术( Interferometric synthetic aperture radar,InSAR)凭借其全天侯、强穿透性、高精度获取连续覆盖地面高程和信息的突出优势,已在地表形变监测、滑坡监测、矿区沉降监测、危岩体监测等相关领域得到广泛应用[3-9]。在此基础上发展起来的永久散射体合成孔径雷达干涉测量技术(Permanent scatterers interferometric synthetic aperture radar,PS-InSAR)[10-11],有效消除了时空失相干引起的相位噪声,解决了大气效应难以消除的问题,适用于持续性、区域性地表微小形变监测[12],已经广泛应用在城市地面形变监测。

    本研究采用PS-InSAR技术对深圳市南山区后海的片区进行了大范围、长时间的地面和建(构)筑物沉降监测,获得巨厚风化深槽地区地面及采用桩基础施工工艺的建构筑物沉降特征和规律,为深圳后海巨厚深槽地质灾害的排查、防治工作提供基础。

    深圳市位于华南褶皱系中的紫金—惠阳凹褶断束的西南部、五华—深圳大断裂带南西段,高要—惠来东西向构造带中段的南缘地带。北东向莲花山断裂带与北西向珠江口大断裂带两条断裂在深圳南山后海片区交汇,对深圳、香港的地层稳定性均有影响[13]

    南山区是全国百强区,后海片区是总部大厦基地。该片区原为滨海滩涂,被第四系覆盖,填海造陆区未进行过详细的地质调查。在工程建设中发现其下断层发育,基岩埋深70~130 m,形成了巨厚的风化深槽,上面建筑采用超长桩基础[14]

    图1为本次研究区范围,为南山区南部东侧沿海区域。北至白石路,南至望海路,西至后海大道,东边沿沙河西路—望海路,面积约为11.0 km2

    图  1  研究区域范围
    Figure  1.  Study area

    采用2018年2月—2020年12月52期COSMO-SkyMed重复轨道SAR影像,InSAR数据的基本参数见表1

    表  1  In-SAR数据基本参数
    Table  1.  Basic Parameters of In-SAR Data
    参数数值监测日期
    卫星类型COSMO-SkyMed2018-02-04 、2018-03-08 、2018-03-24 、2018-04-09 、2018-05-11
    成像模式StripMap (条带成像)模式2018-06-12 、2018-07-11 、2018-09-13 、2018-10-02 、2018-10-18
    数据波段X波段(3.1cm)2018-11-03 、2018-11-19 、2018-12-01 、2019-01-06 、2019-01-22
    空间分辨率/m32019-02-07 、2019-02-19 、2019-03-11 、2019-03-27 、2019-04-12
    升/降轨模式降轨2019-04-28 、2019-05-10 、2019-06-10 、2019-06-26 、2019-07-12
    极化方式HH极化2019-07-28 、2019-08-14 、2019-08-29 、2019-10-09 、2019-10-25
    中心入射角/(°)32.552019-11-01 、2019-12-03 、2020-01-13 、2020-02-05 、2020-02-21
    影像数量52景2020-03-24 、2020-04-09 、2020-04-25 、2020-05-11 、2020-05-27
    数据级别SLC数据(单视复)2020-06-12 、2020-06-28 、2020-07-14 、2020-07-30 、2020-08-15
    监测日期2018-02-04—2020-12-212020-09-16 、2020-10-11 、2020-10-18 、2020-11-03 、2020-11-19
    处理方法PS-InSAR2020-12-05 、2020-12-21
    下载: 导出CSV 
    | 显示表格

    本研究利用PS-InSAR技术,对2018年2月—2020年12月的影像数据进行计算,获得148151个有效PS点。

    区域累计形变量为−79.1~37.5 mm,累计形变量−8~8 mm的PS点占总数的86%,累计形变量统计见图2。区域平均形变速率为−26.9~11.6 mm/a,形变速率在−3~3 mm/a的PS点占总数的91%,超过9 mm/a的PS点共1106个,占0.8%。

    图  2  累计形变量统计
    Figure  2.  Cumulative settlement statistics

    在研究区域深槽上方选取21处(点1—点21)地面以及构(建)筑物作为重点形变监测特征点进行形变分析,监测特征点位置分布见图3,监测特征点形变特点及曲线见表2

    图  3  深槽分布图及重点监测特征点位置
    Figure  3.  Deep trough distribution and location of key monitoring points
    表  2  监测特征点形变特点及曲线
    Table  2.  Deformation characteristics and curves of feature points
    监测特征点
    分类
    监测特征点位置沉降形变特点典型形变—日期序列曲线
    已有高层建筑点2舜远金融大厦
    点3大成基金总部大厦
    点5海信南方大厦
    点6深圳湾一号
    点7卓越维港名苑
    形变曲线总体均呈略有
    起伏的变化趋势,
    整体形变稳定
    见右侧点7卓越维港名苑形变—日期曲线图
    在建项目点1红土创新广场
    点4恒裕深圳湾
    监测期间受施工影响,形变曲线不规律,或呈略有起伏上升趋势,或呈略有起伏下降趋势
    见右侧点1红土创新广场形变—日期曲线图
    桥梁点8滨海海滨立交桥
    点17桥梁
    点21桥梁
    形变曲线总体呈略有起伏的变化趋势,整体形变稳定
    见右侧点17桥梁形
    变—日期曲线图
    道路点9海德三道
    点10创业路
    点11望海路
    点12望海路
    点20东滨路
    形变曲线总体呈略有起伏的变化趋势,整体形变稳定
    见右侧点12望海路形
    变—日期曲线图
    公园草地点14绿化草地
    点13、点16、点18、点19深圳湾公园草地
    点15大运会纪念碑广场
    除了点18深圳湾公园草地形变曲线为均匀缓慢沉降趋势(见右侧点18形变—日期曲线图)外,其余形变曲线均为总体呈略有起伏的下降趋势,整体形变稳定
      注:PS为监测特征点的控制点,VEL为高程。
    下载: 导出CSV 
    | 显示表格

    综上,研究区域处于比较稳定或整体缓慢形变,存在一处集中形变区域,位置在深圳湾公园周边。

    InSAR技术可快速、精确地获得区域垂向形变场,其在城区可获得毫米级地表形变[15]。InSAR形变监测结果能提供时间序列形变量,统计影像获取期内任意两期影像间的形变量,可以充分保障外业水准资料和 InSAR数据获取形变量比对的时空一致性。

    将研究区域InSAR形变监测结果与同一地区的蛇口文体中心基坑支护工程变形监测结果对比,结果见表3

    表  3  相同位置不同技术手段成果对比
    Table  3.  Comparison of results of different technical means in the same position
    项目蛇口文体中心基坑
    支护形变监测项目
    后海断裂带项目
    技术手段S05级水准仪(134次)InSAR(52期)
    对应位置点7附近
    (深圳市育才舒曼艺术学校体育场)
    点7
    (卓越维港名苑)
    监测时间2019年2月—2020年4月
    累计形变/mm−1.9 −1.6
    下载: 导出CSV 
    | 显示表格

    根据《工程测量标准》(GB50026—2020)[16],对同一目标点采用两种不同的监测手段,相同的监测时段内二者的实际误差为±0.3 mm,小于观测中误差±0.71 mm和最大观测误差±1.41 mm,监测精度满足规范要求。

    由此可见,InSAR技术可获取大面积、全天候、高精度和高分辨率的地表三维空间微小变化,在地表形变监测方面显示出传统监测不具备的优越性。

    监测期间,深圳湾公园及周边区域累计形变量较大,因此在该区域选取了5个点(A1—A5)的勘察资料进行分析,位置分布见图4

    图  4  形变较大区域选取点位
    Figure  4.  Large deformation region

    中建钢构大厦北侧草地累计形变量为-62.1 mm,平均形变速率为20.4 mm/a,形变—日期曲线见图5

    图  5  A2中建钢构大厦北侧形变—日期曲线
    Figure  5.  Deformation-time curve of A2

    该大厦勘察资料表明,场地内人工填土(${\rm{Q}}^{ml} $)成分主要为翻填淤泥,多呈流—软塑状态,组分不均,堆填时间较短,属软弱土层;第四系全新统海相沉积层(${\rm{Qh}}^m$)淤泥以及第四系上更新统沼泽相沉积层(${\rm{Qp}}^h$)淤泥均呈流塑状态,含水量大,孔隙比大,具高压缩性、低强度等特征,属软弱土层,最厚达15 m。场地受断裂构造影响,场地内基岩大部分蚀变严重,局部碎裂岩化特征明显,绿泥石化现象显著。各风化基岩起伏变化较大,块状强风化蚀变粗粒花岗岩顶板标高−41.44~−18.49 m,变化幅度达22.95 m;中风化蚀变粗粒花岗岩顶板标高−48.14~−22.84 m,变化幅度达25.30 m。

    大厦桩基础采用了旋挖桩,平均桩长30.2m,最深50.6m,观测期间大厦整体形变稳定。而大厦北侧场地有均匀沉降趋势,沉降主要由填土及淤泥引起。

    该4点累计形变量为40.9~59.6 mm,平均形变速率为15.29~19.76 mm/a,总体呈均匀沉降趋势。以A5深圳湾人才公园为例,形变—日期曲线见图6

    图  6  A5深圳湾人才公园形变—日期曲线
    Figure  6.  Deformation-time cure of A5

    根据A5深圳湾人才公园勘察资料,钻探深度范围内揭露的地层岩性特征自上而下见表4

    表  4  地层岩性特征
    Table  4.  Formation lithologic characteristics
    地层岩性地层岩性特征
    第四系人工
    填土层
    液性指数压缩指数
    /MPa−1
    压缩模量
    /MPa
    0.450.54.0
    主要为素填土,层厚1.2~26.9 m,呈松散~稍密状,物理力学性质不均匀,工程性质较差,承载力较低,在上部较大荷载长期作用下易产生沉降及不均匀沉降
    第四系海积
    冲积层
    液性指数压缩指数
    /MPa−1
    压缩模量
    /MPa
    1.361.282.0
    主要为淤泥软土层,层厚0.3~17.0 m,呈流塑状,含较多腐殖质、贝壳碎屑,承载力极低,灵敏度高
    第四系残积层及燕山四期侵入花岗岩残积的砾质黏性土和全风化花岗岩、强风化花岗岩,粉粒含量高,受水浸湿或浸泡后,易软化变形,强度、承载力骤减
    下载: 导出CSV 
    | 显示表格

    该区域填土层及淤泥质软土层厚,工程性质差,承载力低,易产生不均匀沉降。该区域草地沉降主要由填土及软土沉降引起。

    (1)本研究基于长时间序列雷达数据,采用PS-InSAR技术对深圳后海片区进行了高精度连续形变监测与分析。通过与传统监测技术对比,监测精度满足规范要求。PS-InSAR新技术能实现大范围、低成本、高精度、高效率的变形监测需求,体现出传统监测不具备的优越性。

    (2)对监测结果进行统计分析,南山后海片区深槽上建(构)筑物的沉降相对稳定,沉降量较大的区域为深圳湾公园草地及其周边区域。研究表明,该区域沉降原因为软土沉降。目前在片区深厚深槽上已有的建筑物桩基础是安全的。

    (3)深圳湾公园草地均处于缓慢持续沉降状态,后续需重点关注。

    (4)该片区巨厚深槽上在建的红土广场、华润深圳湾住宅等建筑。工程桩超长,建筑物的后期沉降值得持续关注。

    (5)深槽区域的浅埋地下燃气、排污管网等管线的变形,本次研究未作深入,此类隐患的影响较大,值得深入关注。

  • 图  1   江顶崖H1滑坡解译图

    Figure  1.   Plan view of the H1 landslide at Jiangdingya

    图  2   滑坡中前部剪切裂缝发育图(镜向SE 170°)

    Figure  2.   Development map of shear cracks in the middle and front part of the landslide (Lens view SE 170°)

    图  3   滑坡治理工程布置平面图与滑坡地质剖面图

    Figure  3.   Layout plan of treatment project and geological section profile of landslide

    图  4   抗滑桩监测传感器布置图

    Figure  4.   Layout of anti-sliding piles monitoring sensors

    图  5   现场监测传感器安装图

    Figure  5.   Installation diagram of on-site monitoring sensors

    图  6   桩身靠江侧角部钢筋应力变化曲线

    Figure  6.   Stress change curve of reinforcement at the river-side corner of anti-sliding pile

    图  7   抗滑桩中部各深度钢筋应力

    Figure  7.   Stress of reinforcements at various depths in the middle section of the anti-sliding pile

    图  8   抗滑桩角部各深度钢筋应力

    Figure  8.   Stress of reinforcements at various depths in the corner section of the anti-sliding pile

    图  9   土体水平位移云图

    Figure  9.   Horizontal displacement nephogram of soil mass

    图  10   抗滑桩区域土体水平位移云图

    Figure  10.   Horizontal displacement nephogram of soil in the anti-sliding pile area

    图  11   抗滑桩区域土体水平位移云图

    Figure  11.   Horizontal displacement nephogram of soil in the anti-sliding pile area

    表  1   材料物理力学参数

    Table  1   Physical and mechanical parameters of materials

    材料 弹性模量
    /MPa
    泊松比 重度
    /(kN·m−3
    黏聚力
    /kPa
    内摩擦角
    /(°)
    滑体土 18 0.32 21 12 22
    滑带土 12 0.35 20.5 9 18
    滑床 100 0.26 26 18 36
    混凝土 3×104 0.2 25
    下载: 导出CSV
  • [1]

    QI Tianjun,MENG Xingmin,QING Feng,et al. Distribution and characteristics of large landslides in a fault zone:A case study of the NE Qinghai-Tibet Plateau[J]. Geomorphology,2021,379:107592. DOI: 10.1016/j.geomorph.2021.107592

    [2]

    YANG Xiaohui,JIANG Yuanwen,ZHU Junchuan,et al. Deformation characteristics and failure mechanism of the Moli landslide in Guoye Town,Zhouqu County[J]. Landslides,2023,20(4):789 − 800. DOI: 10.1007/s10346-022-02019-x

    [3] 郭一兵,姜鑫,郭富赟,等. 甘肃舟曲县果耶镇磨里滑坡成因及堵江危险性预测分析[J]. 中国地质灾害与防治学报,2023,34(3):58 − 68. [GUO Yibing,JIANG Xin,GUO Fuyun,et al. Analysis on the formation of the Moli landslide and river blockage risk in Guoye Town, Zhouqu County of Gansu Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(3):58 − 68. (in Chinese with English abstract)]

    GUO Yibing, JIANG Xin, GUO Fuyun, et al. Analysis on the formation of the Moli landslide and river blockage risk in Guoye Town, Zhouqu County of Gansu Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(3): 58 − 68. (in Chinese with English abstract)

    [4] 陈冲,王卫,吕华永. 基于复合抗滑桩模型加固边坡稳定性分析[J]. 岩土力学,2019,40(8):3207 − 3217. [CHEN Chong,WANG Wei,LYU Huayong. Stability analysis of slope reinforced with composite anti-slide pile model[J]. Rock and Soil Mechanics,2019,40(8):3207 − 3217. (in Chinese with English abstract)]

    CHEN Chong, WANG Wei, LYU Huayong. Stability analysis of slope reinforced with composite anti-slide pile model[J]. Rock and Soil Mechanics, 2019, 40(8): 3207 − 3217. (in Chinese with English abstract)

    [5] 高子雁,李瑞冬,石鹏卿,等. 基于长短期记忆网络的甘肃舟曲立节北山滑坡变形预测[J]. 中国地质灾害与防治学报,2023,34(6):30 − 36. [GAO Ziyan,LI Ruidong,SHI Pengqing,et al. Deformation prediction of the Northern Mountain landslide in Lijie Town of Zhouqu, Gansu Province based on long-short term memory network[J]. The Chinese Journal of Geological Hazard and Control,2023,34(6):30 − 36. (in Chinese with English abstract)]

    GAO Ziyan, LI Ruidong, SHI Pengqing, et al. Deformation prediction of the Northern Mountain landslide in Lijie Town of Zhouqu, Gansu Province based on long-short term memory network[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(6): 30 − 36. (in Chinese with English abstract)

    [6] 张明熠,吕兆华,杨建波. 软土弯剪作用下大直径刚性桩水平承载性能试验[J]. 同济大学学报(自然科学版),2016,44(8):1166 − 1172. [ZHANG Mingyi,LYU Zhaohua,YANG Jianbo. Experiment on lateral load capacities of large-diameter rigid pile against toppling moment and shear forces under soft soil site conditions[J]. Journal of Tongji University (Natural Science),2016,44(8):1166 − 1172. (in Chinese with English abstract)]

    ZHANG Mingyi, LYU Zhaohua, YANG Jianbo. Experiment on lateral load capacities of large-diameter rigid pile against toppling moment and shear forces under soft soil site conditions[J]. Journal of Tongji University (Natural Science), 2016, 44(8): 1166 − 1172. (in Chinese with English abstract)

    [7] 张敏, 周灵, 谭超, 等. 复杂地层方形抗滑桩旋挖成孔工艺及工程应用[J]. 中国地质灾害与防治学报,2023,34(1):85 − 93. [ZHANG Min,ZHOU Ling,TAN Chao,et al. Techniques of rotary hole-drilling for square anti-slide piles in complex formation and its application[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1):85 − 93. (in Chinese with English abstract)]

    ZHANG Min, ZHOU Ling, TAN Chao, et al. Techniques of rotary hole-drilling for square anti-slide piles in complex formation and its application[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 85 − 93. (in Chinese with English abstract)

    [8] 王文沛,殷跃平,王立朝,等. 排水抗滑桩技术研究现状及展望[J]. 水文地质工程地质,2023,50(2):73 − 83. [WANG Wenpei,YIN Yueping,WANG Lichao, et al. Studies on status and prospects of anti-slide shaft technology[J]. Hydrogeology & Engineering Geology,2023,50(2):73 − 83. (in Chinese with English abstract)]

    WANG Wenpei, YIN Yueping, WANG Lichao, et al. Studies on status and prospects of anti-slide shaft technology[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 73 − 83. (in Chinese with English abstract)

    [9] 邓时容,肖世国. 嵌固段顶部拓宽型抗滑桩计算方法[J]. 中国地质灾害与防治学报,2022,33(4):84 − 91. [DENG Shirong,XIAO Shiguo. Calculation method of stabilizing piles with broadened top at the built-in section[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):84 − 91. (in Chinese with English abstract)]

    DENG Shirong, XIAO Shiguo. Calculation method of stabilizing piles with broadened top at the built-in section[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 84 − 91. (in Chinese with English abstract)

    [10] 毛正君,于海泳,梁伟,等. 基于无人机倾斜摄影测量三维建模的区域黄土滑坡识别及特征分析[J]. 中国地质,2024,51(2):561 − 576. [MAO Zhengjun,YU Haiyong,LIANG Wei,et al. Identification and feature analysis of regional loess landslides based on UAV tilt photogrammetry 3D modeling[J]. Geology in China,2024,51(2):561 − 576. (in Chinese with English abstract)]

    MAO Zhengjun, YU Haiyong, LIANG Wei, et al. Identification and feature analysis of regional loess landslides based on UAV tilt photogrammetry 3D modeling[J]. Geology in China, 2024, 51(2): 561 − 576. (in Chinese with English abstract)

    [11] 张会远,吴锐,靳喆菲,等. 某滑坡抗滑桩治理效果监测分析[J]. 煤田地质与勘探,2015,43(5):69 − 73. [ZHANG Huiyuan,WU Rui,JIN Zhefei,et al. Monitoring and analysis of reinforcement effect of anti-slide piles of a slop[J]. Coal Geology & Exploration,2015,43(5):69 − 73. (in Chinese with English abstract)]

    ZHANG Huiyuan, WU Rui, JIN Zhefei, et al. Monitoring and analysis of reinforcement effect of anti-slide piles of a slop[J]. Coal Geology & Exploration, 2015, 43(5): 69 − 73. (in Chinese with English abstract)

    [12] 任伟中,陈浩,唐新建,等. 运用钻孔测斜仪监测滑坡抗滑桩变形受力状态研究[J]. 岩石力学与工程学报,2008,27(增刊2):3667 − 3672. [REN Weizhong,CHEN Hao,TANG Xinjian,et al. Study on monitoring deformation and stress state of landslide anti-slide pile by borehole inclinometer[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(Sup 2):3667 − 3672. (in Chinese)]

    REN Weizhong, CHEN Hao, TANG Xinjian, et al. Study on monitoring deformation and stress state of landslide anti-slide pile by borehole inclinometer[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(Sup 2): 3667 − 3672. (in Chinese)

    [13] 王秀丽,金兆鑫,董文燕,等. 舟曲锁儿头滑坡抗滑桩监测及分析[J]. 水文地质工程地质,2015,42(5):123 − 128. [WANG Xiuli,JIN Zhaoxin,DONG Wenyan,et al. Monitoring and analysis of anti-slide pile of the Suo’ertou large landslide in Zhouqu[J]. Hydrogeology & Engineering Geology,2015,42(5):123 − 128. (in Chinese with English abstract)]

    WANG Xiuli, JIN Zhaoxin, DONG Wenyan, et al. Monitoring and analysis of anti-slide pile of the Suo’ertou large landslide in Zhouqu[J]. Hydrogeology & Engineering Geology, 2015, 42(5): 123 − 128. (in Chinese with English abstract)

    [14] 黄雪峰,张蓓,覃小华,等. 悬臂式围护桩受力性状与土压力试验研究[J]. 岩土力学,2015,36(2):340 − 346. [HUANG Xuefeng,ZHANG Bei,QIN Xiaohua,et al. Experimental investigation on force behavior and earth pressure of cantilever fender pile[J]. Rock and Soil Mechanics,2015,36(2):340 − 346. (in Chinese with English abstract)]

    HUANG Xuefeng, ZHANG Bei, QIN Xiaohua, et al. Experimental investigation on force behavior and earth pressure of cantilever fender pile[J]. Rock and Soil Mechanics, 2015, 36(2): 340 − 346. (in Chinese with English abstract)

    [15] 杨校辉,朱鹏,窦晓东,等. 甘肃舟曲江顶崖古滑坡复活变形特征与稳定性分析[J]. 地质通报,2024,43(6):947 − 957. [YANG Xiaohui,ZHU Peng,DOU Xiaodong,et al. Resurrection deformation characteristics and stability of Jiangdingya ancient landslide in Zhouqu, Gansu Province[J]. Geological Bulletin of China,2024,43(6):947 − 957. (in Chinese with English abstract)]

    YANG Xiaohui, ZHU Peng, DOU Xiaodong, et al. Resurrection deformation characteristics and stability of Jiangdingya ancient landslide in Zhouqu, Gansu Province[J]. Geological Bulletin of China, 2024, 43(6): 947 − 957. (in Chinese with English abstract)

    [16]

    GALEANDRO A,DOGLIONI A,SIMEONE V,et al. Analysis of infiltration processes into fractured and swelling soils as triggering factors of landslides[J]. Environmental Earth Sciences,2014,71(6):2911 − 2923. DOI: 10.1007/s12665-013-2666-7

    [17] 陈伟志,李安洪,胡会星,等. 横穿古滑坡框架式抗滑支挡结构工程技术研究[J]. 岩石力学与工程学报,2021,40(增刊1):2861 − 2875. [CHEN Weizhi,LI Anhong,HU Huixing,et al. Study on engineering technology of frame anti-sliding retaining structure across ancient landslide[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(Sup 1):2861 − 2875. (in Chinese)]

    CHEN Weizhi, LI Anhong, HU Huixing, et al. Study on engineering technology of frame anti-sliding retaining structure across ancient landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(Sup 1): 2861 − 2875. (in Chinese)

    [18] 郑颖人,赵尚毅. 用有限元强度折减法求边(滑)坡支挡结构的内力[J]. 岩石力学与工程学报,2004,23(20):3552 − 3558. [ZHENG Yingren,ZHAO Shangyi. Calculation of inner force of support structure for landslide/slope by using strength reduction fem[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(20):3552 − 3558. (in Chinese with English abstract)]

    ZHENG Yingren, ZHAO Shangyi. Calculation of inner force of support structure for landslide/slope by using strength reduction fem[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(20): 3552 − 3558. (in Chinese with English abstract)

    [19] 张卫雄,翟向华,丁保艳,等. 甘肃舟曲江顶崖滑坡成因分析与综合治理措施[J]. 中国地质灾害与防治学报,2020,31(5):7 − 14. [ZHANG Weixiong,ZHAI Xianghua,DING Baoyan,et al. Causative analysis and comprehensive treatment of the Jiangdingya landslide in Zhouqu County of Gansu Province[J]. The Chinese Journal of Geological Hazard and Control,2020,31(5):7 − 14. (in Chinese with English abstract)]

    ZHANG Weixiong, ZHAI Xianghua, DING Baoyan, et al. Causative analysis and comprehensive treatment of the Jiangdingya landslide in Zhouqu County of Gansu Province[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(5): 7 − 14. (in Chinese with English abstract)

    [20] 张卫雄,丁保艳,张文纶,等. 舟曲江顶崖大型滑坡成因及破坏机制分析[J]. 防灾减灾工程学报,2022,42(4):714 − 722. [ZHANG Weixiong,DING Baoyan,ZHANG Wenlun,et al. Analysis on the cause and failure mechanism of the jiangdingya large landslide in Zhouqu,Gansu Province[J]. Journal of Disaster Prevention and Mitigation Engineering,2022,42(4):714 − 722. (in Chinese with English abstract)]

    ZHANG Weixiong, DING Baoyan, ZHANG Wenlun, et al. Analysis on the cause and failure mechanism of the jiangdingya large landslide in Zhouqu, Gansu Province[J]. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(4): 714 − 722. (in Chinese with English abstract)

    [21] 窦晓东,贾 强,刘心彪,等. 舟曲县南峪乡江顶崖滑坡灾害应急治理工程勘查报告[R]. 甘肃省地质环境监测院,2018. [DOU Xiaodong,JIA Qiang,LIU Xinbiao,et al. Exploration report of Jiangdingya landslide disaster emergency management project in Nanyu Township,Zhouqu County[R]. Gansu Province Geological Environment Monitoring Institute,2018. (in Chinese)]

    DOU Xiaodong, JIA Qiang, LIU Xinbiao, et al. Exploration report of Jiangdingya landslide disaster emergency management project in Nanyu Township, Zhouqu County[R]. Gansu Province Geological Environment Monitoring Institute, 2018. (in Chinese)

  • 期刊类型引用(3)

    1. 耿昊,樊新杰,赵宇,王开华,祁凯宁,唐彦超. 基于SBAS技术的露天煤矿地表沉降监测与分析. 建井技术. 2024(02): 34-41 . 百度学术
    2. 黄宝华,周利霞,孔祥侨. 基于PS-InSAR的建筑及道路动态沉降安全监测. 山东交通学院学报. 2024(02): 53-59 . 百度学术
    3. 何清,魏路,肖永红. 基于SBAS-InSAR技术的安徽亳州市地面沉降时空分布特征与影响因素分析. 中国地质灾害与防治学报. 2023(05): 81-90 . 本站查看

    其他类型引用(2)

图(11)  /  表(1)
计量
  • 文章访问数:  146
  • HTML全文浏览量:  12
  • PDF下载量:  67
  • 被引次数: 5
出版历程
  • 收稿日期:  2023-05-25
  • 修回日期:  2024-03-04
  • 录用日期:  2024-06-13
  • 网络出版日期:  2024-08-07
  • 刊出日期:  2024-10-24

目录

/

返回文章
返回