ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

四川凉山州地质灾害灾情特征与主要致灾类型

徐伟, 郑玄, 欧文, 铁永波, 付小麟, 宋钰朋, 殷万清

徐伟,郑玄,欧文,等. 四川凉山州地质灾害灾情特征与主要致灾类型[J]. 中国地质灾害与防治学报,2024,35(5): 78-89. DOI: 10.16031/j.cnki.issn.1003-8035.202305029
引用本文: 徐伟,郑玄,欧文,等. 四川凉山州地质灾害灾情特征与主要致灾类型[J]. 中国地质灾害与防治学报,2024,35(5): 78-89. DOI: 10.16031/j.cnki.issn.1003-8035.202305029
XU Wei,ZHENG Xuan,OU Wen,et al. Characteristics of losses of geological disasters and major disaster types in Liangshan Prefecture, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2024,35(5): 78-89. DOI: 10.16031/j.cnki.issn.1003-8035.202305029
Citation: XU Wei,ZHENG Xuan,OU Wen,et al. Characteristics of losses of geological disasters and major disaster types in Liangshan Prefecture, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2024,35(5): 78-89. DOI: 10.16031/j.cnki.issn.1003-8035.202305029

四川凉山州地质灾害灾情特征与主要致灾类型

基金项目: 中国地质调查局地质调查项目(DD20221746)
详细信息
    作者简介:

    徐 伟(1986—),男,山东淄博人,地质工程专业,博士研究生,高级工程师,主要从事地质灾害调查评价和岩体稳定性方向研究。E-mail:052054@163.com

    通讯作者:

    宋钰朋(1991—),男,四川成都人,地下水科学与工程专业,大学本科,工程师,主要从事地质灾害评价与防治工作。E-mail:490882449@qq.com

  • 中图分类号: P642

Characteristics of losses of geological disasters and major disaster types in Liangshan Prefecture, Sichuan Province

  • 摘要:

    凉山州受活动构造、地形地貌、河流切割等作用,是四川省地质灾害高风险地区。为系统查明凉山州地质灾害发育特征、灾情特征及主要致灾类型,采用资料收集、数理统计、现场调查等方法,统计分析地质灾害数据、灾情数据和重大突发地质灾害实例。结果表明:凉山州地质灾害以滑坡、泥石流为主,滑坡主要为中小规模土质滑坡,泥石流主要为中小规模沟道型泥石流;有记录以来共计发生24起死亡10人以上的地质灾害;2006—2020年,共发生46起地质灾害灾情,以泥石流为主。总结提炼了7种地质灾害主要致灾类型,红层滑坡是凉山州滑坡主要类型之一,遇水易软化解体,自稳能力差;复活型古滑坡,在凉山州多有分布,由于人类工程活动、河流冲刷等因素,古滑坡易变形和复活;库岸型滑坡,主要发育在木里县、布拖县、宁南县的水电站库区内,受库水位消落带影响斜坡塌岸隐患较多,坡体稳定性降低形成滑坡;含煤层型滑坡,主要发育在凉山州南部的煤系地层区域,斜坡前缘不合理开挖易诱发前缘滑塌并造成整体滑动;矿渣型泥石流是凉山州泥石流主要类型之一,矿渣、废石、尾砂等不合理堆放,为泥石流提供了丰富物源;凉山州常发生森林火灾,火烧迹地遭遇暴雨后易诱发火后泥石流;在构造活动强烈、山势陡峭的沟谷上游发生崩滑灾害后,易沿沟运动冲出,堵塞河道形成链式灾害。研究成果可为凉山州针对性开展防灾减灾工作提供数据支撑和科学参考。

    Abstract:

    Due to active tectonics, topography, and river dynamics, Liangshan Prefecture is highly susceptible to geological disasters in Sichuan Province. In order to find out the developmental patterns, characteristics, and prevalent disaster modes of geological disasters in Liangshan Prefecture, this paper uses data collection, mathematical statistics, field investigation and other methods to conducted a comprehensive analysis of geological disaster data, disaster situations, and major sudden geological disaster cases in Liangshan Prefecture. The results show that the primary geological hazards in Liangshan Prefecture are landslides and mud-rock flows. The landslides are mainly medium and small scale soil landslides, and the mud-rock flows are mainly medium and small scale gully mudflows. Over the recorded period, Liangshan Prefecture experienced 23 geological disasters resulting in more than 10 fatalities. Between 2006 to 2020, 46 geological disasters occurred, mainly in the forms of debris flow. This paper identifies and refines seven typical geological disaster modes in Liangshan Prefecture. Notably, red bed landslides, prone to softening and disintegration in water with poor self-stability, constitute a significant landslide type. Reactivation of ancient landslides, widely distributed in the region, is triggered by human activities, river erosion, and other factors. Reservoir bank landslides are prevalent in the reservoir areas of Muli County, Butuo County, and Ningnan County, posing risks due to fluctuating reservoir water levels. There are many hidden dangers of bank collapse due to the influence of reservoir water level, and the slope Coal-bearing landslides are prominent in the southern coal measure stratum area, induced by unsustainable mining practices. Slag-type debris flow is one of the main types of debris flow in Liangshan Prefecture. The unreasonable stacking of slag, waste rock and tailings provides rich material sources for debris flow disasters. Liangshan Prefecture frequently experiences forest fires, and the burned land is easy to induce post-fire mud-rock flow after heavy rain. When the landslide disasters occurs in the upper reaches of gullies with strong tectonic activity and steep mountain potential, it is easy to rush out along the gully, blocking the river and forming a chain disaster. The research results can provide data support and scientific insights for disaster prevention and mitigation in Liangshan Prefecture.

  • 膨胀土边坡的稳定性一直是岩土界广泛关注的问题。目前,边坡稳定性分析的常用方法主要包括了极限平衡法、极限分析法等,都建立在极限平衡理论基础之上,并不适用于膨胀土边坡的稳定性分析[1]。另一种常用的方法是有限元强度折减法,早在1975年该方法就被Zienkiewice等[2]用来求解边坡稳定问题,随着计算机硬件技术和有限元软件技术的飞速发展,运用有限元强度折减法分析边坡稳定已经成为新的趋势[3-10]。国内很多学者将强度折减法运用到膨胀土边坡稳定分析中,取得了一系列成果。

    周健等[11]利用强度折减法研究膨胀土边坡的稳定性,发现干湿循环会导致膨胀土抗剪强度衰减,且随着干湿循环次数的增加,边坡稳定性降低,安全系数减小。刘明维等[12]研究了强度折减法在膨胀土斜坡地基路堤稳定性分析中的应用,发现强度折减法所得结果与实际情况相符。张硕等[3]基于有限元强度折减法研究了雨季土体增重、强度降低和膨胀作用对膨胀土边坡稳定性的影响,发现强度降低是导致边坡失稳的主要原因,膨胀作用次之,土体增重较小。程灿宇等[13]利用MIDAS/GTS、FLAC和ANSYS三种软件采用强度折减法分别对不同工况进行了稳定性分析,发现弱膨胀土边坡无论采用M-C屈服准则,还是D-P屈服准则所得结果差异不大。谭波等[14]采用强度折减法对不同条件下的膨胀土边坡的安全系数进行了计算,发现次生裂隙面发育是导致膨胀土边坡失稳的主要原因之一。杨才等[15]根据强度折减有限元法对不同条件失稳边坡稳定性分析结果,提出以最大塑性应变以及最小塑性应变的量级指标来判定塑性区贯通时刻。

    然而,干湿循环、降雨入渗等因素会引起浅层膨胀土干密度降低、吸力衰减,从而使抗剪强度大幅度下降。目前,在采用强度折减法分析膨胀土边坡稳定性的同时系统考虑抗剪强度衰减影响的研究尚不多见。为此,本文采用试验与数值模拟相结合的方式,系统地考虑了抗剪强度衰减特性的膨胀土边坡稳定性分析。首先对广西宁明膨胀土开展了室内直剪试验,分析了含水量、干密度对膨胀土抗剪强度衰减的影响;再以此为依据,利用Midas有限元分析软件研究考虑抗剪强度衰减特性对膨胀土边坡稳定性安全系数的影响,获取了边坡安全系数随抗剪强度折减的动态变化规律,以期为工程实践提供参考。

    土样取自广西崇左-夏石镇某高速公路膨胀土边坡路段,其天然含水量、最优含水量和天然干密度分别为32.5%,24%和1.40 g/cm3,其他土性指标,比重(Gs),液限(WL),塑限(WP),塑性指数(IP),自由膨胀率(σf)见表1。自由膨胀率为42.8%,按照《膨胀土地区建筑技术规范》[16]的分类,该膨胀土为弱膨胀性膨胀土。

    表  1  宁明膨胀土基本土体参数
    Table  1.  Basic soil parameters of Ningming expansive soil
    参数Gs/(g.cm−3wL/%wP/%IPσf/%
    取值2.8059.1124.6834.4342.8
    下载: 导出CSV 
    | 显示表格

    首先,将现场取回的扰动土试样碾散过2 mm筛,过筛后放入105℃的烘箱中烘24h,使试样具有相同的初始结构,并将烘干土用收纳箱密封保存备用。接着,按目标含水量(控制干密度为1.6 g/cm3)和目标干密度(控制含水量18%)要求配制成湿土,并装入保鲜袋,经闷料24 h后测得土样的最终含水量与目标含水量之间误差不超过1%;最后,为保证环刀试样均匀一致,采用自制的模具(图1)进行制样,并利用液压千斤顶脱模推出,控制试样的直径为61.8 mm,高度为15 mm,目的是使试样在竖直方向上能够充分膨胀,每组平行土样密度差不超过±0.02 g/cm3,否则废弃重做。试样配制过程如图2,最终制成的每个环刀试样表面均平整无破损,且长度误差不超过0.2 mm,则为满足要求的试样。

    图  1  制样模具
    Figure  1.  Sample preparation mould
    图  2  配土过程示意图
    Figure  2.  Diagram of the soil preparation process

    以初始干密度为1.6 g/cm3,含水量分别为9%、12%、15%、18%、21%、24%和27%制取环刀试样7组,每组4个;并以初始含水量为18%,干密度分别为1.4、1.5、1.6和1.7 g/cm3制取环刀试样4组,每组4个,然后进行常规直剪试验(图3),试验施加的竖向压力分别为100 kPa、200 kPa、300 kPa、400 kPa,剪切速率为0.02 mm/min,初始剪切位移均保持在3.850 mm左右,剪切位移量程13.000 mm。

    图  3  四联直剪仪
    Figure  3.  Quadruple direct shear testing device

    为研究广西宁明膨胀土的抗剪强度随含水量变化的规律,对不同含水量的土样进行直剪试验,试验结果如表2所示。

    表  2  宁明膨胀土抗剪强度试验结果表
    Table  2.  Results of shear strength of Ningming expensive soils
    试验参数w/%φ/(°)c/kPa
    试验结果8.8027.3100.36
    11.724.5693.28
    14.621.8067.34
    17.519.8254.64
    20.817.9241.22
    23.315.2030.86
    26.112.389.90
    下载: 导出CSV 
    | 显示表格

    根据表2可绘制出宁明膨胀土黏聚力和内摩擦角与含水量的关系如图4图5所示,拟合后可得到黏聚力和内摩擦角与含水量的关系式:

    图  4  宁明膨胀土黏聚力随含水量变化规律
    Figure  4.  Variation of cohesive force of Ningming expansive soil with water content
    图  5  宁明膨胀土内摩擦角随含水量变化规律
    Figure  5.  Variation of internal friction angle of Ningming expansive soil with water content
    $$ c = { - 5.192}w + 147.9 $$ (1)
    $$ \varphi = - 0.827w + 34.36 $$ (2)

    由式(1)和(2)可知,cφw都存在近似线性的关系,这与文献[17-18]结果一致,含水量每增大5%,其黏聚力约减小26 kPa,内摩擦角减小4.2°左右;为更好的表示cw的衰减规律,参考吕海波等[19]的研究,可计算出c的衰减率为:

    $$ \eta = \frac{{\left| {{c_0} - {c_1}} \right|}}{{{c_0}}} \times 100\% $$ (3)

    式中:η——黏聚力衰减率;

    c0——初始黏聚力;

    c1——随含水量变化后的黏聚力。

    根据表3可知,随着宁明膨胀土含水量的逐渐增大黏聚力不断衰减,在最低目标含水量9%以3%递增至目标含水量27%的过程中,黏聚力的衰减率变化趋势为增大-减小-增大,说明膨胀土在低含水量和接近饱和含水量时,黏聚力对含水量的变化显得十分敏感。

    表  3  宁明膨胀土黏聚力衰减率计算结果表
    Table  3.  Results of cohesion decay rate of Ningming expansive soil
    试验参数w/%c/kPaη/%
    试验结果8.8100.36
    11.793.287.05
    14.667.3427.81
    17.554.6418.86
    20.841.2224.56
    23.330.8625.13
    26.19.967.92
    下载: 导出CSV 
    | 显示表格

    在试样ρd保持一致的情况下(1.6 g/cm3),可从图6图7中看出在相同垂直应力作用下,抗剪强度随着w的增大呈现减小的趋势。

    图  6  不同含水量试样抗剪强度随垂直压力的变化
    Figure  6.  Change of the shear strength with vertical pressure of samples with different water contents
    图  7  不同荷载下试样抗剪强度随含水量的变化
    Figure  7.  Change of the shear strength with water content of specimens undergoing different vertical loads

    上述试验结果表明,宁明膨胀土的抗剪强度随着含水量的改变发生显著变化;主要表现为在含水量增大时黏聚力和内摩擦角发生衰减,其中黏聚力的衰减较内摩擦角更为明显。

    根据表4数据可拟合出试样黏聚力和内摩擦角随干密度的变化规律,如图8图9所示。

    表  4  不同干密度下试样试验结果记录表
    Table  4.  Record table of test results under different dry densities
    试验参数ρd/(g·cm−3c/(kPa)φ/(°)
    试验结果1.797.2626.5
    1.654.6419.82
    1.540.3417.82
    1.437.5716.87
    下载: 导出CSV 
    | 显示表格
    图  8  宁明膨胀土黏聚力随干密度变化规律
    Figure  8.  Variation of cohesive force of Ningming expansive soil with dry density
    图  9  宁明膨胀土内摩擦角随干密度变化规律
    Figure  9.  Variation of internal friction angle of Ningming expansive soil with dry density

    图8图9可观察出宁明膨胀土的黏聚力和内摩擦角随干密度的变化曲线符合乘幂函数的拟合结果,其中:

    $$ c = 0.126{{\rm{e}}^{3.884{\rho _{\rm{d}}}}} $$ (4)
    $$ \varphi = 1.631{{\rm{e}}^{1.614{\rho _{\rm{d}}}}} $$ (5)

    分析式(4)可知试样c随着ρd的减小而减小,且随着ρd的减小,c的衰减速率由快到慢,并最终趋于稳定;而在接近最大干密度(1.78 g/cm3)时变化较为显著,在干密度由1.4 g/cm3增大至1.6 g/cm3时,c增加了17.07 kPa;在干密度由1.6 g/cm3增大至1.7 g/cm3时,c增加了42.62 kPa。而由式(5)能看出φ亦随着ρd的减小而减小,但其整体的变化幅度并不大,干密度1.4 g/cm3与1.7 g/cm3的试样φ相差约9.6°;图10中各级载荷下的抗剪强度都随着试样ρd的减小而降低,且其变化幅度在高垂直应力条件下更为显著。

    图  10  不同干密度下试样抗剪强度随垂直应力的变化
    Figure  10.  Variation of shear strength with vertical stress of specimens of different dry densities

    干密度对宁明膨胀土抗剪强度的影响主要体现在黏聚力上,试样干密度越小,单位体积土体的土颗粒越少,土粒间水膜越薄,其抗剪强度越小;此外,膨胀土干密度越小,其吸力越大,试样的抗剪强度越低;而干密度对于内摩擦角的整体影响并不显著,其变化在10°以内。

    根据广西崇左-夏石镇某高速公路膨胀土边坡为研究对象,并参考该公路的地质勘察报告,该边坡土质主要由填土(①1和①2)、黏土②、强风化泥岩③和中风化泥岩④组成。同时根据地质调查及钻探、探槽揭示,该边坡滑动带基本位于黏土层,且下部强风化泥岩等土体不透水,大气影响深度为7 m,刚好大致为填土厚度和黏土厚度之和,影响急剧层深度为2.5 m。相关土层天然状态下基本参数指标见表5

    表  5  土层相关参数
    Table  5.  Soil layer related parameters
    地层岩性厚度
    /m
    重度
    /(kN·m−3
    内摩擦角
    /(°)
    黏聚力
    /kPa
    其它
    填土①10.2~118.0524成分黏土
    填土①22.5~3.318.8307上层砾砂,
    下层碎石
    黏土②0.3~418.48.435.6中等膨胀土
    强风化泥岩③0.6~119.32545质量等级Ⅴ级
    中风化泥岩④未钻穿19.63565质量等级Ⅴ级
    下载: 导出CSV 
    | 显示表格

    结合上述实际工程地质勘察报告,将膨胀土边坡考虑为非匀质边坡,同时为提高模型求解时间,取黏土弹性模量12000 kPa,容重18.4 N/m3,泊松比0.3,边坡高20 m,坡比1∶1.5。为避免尺寸效应带来的误差和便于模型求解收敛,坡顶取15 m,坡底取25 m,网格按线性梯度(长度)划分,起始长度1.2 m,结束长度0.5 m。由于填土土层由于土体较松散,易膨胀开裂,在降雨作用下容易引发降雨入渗,易软化下部土体,因此实际工程中对该部分填土进行了挖除。填土挖除后,为充分合理考虑到大气影响层对膨胀土边坡中黏土的影响,同时又不会影响到下部不透水泥岩,取大气影响层为距离坡面4 m范围的土体,正好为黏土厚度,急剧层为距离坡面1.5 m范围的土体(图11)。

    图  11  模型示意图
    Figure  11.  Numerical simulation model

    根据室内直剪试验结果,同时考虑到膨胀土具有浅层性,将测得的7个含水量下(干密度均为1.6 g/cm3)的膨胀土抗剪强度参数指标cφ赋予给受大气影响的风化层土体,即距离坡面4 m范围内的黏土。强、中风化泥岩层土体参数指标取地质勘察报告的值,具体数值见表5。计算得到不同含水量w下膨胀土边坡整体位移和潜在滑移面,如图12图13所示。

    图  12  1.6 g/cm3干密度不同含水量条件下的边坡位移
    Figure  12.  Slope displacement with the 1.6 g /cm3 dry density under different moisture content conditions
    图  13  1.6 g/cm3干密度不同含水量条件下的边坡潜在滑移面
    Figure  13.  Potential slip surface of slope with the dry density of 1.6 g/cm3under different moisture content

    分析图12图13可知,随着含水量w的增大,边坡的整体位移整体呈增大趋势,非饱和膨胀土边坡的浅层破坏由受大气影响层膨胀土强度衰减导致。随着含水量的增加,土体的c不断减小,边坡位移不断增大,滑移面逐渐变浅;破坏形式为浅层滑塌式的破坏。边坡失稳的滑移面位置位于大气影响层和不透水泥岩的交界处,且与黏土的底部相切。

    基于相同干密度,不同含水量下膨胀土的剪切试验和地质勘察报告,利用有限元分析软件对边坡进行稳定性分析,可得到随着膨胀土含水量的变化对边坡稳定性安全系数的影响规律,如图14所示的曲线,表达式为:

    图  14  边坡安全系数随含水量的变化规律
    Figure  14.  The variation of slope safety factor with water content
    $$ y = - {\text{0}}{\text{.008}}{x^2} + {\text{0}}{\text{.1884}}x + {\text{2}}{\text{.025}} $$ (6)

    随着w的增大,膨胀土的强度参数指标不断衰减,含水量较高比低含水量情况下的衰减速度更大。同时,膨胀土边坡在天然状况下处于稳定状态,但当w增大至27%时,其Fs为0.850,稳定性转变为失稳状态,发生滑坡、坍塌等工程现象;在此基础上,若继续增大含水量,膨胀土边坡将可能由浅层失稳进入完全失稳状态,这与实际工程中,在长时间降雨后,曾出现的多次滑坡现象类似。

    根据试验结果,将测得的四个干密度下(含水量均为18%)的膨胀土抗剪强度参数指标cφ赋予给距离坡面4 m范围的黏土。强、中风化泥岩层土体抗剪强度参数指标取地质勘察报告值,具体数值见表5。计算得到不同ρd下膨胀土边坡整体位移和潜在滑移面,如图15图16所示。

    图  15  18%含水量不同干密度条件下的边坡位移
    Figure  15.  Slope displacement under different dry densities with the moisture content of 18%
    图  16  18%含水量不同干密度条件下的边坡潜在滑移面
    Figure  16.  Potential slip surface of slope under different dry densities with the 18% moisture content

    图15图16中可以看出试样的ρd越小,边坡位移越大,潜在滑移面变浅;这是因为土体的c随着ρd的减小而减小,使得其抗剪强度降低;此时,边坡的破坏形式由整体滑动变为浅层滑塌。基于相同含水量,不同干密度下膨胀土的剪切试验和地质勘察报告,利用有限元分析软件对边坡进行稳定性分析,可得到随着膨胀土干密度的变化对边坡稳定性安全系数的影响规律,如图17所示的曲线,其表达式为:

    图  17  边坡安全系数随干密度的变化规律
    Figure  17.  The variation of slope safety factor with dry density
    $$ y = {\text{8}}{\text{.375}}{x^2} - {\text{23}}{\text{.24}}x + {\text{18}}{\text{.41}} $$ (7)

    试样ρd越小,其抗剪强度越低;且在ρd越大时其Fs增大趋势越为显著;1.5 g/cm3干密度下的Fs为2.409,比1.4 g/cm3的高出0.124,而1.7 g/cm3干密度下的Fs与1.6 g/cm3条件下的差值为0.459。

    (1)含水量的增大、干密度的减小都会引起膨胀土的峰值抗剪强度、黏聚力以及内摩擦角发生不同程度的衰减,其中,黏聚力的衰减幅度相较于内摩擦角更大。

    (2)通过多次膨胀土强度折减的方法可以很好地模拟降雨过程中由抗剪强度衰减引起的边坡稳定性的动态变化:风化层土体强度接近未风化层土体强度时,边坡处于稳定状态,潜在滑动面穿过分层界面;随着含水量增大、干密度变小,风化层抗剪强度会不断衰减,引起潜在滑动面逐渐外移,边坡稳定性降低。

    (3)数值模拟结果表明:与干密度减小相比,含水量的增大对边坡稳定更为不利,含水量增加到27%以后,膨胀土边坡由稳定状态变为欠稳定状态,因此在分析膨胀土边坡稳定性时,应着重考虑含水量变化的影响。

  • 图  1   金阳县新区建设开挖形成的陡坡

    Figure  1.   Steep slope formed by construction excavation of Jinyang New District

    图  2   切坡建房引发的滑坡

    Figure  2.   Landslide triggered by slope cutting for building construction

    图  3   雷波县某磷矿形成的矿渣堆

    Figure  3.   Phosphorite slag heap formed in a phosphate mine in Leibo County

    图  4   凉山州地质灾害分布图

    Figure  4.   Geological hazard distribution map of Liangshan Prefecture

    图  5   凉山州红层地层和红层滑坡分布图

    Figure  5.   Red-bed strata and red-bed landslide distribution map in Liangshan Prefecture

    图  6   会理市新发镇铜厂村1组老包滑坡示意图

    Figure  6.   Schematic diagram of Laobao landslide in Group 1, Tongchang Village, Xinfa Town, Huili City

    图  7   金阳县天地坝镇老营盘村城北滑坡

    注:a为滑坡全貌;b为滑坡后壁;c、d为复活体变形特征。

    Figure  7.   Landslide in the north of Laoyingpan Village, Tiandiba Town, Jinyang County

    图  8   白鹤滩电站边坡前缘塌岸

    Figure  8.   Bank Collapse at the toe of the slope near the Baihetan Hydropower Station

    图  9   木里县瓦厂镇纳子店村店扎组滑坡

    注:a为全貌;b为滑坡后部裂缝;c为滑坡后部垮塌猪圈。

    Figure  9.   Diancha Formation landslide in Nazidian Village, Wachang Town, Muli County

    图  10   布拖县勒吉村4组约坡吉乃滑坡示意图

    Figure  10.   Schematic diagram of Yuepo Jinai landslide in Group 4, Leji Village, Butuo County

    图  11   日格尔泥石流示意图

    Figure  11.   Schematic diagram of the Rigeer debris flow

    图  12   木里县项脚乡项脚沟泥石流示意图

    注:a为流域平面图;b为过火区坡面侵蚀物源;c为主沟淤积段。

    Figure  12.   Schematic diagram of debris flow in Xiangjiao Ditch, Xiangjiao Township, Muli County

    图  13   冕宁县照壁山滑坡-泥石流链式灾害示意图

    Figure  13.   Schematic diagram of Zhaobi Mountain landslide-debris flow chain disaster in Mianning County

    表  1   凉山州地质灾害发育类型及数量

    Table  1   Development types and quantities of geological hazards in Liangshan Prefecture

    规模 崩塌 滑坡 泥石流 地面塌陷 合计 占比/%
    特大型 2 3 4 0 9 0.22
    大型 2 106 22 0 130 3.24
    中型 76 830 258 0 1164 28.98
    小型 169 1735 803 6 2713 67.55
    合计 249 2674 1087 6 4016 100
    占比/% 6.20 66.58 27.07 0.15 100
    下载: 导出CSV

    表  2   凉山州不同类型地质灾害发育特征统计

    Table  2   Statistical analysis of development characteristics of different types of geological hazards in Liangshan Prefecture

    灾害类型 发育特征 数量/处 占比/%
    滑坡 土质 2950 98.40
    岩质 48 1.60
    崩塌 土质 13 4.09
    岩质 305 95.91
    泥石流 沟道型 1177 96.55
    坡面型 42 3.45
    下载: 导出CSV

    表  3   凉山州历史重大地质灾害灾情简表(死亡10人以上)

    Table  3   Summary of major historical significant geological disasters in Liangshan Prefecture (with 10 or more fatalities)

    序号 位置 发生日期 灾害类型 规模
    /104 m3
    受灾对象 受灾人口/人 死亡/人 直接经济
    损失/万元
    具体成因
    1 西昌城区及周边乡镇 1850-09-12 7.5级地震 不详 居民、房屋、道路等 2.79万户 约27 000 不详 7.5级地震
    2 会东县小田坝村下坝老街 1881-02-06 滑坡 不详 人、畜和房屋 不详 约30 不详 不详
    3 喜德县东河 1891-07-05 泥石流 不详 居民、房屋、道路等 不详 约1000 不详 暴雨
    4 西昌市东河、西河 1942-06-16 山洪、泥石流 不详 居民、房屋、道路等 不详 约120 不详 暴雨
    5 西昌沿安宁河19个乡 1951-08-24 山洪、泥石流 不详 居民、房屋、道路等 不详 15 不详 暴雨
    6 西昌市东河 1955-07-14 山洪、泥石流 不详 居民、房屋、道路等 不详 68 不详 暴雨
    7 喜德县中沟 1957-06-29 泥石流 不详 居民、房屋、道路等 不详 84 不详 暴雨
    8 冕宁县泸沽镇洛瓦村4组 1970-05-26 泥石流 530 原铁道部第二工程处食堂、
    仓库和工棚
    500 104 不详 矿山开采
    9 喜德县红莫镇司金沟3社 1972-08-01 泥石流 不详 村落、房屋 不详 200 3000 暴雨
    10 甘洛县乌史大桥乡利子依达沟 1981-07-09 泥石流 30万 成昆铁路利子依达大桥、
    旅客列车
    不详 240 2000余万 暴雨
    11 会东县溜姑乡三家村 1988-06-01 泥石流 不详 公路大桥桥墩、工棚 26 13 不详 暴雨及冰雹
    12 冕宁县漫水湾镇二村沟1组 1989-09-04 泥石流 不详 居民点、农田 3000 51 不详 暴雨
    13 冕宁县漫水湾镇胜利村 1989-09-04 泥石流 不详 居民点、农田 500 12 不详 暴雨
    14 德昌县永郎镇蒲坝村 1995-07-11 泥石流 2.5 聚集区 63 10 800 暴雨
    15 普格县五道箐镇采阿咀沟 2003-06-20 泥石流 70 公路、房屋、通信光缆 58 10 100 暴雨
    16 盐源县平川镇骡马铺村2组 2006-07-14 泥石流 100 聚集区 168 16 500 暴雨
    17 冕宁县彝海乡勒帕村 2011-06-16 泥石流 不详 聚集区 不详 17 不详 暴雨
    18 宁南县白鹤滩镇和平村
    1组矮子沟
    2012-06-27 泥石流 8 分散农户、白鹤滩水
    电站施工区
    不详 38 530 暴雨
    19 雷波县岩脚乡金沙村 2013-07-27 滑坡-涌浪 不详 金沙江航道船只、对岸码头 不详 约20 不详 暴雨
    20 普格县荞窝镇耿底村
    4、5组桐子林沟
    2017-08-08 泥石流 1.03 通村公路、房屋 577 26 16000 暴雨
    21 冕宁县棉沙镇许家坪村
    1、2组下草坪子滑坡
    2012-07-12 滑坡 不详 公路、房屋 95 13 400 持续降雨
    22 德昌县茨达镇新华村 2004-08-23 滑坡、泥石流 不详 聚集区 4960 17 不详 暴雨
    23 德昌县乐跃镇乐跃沟村 2004-09-24 泥石流 不详 聚集区 不详 11 不详 暴雨
    24 盐源县洼里乡手爬村二组北沟段 2012-08-30 泥石流、滑坡 不详 聚集区 241 13 520 暴雨
    下载: 导出CSV

    表  4   凉山州各县市灾情统计表(2006—2020年)

    Table  4   Statistical table of disaster situation for each county and city in Liangshan Prefecture (2006—2020)

    县/市 灾情数量/起 死亡失踪/人 经济损失/万元 县/市 灾情数量/起 死亡失踪/人 经济损失/万元
    德昌县 2 3 410 冕宁县 2 20 520
    甘洛县 3 4 111 木里县 3 16 220
    会东县 1 2 15 宁南县 8 52 6850
    会理市 2 1 75 普格县 4 31 17470
    金阳县 4 13 170 喜德县 1 6 100
    雷波县 7 25 745 盐源县 3 30 1470
    美姑县 2 8 546 越西县 2 1 118
    昭觉县 2 10 380 合计 46 222 29200
    下载: 导出CSV

    表  5   凉山州红层红层滑坡统计

    Table  5   Statistical analysis of red-bed landslide in Liangshan Prefecture

    红层地层 面积/km2 数量/处 灾害密度
    /(处·km−2
    占比/%
    侏罗系 5778 515 0.089 70.6
    白垩系 3177 190 0.06 26.1
    三叠系 837 24 0.029 3.3
    下载: 导出CSV
  • [1] 刘希林,王全才,张丹,等. 四川凉山州普格县“6•20”泥石流灾害[J]. 灾害学,2003,18(4):46 − 50. [LIU Xilin,WANG Quancai,ZHANG Dan,et al. Debris flow disasters occurred on June 20,2003 in Puge County of Sichuan[J]. Journal of Catastrophology,2003,18(4):46 − 50. (in Chinese with English abstract)]

    LIU Xilin, WANG Quancai, ZHANG Dan, et al. Debris flow disasters occurred on June 20, 2003 in Puge County of Sichuan[J]. Journal of Catastrophology, 2003, 18(4): 46 − 50. (in Chinese with English abstract)

    [2] 刘希林,李秀珍,苏鹏程. 四川德昌县凹米罗沟泥石流成灾过程与危险性评价[J]. 灾害学,2005,20(3):78 − 83. [LIU Xilin,LI Xiuzhen,SU Pengcheng. Debris flow process and hazard assessment in Aomiluo gully of Dechang County,Sichuan[J]. Journal of Catastrophology,2005,20(3):78 − 83. (in Chinese with English abstract)]

    LIU Xilin, LI Xiuzhen, SU Pengcheng. Debris flow process and hazard assessment in Aomiluo gully of Dechang County, Sichuan[J]. Journal of Catastrophology, 2005, 20(3): 78 − 83. (in Chinese with English abstract)

    [3] 孙瑜,李宏俊,曹树波,等. 四川雷波碉楼沟泥石流特征及防治对策[J]. 地质灾害与环境保护,2017,28(1):1 − 6. [SUN Yu,LI Hongjun,CAO Shubo,et al. Features and preventive countermeasures of potential debris flow in Diaolou gully,Leibo County,Sichuan Province[J]. Journal of Geological Hazards and Environment Preservation,2017,28(1):1 − 6. (in Chinese with English abstract)]

    SUN Yu, LI Hongjun, CAO Shubo, et al. Features and preventive countermeasures of potential debris flow in Diaolou gully, Leibo County, Sichuan Province[J]. Journal of Geological Hazards and Environment Preservation, 2017, 28(1): 1 − 6. (in Chinese with English abstract)

    [4] 陈宁生,黄娜. 普格县荞窝镇8•8泥石流灾害应急调查研究[J]. 山地学报,2018,36(3):482 − 487. [CHEN Ningsheng,HUANG Na. Emergency investigation on debris flow 8•8 disaster in Qiaowo Town,Puge County,Sichuan,China[J]. Mountain Research,2018,36(3):482 − 487. (in Chinese with English abstract)]

    CHEN Ningsheng, HUANG Na. Emergency investigation on debris flow 8•8 disaster in Qiaowo Town, Puge County, Sichuan, China[J]. Mountain Research, 2018, 36(3): 482 − 487. (in Chinese with English abstract)

    [5] 李钰,甘滨蕊,王协康,等. 四川省甘洛县2019年群发性山洪泥石流灾害的形成机理[J]. 水土保持通报,2020,40(6):281 − 287. [LI Yu,GAN Binrui,WANG Xiekang,et al. Formation mechanism of group flash flood/debris flow disasters in Ganluo County,Sichuan Province in 2019[J]. Bulletin of Soil and Water Conservation,2020,40(6):281 − 287. (in Chinese with English abstract)]

    LI Yu, GAN Binrui, WANG Xiekang, et al. Formation mechanism of group flash flood/debris flow disasters in Ganluo County, Sichuan Province in 2019[J]. Bulletin of Soil and Water Conservation, 2020, 40(6): 281 − 287. (in Chinese with English abstract)

    [6] 郑琅,张欣,王立娟. 四川省甘洛县山体滑坡应急调查与成因机制分析[J]. 人民长江,2022,53(8):117 − 122. [ZHENG Lang,ZHANG Xin,WANG Lijuan. Emergency investigation and formation mechanism of landslide in Ganluo County,Sichuan Province[J]. Yangtze River,2022,53(8):117 − 122. (in Chinese with English abstract)]

    ZHENG Lang, ZHANG Xin, WANG Lijuan. Emergency investigation and formation mechanism of landslide in Ganluo County, Sichuan Province[J]. Yangtze River, 2022, 53(8): 117 − 122. (in Chinese with English abstract)

    [7] 廖安杰,岳世燕. 会理县老营盘村滑坡稳定性评价及数值分析[J]. 人民珠江,2018,39(9):56 − 58. [LIAO Anjie,YUE Shiyan. Stability evaluation and numerical analysis of Laoyingpan Village landslide in Huili Conunty[J]. Pearl River,2018,39(9):56 − 58. (in Chinese with English abstract)]

    LIAO Anjie, YUE Shiyan. Stability evaluation and numerical analysis of Laoyingpan Village landslide in Huili Conunty[J]. Pearl River, 2018, 39(9): 56 − 58. (in Chinese with English abstract)

    [8] 刘凯,李渝生,易树健,等. 美姑河火洛村溃散型滑坡的成因动力学机理研究[J]. 科学技术与工程,2017,17(33):217 − 224. [LIU Kai,LI Yusheng,YI Shujian,et al. Study on kinetic characteristics of Huoluo landslide in Meigu River[J]. Science Technology and Engineering,2017,17(33):217 − 224. (in Chinese with English abstract)]

    LIU Kai, LI Yusheng, YI Shujian, et al. Study on kinetic characteristics of Huoluo landslide in Meigu River[J]. Science Technology and Engineering, 2017, 17(33): 217 − 224. (in Chinese with English abstract)

    [9] 尹洪峰,冯志仁,薄景山. 美姑河洛渣滑坡稳定性分析[J]. 自然灾害学报,2007,16(6):70 − 73. [YIN Hongfeng,FENG Zhiren,BO Jingshan. Stability analysis of Luozha landslide by Meigu River[J]. Journal of Natural Disasters,2007,16(6):70 − 73. (in Chinese with English abstract)]

    YIN Hongfeng, FENG Zhiren, BO Jingshan. Stability analysis of Luozha landslide by Meigu River[J]. Journal of Natural Disasters, 2007, 16(6): 70 − 73. (in Chinese with English abstract)

    [10] 郭宁. 普格县姚家山滑坡成因及稳定性分析[J]. 科学技术与工程,2014,14(11):114 − 118. [GUO Ning. Analysis of cause and stability on the Yaojiashan landslide in the Puge County[J]. Science Technology and Engineering,2014,14(11):114 − 118. (in Chinese with English abstract)]

    GUO Ning. Analysis of cause and stability on the Yaojiashan landslide in the Puge County[J]. Science Technology and Engineering, 2014, 14(11): 114 − 118. (in Chinese with English abstract)

    [11] 高静贤,戴福初,朱雨轩,等. 四川宁南水塘村滑坡形成机理[J]. 中国地质灾害与防治学报,2019,30(6):1 − 9. [GAO Jingxian,DAI Fuchu,ZHU Yuxuan,et al. Failure mechanism of the Shuitang Village landslide in Ningnan County,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2019,30(6):1 − 9. (in Chinese with English abstract)]

    GAO Jingxian, DAI Fuchu, ZHU Yuxuan, et al. Failure mechanism of the Shuitang Village landslide in Ningnan County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(6): 1 − 9. (in Chinese with English abstract)

    [12] 朱涛,尹翔,王成汤,等. 西昌太和矿北采场滑坡变形演化规律及成因机制研究[J]. 岩土力学,2022,43(增刊2):392 − 400. [ZHU Tao,YIN Xiang,WANG Chengtang,et al. Study on deformation evolution law and genetic mechanism of landslide in the north stope of Taihe Mine in Xichang[J]. Rock and Soil Mechanics,2022,43(Sup 2):392 − 400. (in Chinese with English abstract)]

    ZHU Tao, YIN Xiang, WANG Chengtang, et al. Study on deformation evolution law and genetic mechanism of landslide in the north stope of Taihe Mine in Xichang[J]. Rock and Soil Mechanics, 2022, 43(Sup 2): 392 − 400. (in Chinese with English abstract)

    [13] 陈敏,刘良春,叶胜华. 弯曲-拉裂型滑坡形成机制和稳定性分析——以木里河卡基娃滑坡为例[J]. 水文地质工程地质,2012,39(1):58 − 64. [CHEN Min,LIU Liangchun,YE Shenghua. The formation mechanism and stability analysis of bend-crack landslide:Taking the Kajiwa landslide of Muli River as an example[J]. Hydrogeology & Engineering Geology,2012,39(1):58 − 64. (in Chinese with English abstract)]

    CHEN Min, LIU Liangchun, YE Shenghua. The formation mechanism and stability analysis of bend-crack landslide: Taking the Kajiwa landslide of Muli River as an example[J]. Hydrogeology & Engineering Geology, 2012, 39(1): 58 − 64. (in Chinese with English abstract)

    [14] 崔玉龙,邓建辉,戴福初,等. 基于地貌与运动学特征的古滑坡群成因分析[J]. 四川大学学报(工程科学版),2015,47(1):68 − 75. [CUI Yulong,DENG Jianhui,DAI Fuchu,et al. Causes analysis of ancient landslides based on the landscape and kinematical characteristics[J]. Journal of Sichuan University (Engineering Science Edition),2015,47(1):68 − 75. (in Chinese with English abstract)]

    CUI Yulong, DENG Jianhui, DAI Fuchu, et al. Causes analysis of ancient landslides based on the landscape and kinematical characteristics[J]. Journal of Sichuan University (Engineering Science Edition), 2015, 47(1): 68 − 75. (in Chinese with English abstract)

    [15] 王伟,王卫,戴雄辉. 四川美姑拉马阿觉滑坡复活特征与影响因素分析[J]. 中国地质灾害与防治学报,2022,33(4):9 − 17. [WANG Wei,WANG Wei,DAI Xionghui. Analysis of reactivated characteristics and influencing factors of the Lamajue landslide in Meigu County of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):9 − 17. (in Chinese with English abstract)]

    WANG Wei, WANG Wei, DAI Xionghui. Analysis of reactivated characteristics and influencing factors of the Lamajue landslide in Meigu County of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 9 − 17. (in Chinese with English abstract)

    [16] 邹永才. 四川省金阳县城区古滑坡的新认识[J]. 地质灾害与环境保护,2021,32(1):75 − 80. [ZOU Yongcai. New understanding of ancient landslides in Jinyang County,Sichuan Province[J]. Journal of Geological Hazards and Environment Preservation,2021,32(1):75 − 80. (in Chinese with English abstract)]

    ZOU Yongcai. New understanding of ancient landslides in Jinyang County, Sichuan Province[J]. Journal of Geological Hazards and Environment Preservation, 2021, 32(1): 75 − 80. (in Chinese with English abstract)

    [17] 伍康林,陈宁生,胡桂胜,等. 四川省盐源县玻璃村“7•19”特大滑坡灾害应急科学调查[J]. 山地学报,2018,36(5):806 − 812. [WU Kanglin,CHEN Ningsheng,HU Guisheng,et al. Emergency investigation to 7•19 landslide disaster in Boli Village,Yanyuan County,Sichuan,China[J]. Mountain Research,2018,36(5):806 − 812. (in Chinese with English abstract)]

    WU Kanglin, CHEN Ningsheng, HU Guisheng, et al. Emergency investigation to 7•19 landslide disaster in Boli Village, Yanyuan County, Sichuan, China[J]. Mountain Research, 2018, 36(5): 806 − 812. (in Chinese with English abstract)

    [18] 芦明,柳金峰,孙昊,等. 四川木里“7•5”黄泥巴沟泥石流灾害过程及防治措施建议[J]. 中国地质灾害与防治学报,2023,34(1):102 − 109. [LU Ming,LIU Jinfeng,SUN Hao,et al. Disaster process of “7•5” debris flow in Huangnibugou,Muli,Sichuan and suggestions on prevention and control measures[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1):102 − 109. (in Chinese with English abstract)]

    LU Ming, LIU Jinfeng, SUN Hao, et al. Disaster process of “7•5” debris flow in Huangnibugou, Muli, Sichuan and suggestions on prevention and control measures[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 102 − 109. (in Chinese with English abstract)

    [19] 殷万清,曹希超,胡卸文,等. 木里县项脚沟火后泥石流发育特征及应急处置对策[J]. 地质灾害与环境保护,2021,32(1):12 − 17. [YIN Wanqing,CAO Xicao,HU Xiewen,et al. Development characteristics of post-fire debris flow and emergency response measures in Xiangjiao township,Muli[J]. Journal of Geological Hazards and Environment Preservation,2021,32(1):12 − 17. (in Chinese with English abstract)]

    YIN Wanqing, CAO Xicao, HU Xiewen, et al. Development characteristics of post-fire debris flow and emergency response measures in Xiangjiao township, Muli[J]. Journal of Geological Hazards and Environment Preservation, 2021, 32(1): 12 − 17. (in Chinese with English abstract)

    [20] 黄健,胡卸文,金涛,等. 四川西昌“3•30”火烧区响水沟火后泥石流成灾机理[J]. 中国地质灾害与防治学报,2022,33(3):15 − 22. [HUANG Jian,HU Xiewen,JIN Tao,et al. Mechanism of the post-fire debris flow of the Xiangshui gully in “3•30” fire area of Xichang,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):15 − 22. (in Chinese with English abstract)]

    HUANG Jian, HU Xiewen, JIN Tao, et al. Mechanism of the post-fire debris flow of the Xiangshui gully in “3•30” fire area of Xichang, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 15 − 22. (in Chinese with English abstract)

    [21] 杨相斌,胡卸文,曹希超,等. 四川西昌电池厂沟火后泥石流成灾特征及防治措施分析[J]. 中国地质灾害与防治学报,2022,33(4):1 − 8. [YANG Xiangbin,HU Xiewen,CAO Xichao,et al. Analysis on disaster characteristics and prevention measures of the post-fire debris flow in Dianchichang gully,Xichang of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):1 − 8. (in Chinese with English abstract)]

    YANG Xiangbin, HU Xiewen, CAO Xichao, et al. Analysis on disaster characteristics and prevention measures of the post-fire debris flow in Dianchichang gully, Xichang of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 1 − 8. (in Chinese with English abstract)

    [22] 殷万清,金涛,胡卸文,等. 喜德县中坝村火后泥石流发育特征及预警避险[J]. 中国地质灾害与防治学报,2021,32(3):61 − 69. [YIN Wanqing,JIN Tao,HU Xiewen,et al. Development characteristics of debris flow after fire in Zhongba Village of Xide County and its early warning and avoidance[J]. The Chinese Journal of Geological Hazard and Control,2021,32(3):61 − 69. (in Chinese with English abstract)]

    YIN Wanqing, JIN Tao, HU Xiewen, et al. Development characteristics of debris flow after fire in Zhongba Village of Xide County and its early warning and avoidance[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 61 − 69. (in Chinese with English abstract)

    [23] 苏鹏程,韦方强,顾林康,等. 四川省德昌县群发性泥石流的特征和成因[J]. 山地学报,2010,28(5):593 − 606. [SU Pengcheng,WEI Fangqiang,GU Linkang,et al. Characteristic and causes of group-occurring debris flow in Dechang County,Sichuan Province[J]. Journal of Mountain Science,2010,28(5):593 − 606. (in Chinese with English abstract)]

    SU Pengcheng, WEI Fangqiang, GU Linkang, et al. Characteristic and causes of group-occurring debris flow in Dechang County, Sichuan Province[J]. Journal of Mountain Science, 2010, 28(5): 593 − 606. (in Chinese with English abstract)

    [24] 陈兴长,崔鹏,葛永刚,等. 四川省西溪河地洛水电工程区“7•31”泥石流灾害[J]. 山地学报,2010,28(1):116 − 122. [CHEN Xingzhang,CUI Peng,GE Yonggang,et al. “7•31” debris flow hazards occurred at Diluo water-power construction areas in Xixi River Basin,Sichuan Province[J]. Journal of Mountain Science,2010,28(1):116 − 122. (in Chinese with English abstract)]

    CHEN Xingzhang, CUI Peng, GE Yonggang, et al. “7•31” debris flow hazards occurred at Diluo water-power construction areas in Xixi River Basin, Sichuan Province[J]. Journal of Mountain Science, 2010, 28(1): 116 − 122. (in Chinese with English abstract)

    [25] 曾琇舒. 雷波县白沙村滑坡—碎屑流发育特征及其成因机理研究[D]. 成都:成都理工大学,2019. [ZENG Xiushu. Study on the development characteristics and genetic mechanism of landslide-debris flow in Baisha Village,Leibo County[D]. Chengdu:Chengdu University of Technology,2019. (in Chinese with English abstract)]

    ZENG Xiushu. Study on the development characteristics and genetic mechanism of landslide-debris flow in Baisha Village, Leibo County[D]. Chengdu: Chengdu University of Technology, 2019. (in Chinese with English abstract)

    [26] 王德伟,林启飞,倪化勇,等. 孙水河流域阿坡洛滑坡成灾机理分析[J]. 四川地质学报,2016,36(1):114 − 117. [WANG Dewei,LIN Qifei,NI Huayong,et al. Genetic mechanism of the apoluo landslide in the Sunshui River Basin[J]. Acta Geologica Sichuan,2016,36(1):114 − 117. (in Chinese with English abstract)]

    WANG Dewei, LIN Qifei, NI Huayong, et al. Genetic mechanism of the apoluo landslide in the Sunshui River Basin[J]. Acta Geologica Sichuan, 2016, 36(1): 114 − 117. (in Chinese with English abstract)

    [27] 白永健,倪化勇,王运生,等. 喜德采书组“8•31”滑坡工程地质特征及运动过程[J]. 山地学报,2014,32(3):327 − 335. [BAI Yongjian,NI Huayong,WANG Yusheng,et al. Engineering geological characteristics and motor process of Caishu landslide in Xide of Sichuan,China[J]. Mountain Research,2014,32(3):327 − 335. (in Chinese with English abstract)]

    BAI Yongjian, NI Huayong, WANG Yusheng, et al. Engineering geological characteristics and motor process of Caishu landslide in Xide of Sichuan, China[J]. Mountain Research, 2014, 32(3): 327 − 335. (in Chinese with English abstract)

    [28] 铁永波,葛华,高延超,等. 二十世纪以来西南地区地质灾害研究历程与展望[J]. 沉积与特提斯地质,2022,42(4):653 − 665. [TIE Yongbo,GE Hua,GAO Yanchao,et al. Research course and prospect of geological disasters in southwest China since the 20th Century[J]. Sedimentary Geology and Tethyan Geology,2022,42(4):653 − 665. (in Chinese with English abstract)]

    TIE Yongbo, GE Hua, GAO Yanchao, et al. Research course and prospect of geological disasters in southwest China since the 20th Century[J]. Sedimentary Geology and Tethyan Geology, 2022, 42(4): 653 − 665. (in Chinese with English abstract)

    [29] 白永健,铁永波,孟铭杰,等. 川西地区地质灾害发育特征与时空分布规律[J]. 沉积与特提斯地质,2022,42(4):666 − 674. [BAI Yongjian,TIE Yongbo,MENG Mingjie,et al. Development characteristics and temporal and spatial distribution law of geological disasters in western Sichuan[J]. Sedimentary Geology and Tethyan Geology,2022,42(4):666 − 674. (in Chinese with English abstract)]

    BAI Yongjian, TIE Yongbo, MENG Mingjie, et al. Development characteristics and temporal and spatial distribution law of geological disasters in western Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2022, 42(4): 666 − 674. (in Chinese with English abstract)

    [30] 徐伟,冉涛,田凯. 西南红层地区地质灾害发育规律与成灾模式——以云南彝良县为例[J]. 中国地质灾害与防治学报,2021,32(6):127 − 133. [XU Wei,RAN Tao,TIAN Kai. Developing law and disaster modes of geohazards in red bed region of southwestern China:A case study of Yiliang County of Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):127 − 133. (in Chinese with English abstract)]

    XU Wei, RAN Tao, TIAN Kai. Developing law and disaster modes of geohazards in red bed region of southwestern China: A case study of Yiliang County of Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 127 − 133. (in Chinese with English abstract)

    [31] 胡卸文,侯羿腾,王严,等. 火烧迹地土壤根系特征及其对抗剪强度的影响[J]. 水文地质工程地质,2019,46(5):106 − 112. [HU Xiewen,HOU Yiteng,WANG Yan,et al. Root characteristics and its influences on shear strength in burned areas[J]. Hydrogeology & Engineering Geology,2019,46(5):106 − 112. (in Chinese with English abstract)]

    HU Xiewen, HOU Yiteng, WANG Yan, et al. Root characteristics and its influences on shear strength in burned areas[J]. Hydrogeology & Engineering Geology, 2019, 46(5): 106 − 112. (in Chinese with English abstract)

    [32] 韩金良,吴树仁,汪华斌. 地质灾害链[J]. 地学前缘,2007,14(6):11 − 23. [HAN Jinliang,WU Shuren,WANG Huabin. Preliminary study on geological hazard chains[J]. Earth Science Frontiers,2007,14(6):11 − 23. (in Chinese with English abstract)] DOI: 10.1016/S1872-5791(08)60001-9

    HAN Jinliang, WU Shuren, WANG Huabin. Preliminary study on geological hazard chains[J]. Earth Science Frontiers, 2007, 14(6): 11 − 23. (in Chinese with English abstract) DOI: 10.1016/S1872-5791(08)60001-9

    [33] 徐文杰,陈祖煜,何秉顺,等. 肖家桥滑坡堵江机制及灾害链效应研究[J]. 岩石力学与工程学报,2010,29(5):933 − 942. [XU Wenjie,CHEN Zuyu,HE Bingshun,et al. Research on river-blocking mechanism of Xiaojiaqiao landslide and disasters of chain effects[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(5):933 − 942. (in Chinese with English abstract)]

    XU Wenjie, CHEN Zuyu, HE Bingshun, et al. Research on river-blocking mechanism of Xiaojiaqiao landslide and disasters of chain effects[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5): 933 − 942. (in Chinese with English abstract)

  • 期刊类型引用(5)

    1. 贺伟明,石胜伟,蔡强,梁炯. 基于上下限解的膨胀土边坡首次滑动区域分析. 水文地质工程地质. 2025(01): 104-112 . 百度学术
    2. 孙银磊,余川,廖磊,李志妃. 钢渣粉固化改良膨胀性黏土机理研究进展. 水文地质工程地质. 2025(01): 113-129 . 百度学术
    3. 张锐,周豫,兰天,郑健龙,刘昭京,李彬. 高速铁路土工格栅加筋膨胀土边坡作用机制. 铁道科学与工程学报. 2024(01): 1-12 . 百度学术
    4. 纪佑军,熊军,蒋国斌,王泽根. 考虑应变软化的鸡场镇降雨型滑坡数值分析. 水文地质工程地质. 2024(04): 178-188 . 百度学术
    5. 张再江. 基于改进极限平衡原理的膨胀土边坡稳定性计算分析. 水利科技与经济. 2024(07): 48-51 . 百度学术

    其他类型引用(8)

图(13)  /  表(5)
计量
  • 文章访问数:  423
  • HTML全文浏览量:  56
  • PDF下载量:  186
  • 被引次数: 13
出版历程
  • 收稿日期:  2023-05-23
  • 修回日期:  2023-10-11
  • 录用日期:  2023-10-16
  • 网络出版日期:  2023-12-04
  • 刊出日期:  2024-10-24

目录

/

返回文章
返回