Characteristics of losses of geological disasters and major disaster types in Liangshan Prefecture, Sichuan Province
-
摘要:
凉山州受活动构造、地形地貌、河流切割等作用,是四川省地质灾害高风险地区。为系统查明凉山州地质灾害发育特征、灾情特征及主要致灾类型,采用资料收集、数理统计、现场调查等方法,统计分析地质灾害数据、灾情数据和重大突发地质灾害实例。结果表明:凉山州地质灾害以滑坡、泥石流为主,滑坡主要为中小规模土质滑坡,泥石流主要为中小规模沟道型泥石流;有记录以来共计发生24起死亡10人以上的地质灾害;2006—2020年,共发生46起地质灾害灾情,以泥石流为主。总结提炼了7种地质灾害主要致灾类型,红层滑坡是凉山州滑坡主要类型之一,遇水易软化解体,自稳能力差;复活型古滑坡,在凉山州多有分布,由于人类工程活动、河流冲刷等因素,古滑坡易变形和复活;库岸型滑坡,主要发育在木里县、布拖县、宁南县的水电站库区内,受库水位消落带影响斜坡塌岸隐患较多,坡体稳定性降低形成滑坡;含煤层型滑坡,主要发育在凉山州南部的煤系地层区域,斜坡前缘不合理开挖易诱发前缘滑塌并造成整体滑动;矿渣型泥石流是凉山州泥石流主要类型之一,矿渣、废石、尾砂等不合理堆放,为泥石流提供了丰富物源;凉山州常发生森林火灾,火烧迹地遭遇暴雨后易诱发火后泥石流;在构造活动强烈、山势陡峭的沟谷上游发生崩滑灾害后,易沿沟运动冲出,堵塞河道形成链式灾害。研究成果可为凉山州针对性开展防灾减灾工作提供数据支撑和科学参考。
Abstract:Due to active tectonics, topography, and river dynamics, Liangshan Prefecture is highly susceptible to geological disasters in Sichuan Province. In order to find out the developmental patterns, characteristics, and prevalent disaster modes of geological disasters in Liangshan Prefecture, this paper uses data collection, mathematical statistics, field investigation and other methods to conducted a comprehensive analysis of geological disaster data, disaster situations, and major sudden geological disaster cases in Liangshan Prefecture. The results show that the primary geological hazards in Liangshan Prefecture are landslides and mud-rock flows. The landslides are mainly medium and small scale soil landslides, and the mud-rock flows are mainly medium and small scale gully mudflows. Over the recorded period, Liangshan Prefecture experienced 23 geological disasters resulting in more than 10 fatalities. Between 2006 to 2020, 46 geological disasters occurred, mainly in the forms of debris flow. This paper identifies and refines seven typical geological disaster modes in Liangshan Prefecture. Notably, red bed landslides, prone to softening and disintegration in water with poor self-stability, constitute a significant landslide type. Reactivation of ancient landslides, widely distributed in the region, is triggered by human activities, river erosion, and other factors. Reservoir bank landslides are prevalent in the reservoir areas of Muli County, Butuo County, and Ningnan County, posing risks due to fluctuating reservoir water levels. There are many hidden dangers of bank collapse due to the influence of reservoir water level, and the slope Coal-bearing landslides are prominent in the southern coal measure stratum area, induced by unsustainable mining practices. Slag-type debris flow is one of the main types of debris flow in Liangshan Prefecture. The unreasonable stacking of slag, waste rock and tailings provides rich material sources for debris flow disasters. Liangshan Prefecture frequently experiences forest fires, and the burned land is easy to induce post-fire mud-rock flow after heavy rain. When the landslide disasters occurs in the upper reaches of gullies with strong tectonic activity and steep mountain potential, it is easy to rush out along the gully, blocking the river and forming a chain disaster. The research results can provide data support and scientific insights for disaster prevention and mitigation in Liangshan Prefecture.
-
0. 引言
地震震动会导致地表裂缝、土壤疏松,在降水、人类活动等因素影响下,震后极易发生滑坡。通常情况下,震后滑坡数量显著增多的现象要延续相当长的一段时间,直到随着地震灾区生态和地质环境的逐渐恢复,才会显著降低并恢复到震前水平[1 − 2]。因此,对地震后滑坡的长时序时空分异特征进行分析,对于震后长期恢复、土地规划以及地震灾害防治可以起到一定的指示作用。
众多学者对地震触发的同震滑坡进行了研究,如汶川地震[3]、鲁甸地震[4 − 6]、2015年尼泊尔地震[7]、九寨沟地震[8 − 9]、泸定地震[10 − 12]等,研究多关注同震滑坡数据清单建立、同震滑坡空间分布、易发性预测、影响因子敏感性研究等。虽然同震滑坡相关研究取得了一定的进展,但不能全方位地描述震后滑坡的整体变化情况。受地震触发的滑坡会表现出不同的特征[13],如滑坡数量、强度、分布特征变化等,地震引起的岩体松动、地表破裂、植被破坏等都影响着滑坡的时空分布规律[14],因此,在关注同震滑坡灾害的同时更应该关注地震后滑坡的长期分异规律[15]。目前,震后滑坡的时空分异规律相关研究还不丰富,仍处于案例累计阶段且主要以强震滑坡案例为主,如1999年台湾集集地震[16],2005年克什米尔地震[17],2008年汶川地震[18]等。同时,由于历史强震典型案例的局限性以及滑坡数据清单的缺乏,导致地震后滑坡的长时序时空分异规律研究还未形成完整体系,因此,为了更深入地了解地震后滑坡随时间、空间的长期分异规律,探究地震及震后滑坡的时空分异特征,还需要积累更多的地震案例和研究经验。综上所述,加强震后滑坡的时空分异特征研究对进一步了解震后滑坡活动效应和稳定性具有重要意义。
2014年8月3日,中国云南省鲁甸县发生Ms6.5级地震,地震以27.1°N,103.3°E为震源中心,造成617人死亡,112人失踪,
3143 人受伤,22.97万人紧急转移安置,同时,地震至少触发了1024 处面积大于100 m2的滑坡。震级虽为6.5级,但其触发的大量滑坡造成的损伤甚至超过了很多大于7.0级的地震[19]。基于此,本文以鲁甸Ms6.5级地震为研究对象,以多时相高分遥感影像为数据源,首先构建长时序列的震后滑坡数据清单,在此基础上,从滑坡数量及规模对滑坡时空分布特征角度进行探索;再以2014年8月3日鲁甸Ms6.5级地震触发的同震滑坡为比较基线,以扩大滑坡、新增滑坡和恢复区域为研究指标进行震后滑坡时空面积变化的分析;最后,对震后8 a时间内震后滑坡的活动演化进行分析[20 − 21]。1. 研究区与数据
1.1 研究区
2014年8月3日的鲁甸Ms6.5级地震是近年来云南省危害较高的一次地震,不仅造成极大的人员伤亡,而且触发了大量的滑坡。鲁甸地震发生于包谷垴—小河断裂带(BXF)以及西鱼河—昭通断裂带(XZF),地震灾区最高烈度为Ⅸ度,涉及Ⅸ级、Ⅷ级、Ⅶ级、Ⅵ级共4个等级,等震线长轴总体呈北北西走向。根据地震烈度及以往研究成果,以鲁甸地震后长时序列滑坡为研究对象,选取共314 km2作为本次研究区范围(图1)。研究区涉及鲁甸县及巧家县的部分区域,包括玄武岩、白云岩、石灰岩等不同类型的岩石类型,海拔范围852~
2812 m,震中位置海拔为2087 m,同时内有牛栏江、龙泉河、沙坝河3条河流,河谷地形突出,沿河流区域海拔较低。1.2 数据来源与数据处理
研究数据主要包括遥感影像数据、滑坡数据以及降水数据3类。
(1)遥感影像数据:震前1期和震后14期的遥感影像如表1所示。影像均通过正射校正、图像配准、图像融合、地理配准等数据处理,将所有影像统一重采样为2 m。
表 1 影像数据信息Table 1. Image data information日期 2014年
4月13日2014年
10月26日2015年
10月29日2016年
7月11日2017年
5月13日2018年
8月24日2019年
8月18日2020年
8月27日2021年
8月2日2022年
7月16日数据
来源资源3号
(ZY3)高分1号
(GF1)高分1号
(GF1)高分2号
(GF2)资源3号
(ZY3)高分1号
(GF1)高分2号
(GF2)高分1号
(GF1)高分2号
(GF2)高分1号B卫星
(GF1B)数量/景 1 1 1 2 1 1 1 1 4 2 分辨率/m 2.1 2 2 0.8 2.1 2 0.8 2 0.8 2 (2)震前滑坡清单。由于2014年8月3日鲁甸Ms6.5级地震震前影像缺乏,选择较为接近的2014年4月13日ZY3影像进行震前滑坡清单的建立。此时植被稀少,地物相似度极高,滑坡数量较少并且震前滑坡与裸地等较为相似,为有效排除震前滑坡,进行人工解译得到震前滑坡清单。
(3)同震滑坡清单。文章使用许冲团队建立的滑坡清单,下载于USGS官网(https://www.sciencebase.gov/catalog/item/594428d4e4b062508e32319f),选择的研究区边界范围内,鲁甸Ms6.5级地震共造成
1014 个滑坡,面积达5.16 km2。2. 研究方法
为探究鲁甸Ms6.5级地震震后滑坡的时空分异特征,首先基于ENVI深度学习模块构建多时期震后滑坡数据清单,在此基础上从地震后滑坡数量规模、同震滑坡面积变化类型、不同阶段滑坡活动期3个方面对震后滑坡时空分布特征、时空面积变化、活动期演化进行分析,具体技术路线如图2所示。
2.1 多时期震后滑坡数据清单构建
对不同时期高分辨率遥感影像进行滑坡识别,构建鲁甸Ms6.5级地震震后多时期滑坡数据清单。如图3所示,构建过程分为5个部分。(1)滑坡样本构建。选择GF1、ZY3、GF2影像中2014年10月26日、2017年5月13日、2019年8月18日3景影像共绘制了586个滑坡样本进行训练和验证。(2)震后滑坡粗提取。基于ENVI深度学习模块,以“模型训练-执行分类-分类后处理”为流程,进行震后滑坡粗提取。(3)滑坡精识别。利用地形坡度特征排除少部分低坡度区域的影响;基于几何特征中的长宽比和密度,排除道路、河流等长条形地物对滑坡识别结果的干扰;通过纹理对比度,排除建筑及人工地物对滑坡解译结果的影响;最后对精识别结果与震前滑坡进行差值得到最终的震后滑坡。(4)精度验证。对震后滑坡进行识别并进行精度验证与评估。(5)多时期震后滑坡数据清单。将整个滑坡识别流程应用于整个长时间序列,构建多时期震后滑坡数据清单。
2.2 震后滑坡时空面积变化分析
为了分析鲁甸Ms6.5级地震触发滑坡后续的变化情况,以2014年8月3日地震触发的同震滑坡为基线,与后续年份做比较,根据滑坡的变化情况分为同震滑坡、扩大滑坡 、新增滑坡和恢复区4种不同类型。同震滑坡为2014年8月地震触发的滑坡;扩大滑坡是指原本存在同震滑坡且在现有同震滑坡面积基础上继续增大的区域;新增滑坡是指本来某区域内没有滑坡但后来出现了滑坡;恢复区即原来存在的同震滑坡区域表现为已恢复状态。为了对震后滑坡面积变化程度进行量化,理清同震滑坡后续时间的持续变化情况,将2014年8月的滑坡活动率设定为100%,作为研究滑坡活动变化的基线,通过滑坡活动率进行更有力的定量评价,计算方式如式(1)所示。
$$ P = \frac{{S _{\mathrm{a}}}}{{S _{\text{c}}}} \times 100\% $$ (1) 式中:P——活动滑坡活动率/%,表示同震滑坡的活动强 度,将扩大滑坡和新增滑坡定义为活动滑坡;
Sa——滑坡活动面积/km2;
Sc——同震滑坡面积/km2。
2.3 震后滑坡活动期演化分析
地震后较长时间内,滑坡存在不同程度的复发新增阶段,有着较长时间的活动期,而地震后滑坡活动程度对评估震后滑坡时空演化评估至关重要。为了定量分析地震震后滑坡的活动过程,以地震触发滑坡变化类型即扩大滑坡、新增滑坡以及滑坡活动率为活动期的分类标准,若起始年份满足表2所示滑坡活动期分类标准中的规则,则以起始年份为分割节点,将包含起始年份及其范围内的所有年份归为3个活动期中的一个,将震后滑坡的整个活动过程分为3个时期,以此对滑坡活动过程进行分析。具体的分类标准如表2所示。
表 2 滑坡活动期分类标准Table 2. Classification standard of landslide activity period滑坡活动期 滑坡活动率/% 扩大滑坡面积/km2 新增滑坡面积/km2 震后滑坡强活动期 P>50 >1.5 >1 震后滑坡中等活动期 10<P≤50 >0.2且≤1.5 >0.2且≤1 震后滑坡弱活动期 P≤10 ≤0.2 ≤0.2 3. 计算结果与分析
3.1 滑坡识别结果精度验证
完成模型训练及试验后,对滑坡识别结果进行精度评估。考虑到研究区域滑坡数量和分布,选择地物相对复杂的4个子区域(区域1—4)对滑坡识别结果进行精度验证(图4)。精确率、召回率、F1、错分率(commission error,CE)、漏分率(omission error,OE)是滑坡提取中常用的精确度量标准,由于研究中的滑坡提取是一个二值分类问题,即对于每个像素,只有2种情况:滑坡或背景,因此,如图4(a)(b),验证基于4种提取结果,即TP(真阳性,表示被正确识别的滑坡,即预测为滑坡且识别为滑坡)、FP(假阳性,表示预测滑坡但实际为背景)、TN(真阴性,即预测为背景且识别为背景)和FN(假阴性,即预测为背景但识别为滑坡)进行5个指标计算完成精度验证,具体计算方程式如式(2)—(6)。
精确率(Precision)评估的是作为滑坡被提取的区域有多少是真正的滑坡:
$$Precision=\frac{TP}{TP+FP} $$ (2) 式中:TP——真阳性滑坡面积/km2;
FP——假阳性滑坡面积/km2。
召回率(Recall)用于计算正确提取了多少滑坡:
$$Recall=\frac{TP}{TP+FN}$$ (3) 式中:FN——假阴性滑坡面积/km2。
F1则以更平衡的方式评估模型分类精度,其范围为[0, 1],越接近1,则代表效果越好:
$$F1=2\times \frac{Precision \times Recall}{Precision+Recall}$$ (4) 式中:Precision——精确率,评估的是作为滑坡被提取 的区域有多少是真正的滑坡;
Recall——召回率,用于计算正确提取了多少滑坡。
错分率(CE)是指实际为背景,但被分为了滑坡:
$$CE=\frac{FP}{TP+FP}$$ (5) 漏分率(OE)则是指实际为滑坡,但被分为背景的区域:
$$OE=\frac{FN}{TP+FN}$$ (6) 表3为子区域精度验证结果,滑坡识别精确率为85%以上,召回率74%以上, F1在80%以上,错分率(CE)在15%以下,而漏分率(OE)在25%以下,漏分现象主要发生于边界处,即有部分滑坡边界被分为了背景,但总体而言,滑坡识别流程可以识别出滑坡的主体和主要区域,具有较高的可靠性,可以应用于研究区域和整个研究时期(2014年10月—2022年7月)。
表 3 精度验证结果Table 3. Accuracy verification results区域 影像类型 Precision Recall CE OE F1 验证区域1 GF2 0.8614 0.8281 0.1386 0.1719 0.8444 验证区域2 ZY3 0.8573 0.8439 0.1427 0.1561 0.8506 验证区域3 ZY3 0.8650 0.7499 0.1350 0.2490 0.8034 验证区域4 GF2 0.8634 0.7561 0.1366 0.2439 0.8062 3.2 震后滑坡时空分布特征分析
根据2.1节滑坡识别流程得到震后多时期滑坡清单,将其进行可视化得到如图5(a)—(k)所示的分布图。总体上,2014年8月至2022年7月期间,地震后触发滑坡主要沿牛栏江、沙坝河以及龙泉河河谷两侧分布。距震中距离越近,越易触发滑坡,然而,此次距震中距离
2000 m的范围内,滑坡分布较少,主要分布在大于2000 m范围的区域内,原因是此次震中区域在龙头山一个平坦的盆地。同震及震后滑坡主要分布于地震烈度为Ⅸ级的区域内,地震烈度Ⅷ级范围同样分布着一个滑坡严重区域,位于震源中心西侧。如图5和表4,根据滑坡面积大小,以0.01 km2、0.02 km2为分隔点,将滑坡分为小、中、大滑坡3种规模。震后主要以面积小于0.01 km2的小型滑坡为主,其次为面积介于0.01 km2和0.02 km2的中型滑坡,数量相对较少的为大于0.02 km2的大型滑坡。2014年4月,地震前,小型滑坡和中型滑坡数量为36个和25个,无大型滑坡,小中型滑坡主要沿牛栏江分布,见图5(a);2014年8月地震初发后,小中大型滑坡数量骤增,大型滑坡数量达42个,主要沿沙坝河和牛栏江分布,见图5(b);2014年10月,震后2个月时间后,小型滑坡数量减少明显,中型滑坡数量变化较小,大型滑坡数量增多,见图5(c);震后8a时间,小中大型滑坡总体呈现逐期减少的趋势,截至2022年7月,小中大型滑坡数量为42,8,9,与震前相比,中型滑坡减少明显,而大型滑坡由0变为9,位于Ⅸ级地震烈度范围内,主要位于沿沙坝河分布的光明村滑坡群和沿牛栏江分布的红石岩滑坡,见图5(d)—(k)。
表 4 地震震后滑坡规模分布情况统计Table 4. Statistical distribution of landslide scale after earthquake2014年4月 2014年8月 2014年10月 2015年10月 2016年7月 2017年5月 2018年8月 2019年8月 2020年8月 2021年8月 2022年7月 小型滑坡/个 36 908 408 300 367 307 179 107 153 85 42 中型滑坡/个 25 64 56 37 54 37 27 25 24 9 8 大型滑坡/个 0 42 49 37 45 42 16 15 11 13 9 根据多时期震后滑坡数据清单得到的数量和面积,绘制如图6所示的分布情况统计图。鲁甸Ms6.5级地震震前滑坡数量较少,面积小于1 km2;2014年8月地震发生后,触发滑坡
1014 个,总面积5.16 km2,滑坡数量和面积急剧增加;震后2个多月时间内,滑坡数量急剧减少,但面积呈现略微增加趋势;震后8 a时间内,滑坡数量及面积总体呈下降趋势,但年份间存在波动,2016年7月、2020年8月较上一时期而言滑坡数量和面积略微上升。在地震后的2个月时间内,滑坡数量急剧减少,而滑坡总面积呈现略微增加趋势。原因是地震初期同震滑坡面积破碎,而在2个多月之后,由于人类紧急救援、降水等原因[22],破碎的小滑坡合并为成片的大面积滑坡,滑坡数量减少,面积则增加。在震后8a时间,滑坡数量和面积整体呈下降趋势。但2016年7月较2015年10月滑坡数量和面积均略微上升。根据鲁甸气象站降水数据可知(表5),2016年年降水总量超过
1100 mm,远超过其他年份降水总量,而地震后较长一段时间内,土壤等受到长期影响,降水极有可能引发更多的滑坡。文中所使用影像由2016年7月11日和7月25日构成,统计2016年7月25日前日降水数据,发现日降水大于25 mm超过9次,而根据降水分级显示,日降水总量大于25 mm则为大雨,由此可见,大雨事件可能导致了滑坡的扩大和发生[23]。2020年8月滑坡数量和面积较2019年8月有所上升,这与2020年5月18日21时47分,在云南省昭通市巧家县发生5.0级地震具有一定相关性,此次地震震源深度8 km,可能引发周边区域发生滑坡[24]。表 5 2014—2022年鲁甸地区降水统计Table 5. Statistics of precipitation in Ludian area from 2014 to 2022年份 2014 2015 2016 2017 2018 2019 2020 2021 2022 年降水量/mm 941.0 976.4 1107.1 955.4 879.7 721.9 794.5 742.2 861.4 3.3 震后滑坡时空面积变化
2014年8月,研究区内鲁甸Ms6.5级地震共触发同震滑坡
1014 个,总面积5.1577 km2。以2014年8月3日鲁甸Ms6.5级地震触发的同震滑坡为比较基线,与2014年10月滑坡进行相交擦除等操作,得到如图7所示的滑坡时空面积变化分析图。2014年10月,滑坡集中在J1—J3区域,在原有的同震滑坡基础上进一步恢复的同时出现扩张滑坡,同时区域内也出现新增的滑坡。表6总结了地震后不同时期同震滑坡恢复、扩张和新增的滑坡面积以及活动率。表 6 滑坡活动面积变化及活动率统计Table 6. Landslide activity area change and activity rate statistics年月 恢复区域
/km2扩大面积
/km2新增面积
/km2活动面积
/km2活动率
/%2014年10月 2.81 2.08 0.80 2.88 55.78 2015年10月 3.23 1.27 0.77 2.03 39.44 2016年7月 3.41 1.52 1.10 2.63 50.98 2017年5月 3.21 1.07 0.90 1.97 38.28 2018年8月 4.20 0.73 0.50 1.23 23.79 2019年8月 4.39 0.48 0.44 0.91 17.70 2020年8月 4.27 0.36 0.44 0.80 15.48 2021年8月 4.55 0.33 0.22 0.55 10.67 2022年7月 4.50 0.20 0.11 0.31 6.08 从表6中可以看出,2014年10月、2015年10月、2016年7月、2017年5月、2018年8月、2019年8月、2020年8月、2021年8月、2022年7月,滑坡活动面积分别是2.88,2.03,2.63,1.97,1.23,0.91,0.80,0.55,0.31 km2,滑坡活动面积呈先减少后增加再持续减少的趋势。以2014年8月的同震滑坡活动率(P)为基线,滑坡活动性年衰减率分别为55.78%、39.44%、50.98%、38.28%、23.70%、17.70%、15.48%、10.67%、6.08%,年衰减率呈现与活动面积同样的规律。根据滑坡类型及活动率,发现2016年7月的滑坡扩大和新增面积较上一年有所增加,同时恢复区域较上一年也呈现增加的现象,表明此时期范围内活动性滑坡较多,扩大和新增滑坡明显。总体而言,随时间推移,同震滑坡逐渐恢复,扩大滑坡和新增滑坡面积总体呈现减少趋势,虽然仍有同震滑坡存在,但2022年只有6.08%的滑坡仍处于活动状态,这表明地震对滑坡的影响已经逐渐减弱。
3.4 震后滑坡活动期演化分析
根据表6所示滑坡活动面积变化及活动率和2.3节滑坡活动期分类标准,对鲁甸Ms6.5级地震震后滑坡进行活动期分析。2016年7月的滑坡活动率大于50%,扩大面积大于1.5 km2且新增滑坡面积大于1 km2,则将2016年7月以前称为强活动期;而2021年8月的滑坡活动率10%~50%、扩大滑坡面积0.2~1.5 km2、新增滑坡面积为0.2~1 km2,则2016年7月—2021年8月之间的时期为中等活动期;2021年8月以后的时间活动率小于10%、扩大和新增滑坡面积少于0.2 km2则为滑坡低活动期。
根据以上规则得出如图8所示的变化图。通过2014年8月―2022年7月不同阶段滑坡面积变化和活动率的定量分析,将鲁甸地震震后滑坡活动状态分为了强活动期、中等活动期和弱活动期。可见,随时间推移,同震滑坡面积逐渐减少,地震触发滑坡呈现逐渐恢复的趋势,扩滑坡表现出较为明显的扩张趋势,而滑坡新增面积相对较少。
如图8所示,2016年7月以前为滑坡强活动期,滑坡活动率先下降而后出现增长,滑坡扩张和新增趋势也较为明显,扩张明显的为震后两个月时间内,而新增明显的为2015年10月—2016年7月,主要原因是震后救灾致使滑坡扩张以及大量降雨导致了降雨型新滑坡的产生。
2016年7月—2021年8月期间为滑坡中等活动期,随时间推移,滑坡扩张和新增程度逐渐下降,滑坡活动率也呈现持续下降趋势,由2016年7月的50.98%下降为2021年的10.67%。2016年8月—2017年5月期间,较上一期滑坡数据清单而言,同震滑坡面积增多,恢复区域减少,说明已经恢复的同震滑坡区域再次变为滑坡,这与2017年2月9日发生在鲁甸县的Ms4.9级地震以及2020年5月18日发生在巧家的Ms5.0级地震可能具有相关性[24 − 25],2017年2月9日鲁甸Ms4.9级地震震中(27.07°N),位于2014年8月鲁甸地震震中的南东方向,二者相距约4 km。2019年9月至2020年8月期间,相较于上一期滑坡,已经恢复的同震滑坡再次变为滑坡,这与2020年5月18日巧家Ms5.0级地震具有相关性,此次地震震中为(27.18N,103.16E),震源深度8 km。这两次地震为2014年8月后鲁甸地震周边区域的二次冲击,会使已经恢复的同震滑坡区域再次被激活。
2021年9月之后为滑坡弱活动期,此时大部分小型滑坡均已恢复,依然存在的同震滑坡主要为红石岩滑坡、光明村等大型滑坡残留的滑坡臂以及靠近道路河流的部分滑坡,如图9所示,存留的大型滑坡内部植被还未明显恢复。
4. 结论
(1)建立了鲁甸地区多时期震后滑坡数据清单。历年来,震后滑坡数量面积呈现逐年下降趋势,2014年8月,研究区内滑坡数量
1014 个,面积为5.16 km2,截至2022年7月,滑坡数量为59个,面积不到1 km2,震后8a时间内,滑坡数量和面积呈现总体下降趋势。(2)震后滑坡主要分布于距断层距离
2000 m以上范围,并且主要集中于河谷两侧,此外,地震触发滑坡以小型滑坡为主,中等型滑坡数量相对较少,而大型滑坡数量少,但面积多。(3)2014年8月3日鲁甸Ms6.5级地震触发的同震滑坡活动率为100%,以此为比较基线,2014年10月、2015年10月、2016年7月、2017年5月、2018年8月、2019年8月、2020年8月、2021年8月、2022年7月的滑坡活动性年衰减率分别为55.78%、39.44%、50.98%、38.28%、23.70%、17.70%、15.48%、10.67%、6.08%,总体呈现逐渐下降趋势。截至2022年7月,只有6.08%的滑坡仍处于活动状态,表明地震对滑坡的影响已经逐渐减弱。
(4)震后滑坡存在强活动期(2014年8月—2016年7月)、中等活动期(2016年8月—2021年8月)、弱活动期(2021年9月—2022年7月),总体而言,截至2022年7月,地震造成的滑坡以及影响还未完全恢复。
-
表 1 凉山州地质灾害发育类型及数量
Table 1 Development types and quantities of geological hazards in Liangshan Prefecture
规模 崩塌 滑坡 泥石流 地面塌陷 合计 占比/% 特大型 2 3 4 0 9 0.22 大型 2 106 22 0 130 3.24 中型 76 830 258 0 1164 28.98 小型 169 1735 803 6 2713 67.55 合计 249 2674 1087 6 4016 100 占比/% 6.20 66.58 27.07 0.15 100 表 2 凉山州不同类型地质灾害发育特征统计
Table 2 Statistical analysis of development characteristics of different types of geological hazards in Liangshan Prefecture
灾害类型 发育特征 数量/处 占比/% 滑坡 土质 2950 98.40 岩质 48 1.60 崩塌 土质 13 4.09 岩质 305 95.91 泥石流 沟道型 1177 96.55 坡面型 42 3.45 表 3 凉山州历史重大地质灾害灾情简表(死亡10人以上)
Table 3 Summary of major historical significant geological disasters in Liangshan Prefecture (with 10 or more fatalities)
序号 位置 发生日期 灾害类型 规模
/104 m3受灾对象 受灾人口/人 死亡/人 直接经济
损失/万元具体成因 1 西昌城区及周边乡镇 1850-09-12 7.5级地震 不详 居民、房屋、道路等 2.79万户 约27 000 不详 7.5级地震 2 会东县小田坝村下坝老街 1881-02-06 滑坡 不详 人、畜和房屋 不详 约30 不详 不详 3 喜德县东河 1891-07-05 泥石流 不详 居民、房屋、道路等 不详 约1000 不详 暴雨 4 西昌市东河、西河 1942-06-16 山洪、泥石流 不详 居民、房屋、道路等 不详 约120 不详 暴雨 5 西昌沿安宁河19个乡 1951-08-24 山洪、泥石流 不详 居民、房屋、道路等 不详 15 不详 暴雨 6 西昌市东河 1955-07-14 山洪、泥石流 不详 居民、房屋、道路等 不详 68 不详 暴雨 7 喜德县中沟 1957-06-29 泥石流 不详 居民、房屋、道路等 不详 84 不详 暴雨 8 冕宁县泸沽镇洛瓦村4组 1970-05-26 泥石流 530 原铁道部第二工程处食堂、
仓库和工棚500 104 不详 矿山开采 9 喜德县红莫镇司金沟3社 1972-08-01 泥石流 不详 村落、房屋 不详 200 3000 暴雨 10 甘洛县乌史大桥乡利子依达沟 1981-07-09 泥石流 30万 成昆铁路利子依达大桥、
旅客列车不详 240 2000 余万暴雨 11 会东县溜姑乡三家村 1988-06-01 泥石流 不详 公路大桥桥墩、工棚 26 13 不详 暴雨及冰雹 12 冕宁县漫水湾镇二村沟1组 1989-09-04 泥石流 不详 居民点、农田 3000 51 不详 暴雨 13 冕宁县漫水湾镇胜利村 1989-09-04 泥石流 不详 居民点、农田 500 12 不详 暴雨 14 德昌县永郎镇蒲坝村 1995-07-11 泥石流 2.5 聚集区 63 10 800 暴雨 15 普格县五道箐镇采阿咀沟 2003-06-20 泥石流 70 公路、房屋、通信光缆 58 10 100 暴雨 16 盐源县平川镇骡马铺村2组 2006-07-14 泥石流 100 聚集区 168 16 500 暴雨 17 冕宁县彝海乡勒帕村 2011-06-16 泥石流 不详 聚集区 不详 17 不详 暴雨 18 宁南县白鹤滩镇和平村
1组矮子沟2012-06-27 泥石流 8 分散农户、白鹤滩水
电站施工区不详 38 530 暴雨 19 雷波县岩脚乡金沙村 2013-07-27 滑坡-涌浪 不详 金沙江航道船只、对岸码头 不详 约20 不详 暴雨 20 普格县荞窝镇耿底村
4、5组桐子林沟2017-08-08 泥石流 1.03 通村公路、房屋 577 26 16000 暴雨 21 冕宁县棉沙镇许家坪村
1、2组下草坪子滑坡2012-07-12 滑坡 不详 公路、房屋 95 13 400 持续降雨 22 德昌县茨达镇新华村 2004-08-23 滑坡、泥石流 不详 聚集区 4960 17 不详 暴雨 23 德昌县乐跃镇乐跃沟村 2004-09-24 泥石流 不详 聚集区 不详 11 不详 暴雨 24 盐源县洼里乡手爬村二组北沟段 2012-08-30 泥石流、滑坡 不详 聚集区 241 13 520 暴雨 表 4 凉山州各县市灾情统计表(2006—2020年)
Table 4 Statistical table of disaster situation for each county and city in Liangshan Prefecture (2006—2020)
县/市 灾情数量/起 死亡失踪/人 经济损失/万元 县/市 灾情数量/起 死亡失踪/人 经济损失/万元 德昌县 2 3 410 冕宁县 2 20 520 甘洛县 3 4 111 木里县 3 16 220 会东县 1 2 15 宁南县 8 52 6850 会理市 2 1 75 普格县 4 31 17470 金阳县 4 13 170 喜德县 1 6 100 雷波县 7 25 745 盐源县 3 30 1470 美姑县 2 8 546 越西县 2 1 118 昭觉县 2 10 380 合计 46 222 29200 表 5 凉山州红层红层滑坡统计
Table 5 Statistical analysis of red-bed landslide in Liangshan Prefecture
红层地层 面积/km2 数量/处 灾害密度
/(处·km−2)占比/% 侏罗系 5778 515 0.089 70.6 白垩系 3177 190 0.06 26.1 三叠系 837 24 0.029 3.3 -
[1] 刘希林,王全才,张丹,等. 四川凉山州普格县“6•20”泥石流灾害[J]. 灾害学,2003,18(4):46 − 50. [LIU Xilin,WANG Quancai,ZHANG Dan,et al. Debris flow disasters occurred on June 20,2003 in Puge County of Sichuan[J]. Journal of Catastrophology,2003,18(4):46 − 50. (in Chinese with English abstract)] LIU Xilin, WANG Quancai, ZHANG Dan, et al. Debris flow disasters occurred on June 20, 2003 in Puge County of Sichuan[J]. Journal of Catastrophology, 2003, 18(4): 46 − 50. (in Chinese with English abstract)
[2] 刘希林,李秀珍,苏鹏程. 四川德昌县凹米罗沟泥石流成灾过程与危险性评价[J]. 灾害学,2005,20(3):78 − 83. [LIU Xilin,LI Xiuzhen,SU Pengcheng. Debris flow process and hazard assessment in Aomiluo gully of Dechang County,Sichuan[J]. Journal of Catastrophology,2005,20(3):78 − 83. (in Chinese with English abstract)] LIU Xilin, LI Xiuzhen, SU Pengcheng. Debris flow process and hazard assessment in Aomiluo gully of Dechang County, Sichuan[J]. Journal of Catastrophology, 2005, 20(3): 78 − 83. (in Chinese with English abstract)
[3] 孙瑜,李宏俊,曹树波,等. 四川雷波碉楼沟泥石流特征及防治对策[J]. 地质灾害与环境保护,2017,28(1):1 − 6. [SUN Yu,LI Hongjun,CAO Shubo,et al. Features and preventive countermeasures of potential debris flow in Diaolou gully,Leibo County,Sichuan Province[J]. Journal of Geological Hazards and Environment Preservation,2017,28(1):1 − 6. (in Chinese with English abstract)] SUN Yu, LI Hongjun, CAO Shubo, et al. Features and preventive countermeasures of potential debris flow in Diaolou gully, Leibo County, Sichuan Province[J]. Journal of Geological Hazards and Environment Preservation, 2017, 28(1): 1 − 6. (in Chinese with English abstract)
[4] 陈宁生,黄娜. 普格县荞窝镇8•8泥石流灾害应急调查研究[J]. 山地学报,2018,36(3):482 − 487. [CHEN Ningsheng,HUANG Na. Emergency investigation on debris flow 8•8 disaster in Qiaowo Town,Puge County,Sichuan,China[J]. Mountain Research,2018,36(3):482 − 487. (in Chinese with English abstract)] CHEN Ningsheng, HUANG Na. Emergency investigation on debris flow 8•8 disaster in Qiaowo Town, Puge County, Sichuan, China[J]. Mountain Research, 2018, 36(3): 482 − 487. (in Chinese with English abstract)
[5] 李钰,甘滨蕊,王协康,等. 四川省甘洛县2019年群发性山洪泥石流灾害的形成机理[J]. 水土保持通报,2020,40(6):281 − 287. [LI Yu,GAN Binrui,WANG Xiekang,et al. Formation mechanism of group flash flood/debris flow disasters in Ganluo County,Sichuan Province in 2019[J]. Bulletin of Soil and Water Conservation,2020,40(6):281 − 287. (in Chinese with English abstract)] LI Yu, GAN Binrui, WANG Xiekang, et al. Formation mechanism of group flash flood/debris flow disasters in Ganluo County, Sichuan Province in 2019[J]. Bulletin of Soil and Water Conservation, 2020, 40(6): 281 − 287. (in Chinese with English abstract)
[6] 郑琅,张欣,王立娟. 四川省甘洛县山体滑坡应急调查与成因机制分析[J]. 人民长江,2022,53(8):117 − 122. [ZHENG Lang,ZHANG Xin,WANG Lijuan. Emergency investigation and formation mechanism of landslide in Ganluo County,Sichuan Province[J]. Yangtze River,2022,53(8):117 − 122. (in Chinese with English abstract)] ZHENG Lang, ZHANG Xin, WANG Lijuan. Emergency investigation and formation mechanism of landslide in Ganluo County, Sichuan Province[J]. Yangtze River, 2022, 53(8): 117 − 122. (in Chinese with English abstract)
[7] 廖安杰,岳世燕. 会理县老营盘村滑坡稳定性评价及数值分析[J]. 人民珠江,2018,39(9):56 − 58. [LIAO Anjie,YUE Shiyan. Stability evaluation and numerical analysis of Laoyingpan Village landslide in Huili Conunty[J]. Pearl River,2018,39(9):56 − 58. (in Chinese with English abstract)] LIAO Anjie, YUE Shiyan. Stability evaluation and numerical analysis of Laoyingpan Village landslide in Huili Conunty[J]. Pearl River, 2018, 39(9): 56 − 58. (in Chinese with English abstract)
[8] 刘凯,李渝生,易树健,等. 美姑河火洛村溃散型滑坡的成因动力学机理研究[J]. 科学技术与工程,2017,17(33):217 − 224. [LIU Kai,LI Yusheng,YI Shujian,et al. Study on kinetic characteristics of Huoluo landslide in Meigu River[J]. Science Technology and Engineering,2017,17(33):217 − 224. (in Chinese with English abstract)] LIU Kai, LI Yusheng, YI Shujian, et al. Study on kinetic characteristics of Huoluo landslide in Meigu River[J]. Science Technology and Engineering, 2017, 17(33): 217 − 224. (in Chinese with English abstract)
[9] 尹洪峰,冯志仁,薄景山. 美姑河洛渣滑坡稳定性分析[J]. 自然灾害学报,2007,16(6):70 − 73. [YIN Hongfeng,FENG Zhiren,BO Jingshan. Stability analysis of Luozha landslide by Meigu River[J]. Journal of Natural Disasters,2007,16(6):70 − 73. (in Chinese with English abstract)] YIN Hongfeng, FENG Zhiren, BO Jingshan. Stability analysis of Luozha landslide by Meigu River[J]. Journal of Natural Disasters, 2007, 16(6): 70 − 73. (in Chinese with English abstract)
[10] 郭宁. 普格县姚家山滑坡成因及稳定性分析[J]. 科学技术与工程,2014,14(11):114 − 118. [GUO Ning. Analysis of cause and stability on the Yaojiashan landslide in the Puge County[J]. Science Technology and Engineering,2014,14(11):114 − 118. (in Chinese with English abstract)] GUO Ning. Analysis of cause and stability on the Yaojiashan landslide in the Puge County[J]. Science Technology and Engineering, 2014, 14(11): 114 − 118. (in Chinese with English abstract)
[11] 高静贤,戴福初,朱雨轩,等. 四川宁南水塘村滑坡形成机理[J]. 中国地质灾害与防治学报,2019,30(6):1 − 9. [GAO Jingxian,DAI Fuchu,ZHU Yuxuan,et al. Failure mechanism of the Shuitang Village landslide in Ningnan County,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2019,30(6):1 − 9. (in Chinese with English abstract)] GAO Jingxian, DAI Fuchu, ZHU Yuxuan, et al. Failure mechanism of the Shuitang Village landslide in Ningnan County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(6): 1 − 9. (in Chinese with English abstract)
[12] 朱涛,尹翔,王成汤,等. 西昌太和矿北采场滑坡变形演化规律及成因机制研究[J]. 岩土力学,2022,43(增刊2):392 − 400. [ZHU Tao,YIN Xiang,WANG Chengtang,et al. Study on deformation evolution law and genetic mechanism of landslide in the north stope of Taihe Mine in Xichang[J]. Rock and Soil Mechanics,2022,43(Sup 2):392 − 400. (in Chinese with English abstract)] ZHU Tao, YIN Xiang, WANG Chengtang, et al. Study on deformation evolution law and genetic mechanism of landslide in the north stope of Taihe Mine in Xichang[J]. Rock and Soil Mechanics, 2022, 43(Sup 2): 392 − 400. (in Chinese with English abstract)
[13] 陈敏,刘良春,叶胜华. 弯曲-拉裂型滑坡形成机制和稳定性分析——以木里河卡基娃滑坡为例[J]. 水文地质工程地质,2012,39(1):58 − 64. [CHEN Min,LIU Liangchun,YE Shenghua. The formation mechanism and stability analysis of bend-crack landslide:Taking the Kajiwa landslide of Muli River as an example[J]. Hydrogeology & Engineering Geology,2012,39(1):58 − 64. (in Chinese with English abstract)] CHEN Min, LIU Liangchun, YE Shenghua. The formation mechanism and stability analysis of bend-crack landslide: Taking the Kajiwa landslide of Muli River as an example[J]. Hydrogeology & Engineering Geology, 2012, 39(1): 58 − 64. (in Chinese with English abstract)
[14] 崔玉龙,邓建辉,戴福初,等. 基于地貌与运动学特征的古滑坡群成因分析[J]. 四川大学学报(工程科学版),2015,47(1):68 − 75. [CUI Yulong,DENG Jianhui,DAI Fuchu,et al. Causes analysis of ancient landslides based on the landscape and kinematical characteristics[J]. Journal of Sichuan University (Engineering Science Edition),2015,47(1):68 − 75. (in Chinese with English abstract)] CUI Yulong, DENG Jianhui, DAI Fuchu, et al. Causes analysis of ancient landslides based on the landscape and kinematical characteristics[J]. Journal of Sichuan University (Engineering Science Edition), 2015, 47(1): 68 − 75. (in Chinese with English abstract)
[15] 王伟,王卫,戴雄辉. 四川美姑拉马阿觉滑坡复活特征与影响因素分析[J]. 中国地质灾害与防治学报,2022,33(4):9 − 17. [WANG Wei,WANG Wei,DAI Xionghui. Analysis of reactivated characteristics and influencing factors of the Lamajue landslide in Meigu County of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):9 − 17. (in Chinese with English abstract)] WANG Wei, WANG Wei, DAI Xionghui. Analysis of reactivated characteristics and influencing factors of the Lamajue landslide in Meigu County of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 9 − 17. (in Chinese with English abstract)
[16] 邹永才. 四川省金阳县城区古滑坡的新认识[J]. 地质灾害与环境保护,2021,32(1):75 − 80. [ZOU Yongcai. New understanding of ancient landslides in Jinyang County,Sichuan Province[J]. Journal of Geological Hazards and Environment Preservation,2021,32(1):75 − 80. (in Chinese with English abstract)] ZOU Yongcai. New understanding of ancient landslides in Jinyang County, Sichuan Province[J]. Journal of Geological Hazards and Environment Preservation, 2021, 32(1): 75 − 80. (in Chinese with English abstract)
[17] 伍康林,陈宁生,胡桂胜,等. 四川省盐源县玻璃村“7•19”特大滑坡灾害应急科学调查[J]. 山地学报,2018,36(5):806 − 812. [WU Kanglin,CHEN Ningsheng,HU Guisheng,et al. Emergency investigation to 7•19 landslide disaster in Boli Village,Yanyuan County,Sichuan,China[J]. Mountain Research,2018,36(5):806 − 812. (in Chinese with English abstract)] WU Kanglin, CHEN Ningsheng, HU Guisheng, et al. Emergency investigation to 7•19 landslide disaster in Boli Village, Yanyuan County, Sichuan, China[J]. Mountain Research, 2018, 36(5): 806 − 812. (in Chinese with English abstract)
[18] 芦明,柳金峰,孙昊,等. 四川木里“7•5”黄泥巴沟泥石流灾害过程及防治措施建议[J]. 中国地质灾害与防治学报,2023,34(1):102 − 109. [LU Ming,LIU Jinfeng,SUN Hao,et al. Disaster process of “7•5” debris flow in Huangnibugou,Muli,Sichuan and suggestions on prevention and control measures[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1):102 − 109. (in Chinese with English abstract)] LU Ming, LIU Jinfeng, SUN Hao, et al. Disaster process of “7•5” debris flow in Huangnibugou, Muli, Sichuan and suggestions on prevention and control measures[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 102 − 109. (in Chinese with English abstract)
[19] 殷万清,曹希超,胡卸文,等. 木里县项脚沟火后泥石流发育特征及应急处置对策[J]. 地质灾害与环境保护,2021,32(1):12 − 17. [YIN Wanqing,CAO Xicao,HU Xiewen,et al. Development characteristics of post-fire debris flow and emergency response measures in Xiangjiao township,Muli[J]. Journal of Geological Hazards and Environment Preservation,2021,32(1):12 − 17. (in Chinese with English abstract)] YIN Wanqing, CAO Xicao, HU Xiewen, et al. Development characteristics of post-fire debris flow and emergency response measures in Xiangjiao township, Muli[J]. Journal of Geological Hazards and Environment Preservation, 2021, 32(1): 12 − 17. (in Chinese with English abstract)
[20] 黄健,胡卸文,金涛,等. 四川西昌“3•30”火烧区响水沟火后泥石流成灾机理[J]. 中国地质灾害与防治学报,2022,33(3):15 − 22. [HUANG Jian,HU Xiewen,JIN Tao,et al. Mechanism of the post-fire debris flow of the Xiangshui gully in “3•30” fire area of Xichang,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):15 − 22. (in Chinese with English abstract)] HUANG Jian, HU Xiewen, JIN Tao, et al. Mechanism of the post-fire debris flow of the Xiangshui gully in “3•30” fire area of Xichang, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 15 − 22. (in Chinese with English abstract)
[21] 杨相斌,胡卸文,曹希超,等. 四川西昌电池厂沟火后泥石流成灾特征及防治措施分析[J]. 中国地质灾害与防治学报,2022,33(4):1 − 8. [YANG Xiangbin,HU Xiewen,CAO Xichao,et al. Analysis on disaster characteristics and prevention measures of the post-fire debris flow in Dianchichang gully,Xichang of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):1 − 8. (in Chinese with English abstract)] YANG Xiangbin, HU Xiewen, CAO Xichao, et al. Analysis on disaster characteristics and prevention measures of the post-fire debris flow in Dianchichang gully, Xichang of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 1 − 8. (in Chinese with English abstract)
[22] 殷万清,金涛,胡卸文,等. 喜德县中坝村火后泥石流发育特征及预警避险[J]. 中国地质灾害与防治学报,2021,32(3):61 − 69. [YIN Wanqing,JIN Tao,HU Xiewen,et al. Development characteristics of debris flow after fire in Zhongba Village of Xide County and its early warning and avoidance[J]. The Chinese Journal of Geological Hazard and Control,2021,32(3):61 − 69. (in Chinese with English abstract)] YIN Wanqing, JIN Tao, HU Xiewen, et al. Development characteristics of debris flow after fire in Zhongba Village of Xide County and its early warning and avoidance[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 61 − 69. (in Chinese with English abstract)
[23] 苏鹏程,韦方强,顾林康,等. 四川省德昌县群发性泥石流的特征和成因[J]. 山地学报,2010,28(5):593 − 606. [SU Pengcheng,WEI Fangqiang,GU Linkang,et al. Characteristic and causes of group-occurring debris flow in Dechang County,Sichuan Province[J]. Journal of Mountain Science,2010,28(5):593 − 606. (in Chinese with English abstract)] SU Pengcheng, WEI Fangqiang, GU Linkang, et al. Characteristic and causes of group-occurring debris flow in Dechang County, Sichuan Province[J]. Journal of Mountain Science, 2010, 28(5): 593 − 606. (in Chinese with English abstract)
[24] 陈兴长,崔鹏,葛永刚,等. 四川省西溪河地洛水电工程区“7•31”泥石流灾害[J]. 山地学报,2010,28(1):116 − 122. [CHEN Xingzhang,CUI Peng,GE Yonggang,et al. “7•31” debris flow hazards occurred at Diluo water-power construction areas in Xixi River Basin,Sichuan Province[J]. Journal of Mountain Science,2010,28(1):116 − 122. (in Chinese with English abstract)] CHEN Xingzhang, CUI Peng, GE Yonggang, et al. “7•31” debris flow hazards occurred at Diluo water-power construction areas in Xixi River Basin, Sichuan Province[J]. Journal of Mountain Science, 2010, 28(1): 116 − 122. (in Chinese with English abstract)
[25] 曾琇舒. 雷波县白沙村滑坡—碎屑流发育特征及其成因机理研究[D]. 成都:成都理工大学,2019. [ZENG Xiushu. Study on the development characteristics and genetic mechanism of landslide-debris flow in Baisha Village,Leibo County[D]. Chengdu:Chengdu University of Technology,2019. (in Chinese with English abstract)] ZENG Xiushu. Study on the development characteristics and genetic mechanism of landslide-debris flow in Baisha Village, Leibo County[D]. Chengdu: Chengdu University of Technology, 2019. (in Chinese with English abstract)
[26] 王德伟,林启飞,倪化勇,等. 孙水河流域阿坡洛滑坡成灾机理分析[J]. 四川地质学报,2016,36(1):114 − 117. [WANG Dewei,LIN Qifei,NI Huayong,et al. Genetic mechanism of the apoluo landslide in the Sunshui River Basin[J]. Acta Geologica Sichuan,2016,36(1):114 − 117. (in Chinese with English abstract)] WANG Dewei, LIN Qifei, NI Huayong, et al. Genetic mechanism of the apoluo landslide in the Sunshui River Basin[J]. Acta Geologica Sichuan, 2016, 36(1): 114 − 117. (in Chinese with English abstract)
[27] 白永健,倪化勇,王运生,等. 喜德采书组“8•31”滑坡工程地质特征及运动过程[J]. 山地学报,2014,32(3):327 − 335. [BAI Yongjian,NI Huayong,WANG Yusheng,et al. Engineering geological characteristics and motor process of Caishu landslide in Xide of Sichuan,China[J]. Mountain Research,2014,32(3):327 − 335. (in Chinese with English abstract)] BAI Yongjian, NI Huayong, WANG Yusheng, et al. Engineering geological characteristics and motor process of Caishu landslide in Xide of Sichuan, China[J]. Mountain Research, 2014, 32(3): 327 − 335. (in Chinese with English abstract)
[28] 铁永波,葛华,高延超,等. 二十世纪以来西南地区地质灾害研究历程与展望[J]. 沉积与特提斯地质,2022,42(4):653 − 665. [TIE Yongbo,GE Hua,GAO Yanchao,et al. Research course and prospect of geological disasters in southwest China since the 20th Century[J]. Sedimentary Geology and Tethyan Geology,2022,42(4):653 − 665. (in Chinese with English abstract)] TIE Yongbo, GE Hua, GAO Yanchao, et al. Research course and prospect of geological disasters in southwest China since the 20th Century[J]. Sedimentary Geology and Tethyan Geology, 2022, 42(4): 653 − 665. (in Chinese with English abstract)
[29] 白永健,铁永波,孟铭杰,等. 川西地区地质灾害发育特征与时空分布规律[J]. 沉积与特提斯地质,2022,42(4):666 − 674. [BAI Yongjian,TIE Yongbo,MENG Mingjie,et al. Development characteristics and temporal and spatial distribution law of geological disasters in western Sichuan[J]. Sedimentary Geology and Tethyan Geology,2022,42(4):666 − 674. (in Chinese with English abstract)] BAI Yongjian, TIE Yongbo, MENG Mingjie, et al. Development characteristics and temporal and spatial distribution law of geological disasters in western Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2022, 42(4): 666 − 674. (in Chinese with English abstract)
[30] 徐伟,冉涛,田凯. 西南红层地区地质灾害发育规律与成灾模式——以云南彝良县为例[J]. 中国地质灾害与防治学报,2021,32(6):127 − 133. [XU Wei,RAN Tao,TIAN Kai. Developing law and disaster modes of geohazards in red bed region of southwestern China:A case study of Yiliang County of Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):127 − 133. (in Chinese with English abstract)] XU Wei, RAN Tao, TIAN Kai. Developing law and disaster modes of geohazards in red bed region of southwestern China: A case study of Yiliang County of Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 127 − 133. (in Chinese with English abstract)
[31] 胡卸文,侯羿腾,王严,等. 火烧迹地土壤根系特征及其对抗剪强度的影响[J]. 水文地质工程地质,2019,46(5):106 − 112. [HU Xiewen,HOU Yiteng,WANG Yan,et al. Root characteristics and its influences on shear strength in burned areas[J]. Hydrogeology & Engineering Geology,2019,46(5):106 − 112. (in Chinese with English abstract)] HU Xiewen, HOU Yiteng, WANG Yan, et al. Root characteristics and its influences on shear strength in burned areas[J]. Hydrogeology & Engineering Geology, 2019, 46(5): 106 − 112. (in Chinese with English abstract)
[32] 韩金良,吴树仁,汪华斌. 地质灾害链[J]. 地学前缘,2007,14(6):11 − 23. [HAN Jinliang,WU Shuren,WANG Huabin. Preliminary study on geological hazard chains[J]. Earth Science Frontiers,2007,14(6):11 − 23. (in Chinese with English abstract)] DOI: 10.1016/S1872-5791(08)60001-9 HAN Jinliang, WU Shuren, WANG Huabin. Preliminary study on geological hazard chains[J]. Earth Science Frontiers, 2007, 14(6): 11 − 23. (in Chinese with English abstract) DOI: 10.1016/S1872-5791(08)60001-9
[33] 徐文杰,陈祖煜,何秉顺,等. 肖家桥滑坡堵江机制及灾害链效应研究[J]. 岩石力学与工程学报,2010,29(5):933 − 942. [XU Wenjie,CHEN Zuyu,HE Bingshun,et al. Research on river-blocking mechanism of Xiaojiaqiao landslide and disasters of chain effects[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(5):933 − 942. (in Chinese with English abstract)] XU Wenjie, CHEN Zuyu, HE Bingshun, et al. Research on river-blocking mechanism of Xiaojiaqiao landslide and disasters of chain effects[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5): 933 − 942. (in Chinese with English abstract)