Abstract:
In recent years, land subsidence issues have become relatively prominent in the northern plain area of Anhui province, and there is lack of quantitative research on the driving forces of regional land subsidence. In order to further investigate the developmental characteristics of subsidence disasters and provide scientific, this paper takes Bozhou City as an example. Based on 62 scenes of Sentinel-1 data, SBAS-InSAR technology is employed to obtain the spatial-temporal distribution characteristics of land subsidence from October 2021 to October 2022. Additionally, a geographic weighted regression model is applied to explore the main driving factors of land subsidence in Bozhou city. The research results indicate: (1) The main subsidence rate in Bozhou City ranges from 5 to 30 mm/year,with an average subsidence rate of 5.7 mm /year. (2) The most serious subsidence area is located north of Gongji Temple Town in Woyang County, with an amplitude of 84.3 mm/year, mainly caused by coal mining. In non-coal mining subsidence areas, the maximum subsidence rate is 25.8 mm/year, located in the northeast of Qiaocheng District. (3) The contribution order of various driving factors to ground subsidence is as follows: fluctuation of deep water level, fluctuation of middle-deep water level, burial depth of middle-deep groundwater, burial depth of deep groundwater, GDP per unit area, thickness of loose layer, road density, and population density. The study results can provide basic data support for geological disaster prevention and control.