Exploration and practice of the “dual control of point and zone” system for geological hazards in Xide County, Sichuan Province
-
摘要: 地质灾害隐患点和风险区双控是我国“十四五”期间地质灾害防治的重要任务之一,各试点省份和地区均在探索如何有效开展“点面双控”,并逐渐形成点面双控的管理制度、责任体系和技术方法。在归纳四川省喜德县地质环境条件和前期防灾减灾工作成效的基础上,总结了在喜德县开展地质灾害隐患点和风险区双控工作的做法和经验,结合我国现有地质灾害四大体系,提出了包含五个板块的点面双控体系:风险调查评价与动态调整板块,提高“点面双控”针对性、时效性、可操作性;监测预警与响应处置板块,提高“点面双控”监测覆盖面、预警准确度和响应效率;风险常态管理与防御板块,提升“点面双控”常态防御能力与管理水平,推动防御和管理向数字化和智能化转变;科普宣传与培训演练板块,提升“点面双控”全民认知水平和避灾能力;制度建设板块,完善责任体系,制定双控制度。通过上述工作,实现了喜德县风险隐患动态监测与常态化防御,提升了喜德县地质灾害防控能力,可为其他地区提供科学参考。Abstract: The dual control of geological hazard hidden points and risk zones is one of the important tasks for geological hazard prevention during China’s 14th Five-Year Plan period. Pilot provinces and regions are actively exploring effective approaches to implement the “dual control of point and zone”, leading to the establishment of management systems, responsibility frameworks, and technical methods for this purpose. Drawing on the geological environmental conditions and the outcomes of hazard prevention and reduction efforts in Xide County, Sichuan Province, this paper summarizes the practices and experiences of “dual control” for geological hazards in the region. Integrating with the existing four geological hazard systems, a comprehensive “dual control of point and zone” framework comprising five components is proposed, including: (1) The “investigation, evaluation and dynamic adjustment” component aims to enhance the pertinence, timeliness, operability, and adaptability of the “dual control of point and zone”. (2) The “monitoring, early warning and response processing” component focus on improving the monitoring coverage, warning accuracy, and response efficiency of the “dual control of point and zone”. (3) The “normal management and defense” component seeks to elevate the regular defense capability and management level of the “dual control of point and zone”, promoting the transformation of defense and management towards digitalization and intelligence. (4) The “science popularization, training and drills” component aims to enhance the national cognition level and hazard avoidance capability regarding the “dual control of point and zone”. (5) The “system construction” component seeks to improve the responsibility system, and establish the “dual control” mechanism. The above achievements have realized the dynamic monitoring of risks and hidden dangers and regular defense in Xide County, enhancing the geological hazards prevention and control capabilities in the area, which can serve as a scientific reference for other regions.
-
Keywords:
- geological hazard /
- Xide County /
- dual control of point and zone /
- hidden trouble /
- risk area
-
0. 引言
我国地形地貌复杂多样,地质条件复杂,山地丘陵约占国土面积的65%,崩塌、滑坡、泥石流等地质灾害点多、面广,防范难度大,每年都会造成严重的经济损失和人员伤亡。截至2021年底,全国已登记在册的地灾灾害隐患点28.8万余处,其中滑坡14.8万余处、泥石流3.5万余处,其他灾害10.5万余处,共威胁1300余万人和6300多亿元财产的安全[1 − 3]。据历史灾情统计,局地短时集中强降雨是泥石流的最主要诱发因素,同时降雨诱发型滑坡数量也约占滑坡总数的70%。近年来极端天气气候事件增多,降雨时空分布不均匀性凸显,高强度地震活动频繁,预计未来一段时期内地质灾害仍呈高发、频发态势,地质灾害防治工作面临的形势依然严峻[4 − 6]。加强地质灾害监测预警,逐步提升“灾害何时发生”的预警预报能力显得尤为重要。气象因素是诱发地质灾害的主要因素之一,开展雨量监测对滑坡、泥石流预警预报具有十分重要的意义[7 − 8]。而气象预报雨量一般反映区域的降雨情况,但山区往往受小气候和地形影响,在沟头和沟口、山脚、山腰和山顶的雨量存在一定差异性,因而建议突发地质灾害监测方案设计中将雨量作为必测项,故雨量监测设备的精度、灵敏性和稳定性是精准预警预报的前提。据统计,2021—2022年度自然资源部组织实施地质灾害普适型监测预警试验中,累计安装雨量计2.7万余台[9 − 10]。
自2000年以来,全国气象台站已基本普及地面自动采集气象站,逐渐用自动站采集代替以往的人工观测方式,但是基于不同原理采集降雨量之间直接存在差异。谭川东等 [11]认为采用标定的线性关系修正测量值能有效降低翻斗式雨量计测量误差。李耀宁等 [12]研究发现相同工作原理的仪器由于仪器本身的性能差异和不可预见的故障会造成较大测量误差。蔺潇[13]提出基于压电效应的雨量感知方法,并且设计了一种低成本、低功耗的压电式雨量传感器。翻斗式雨量计因其原理简单、功耗小,性能较为稳定,长期以来一直作为主流观测降雨强度和累计降雨量的监测设备,广泛运用于地质灾害监测。翻斗式雨量计通常要求安装在地势平坦且空旷的场地,且承雨器口至山顶的仰角不大于30°。但在地质灾害监测场景中,难以寻求安装的绝佳位置,特别是西南和东南部地区植被茂密,落叶或者其他一些杂物容易落到集雨器中,造成集雨通道不通畅,导致监测数据出现偏差。近年来研发的压电式雨量计相对于翻斗式雨量计具有野外安装便捷、集成度高、量程大、易维护等特点,更适用于在野外地质灾害监测复杂场景中。
1. 翻斗式雨量计与压电式雨量计测量原理对比
翻斗式雨量计工作原理是雨水从上承座进入贮水器,落入水漏斗,再通过漏斗口流入翻斗桶。当蓄水量达到一定高度(如 0.1mm)时,翻斗会失去平衡而翻倒。每次铲斗被翻倒时,开关就连接到电路上,向记录器发送一个脉冲信号。通过控制记录器来记录降雨,因此降雨过程可以持续测量。
压电式雨量计工作原理是雨滴落在传感器表面上,监测面板会产生微小的机械振动。压电陶瓷板在振动的机械应力作用下,电极之间产生电压差,并将电信号输出到外界。通过采集每个压电元件输出信号的峰值电压,来计算对应雨滴的粒径和体积,从而记录降雨量数值[14 − 16]。
通过技术参数、安装方法和运维方式对比发现,压电式雨量计在数据分辨率、上传数据实时性、安装准备、便携性、数据校准和运维方式上均优于翻斗式雨量计(表1)。
表 1 压电式雨量计和翻斗式雨量计指标对比Table 1. Comparison of indicators between piezoelectric rain gauges and tipping bucket rain gauges序号 雨量计类型
比较项目压电式雨量计 翻斗式雨量计 1 技术参数 降雨量:测量范围0~8 mm/min;
分辨率:0.01 mm;
精度:±4%(日累计降雨量);
测量降雨时长范围:监测到降雨后,
以10 s步进累计计算时长。降雨量:测量范围0~4 mm/min;
分辨率0.1 mm;
精度:±4%(日累计降雨量);
测量范围:根据配置的数据采集器确定雨量累计计算时长,
步进时长不统一。2 安装方式 安装准备:即到即装,无需预制基座;
便携性:一体化整机,组件数量少、材质轻、质量小;
拆除、移位操作简便;
水平校正:电子自动校正;
安装阶段数据校准:出厂配置,无需校准;
安装用时:15 min。安装准备:预制水泥基座(约重0.3 t);
便携性:由感应器和记录器构成,组件数量多,体积大,
质量大。废弃、拆除、移位费时费力;
水平校正:人工现场调整;
安装阶段数据校准:人工现场校准;
安装用时:3 d。3 运维方式 清洁清理:承雨面板采用弧面设计;特氟龙抗污防黏涂层;
不堵不黏、降雨过程即清洁过程;
水平校正:隐患点随机出现倾斜,电子自动校正;
运维阶段数据校准:无机械老化、无需校准。清洁清理:定期现场清理下水过滤网;
秋、冬季适当提高维护频次;
水平校正:隐患点随机出现倾斜,需人工现场校正;
运维阶段数据校准:易出现翻斗轴承进灰、翻转不灵敏等
机械老化现象,导致采集数据偏小,需定期人工现场校准。2. 精度标定试验结果及分析
为了验证压电式雨量计在降雨中的实测效果,分别在人工降雨大厅模拟全降雨过程及野外真实降雨条件下,对压电式雨量计采集数值与承雨器采集雨量作对比,并计算压电式雨量计的测量精度[17 − 18]。
2.1 模拟降雨环境试验
首先在模拟降雨环境下进行测试试验,选择在中国科学院水利部水土保持研究所人工模拟降雨大厅完成压电式雨量计的数据采集工作,降雨面积大于 4 m2,降雨高度大于 10 m,雨滴直径大小在 1~5 mm,雨滴终点速度在 1~8 m/s。监测的基准设备为标准化量筒口径为Φ200 mm,标尺高度 280 mm,分辨率 1 mm。2台压电式雨量计的有效受雨面积 Φ200 mm,分辨率0.01 mm。2台翻斗式雨量计分辨率均为0.1 mm(图1)。
根据实验室条件,设置 2 次稳定为70 mm/h的模拟降雨过程,每次降雨持续90 min,2 次人工降雨的喷头压力设置和开度分别是18 kPa,48%;26 kPa,40%。在降雨大厅中央选择并十字标记 2 个测试点,每个测试点对应一组测试设备,分别是量桶、压电式雨量计和翻斗式雨量计。 压电式雨量计设置为 5 min上报一次累计雨量,每次上报后清零。在室内无风的模拟降雨环境下,对比标准化量筒、压电式雨量计、翻斗式雨量计采集上报数据。测试点1、2数据对比分别如表2、3所示。
表 2 测试点1数据Table 2. Test point 1降雨
场次量筒1实测
/mm监测设备 上报数据1
/mm上报数据2
/mm上报数据3
/mm上报数据4
/mm上报数据5
/mm累计雨量数据与
量筒实测误差上报数据离散系数
(标准差/平均值)/%1 24 压电式雨量计1 5.01 4.78 4.87 4.85 4.90 24.40 (+1.7%) 1.6 翻斗式雨量计1 6.30 6.40 6.40 6.50 6.40 32 (+33.3%) 1.0 2 28 压电雨量计1 5.53 5.78 5.53 5.53 5.71 28.08 (+0.2%) 1.9 翻斗式雨量计1 6.20 6.20 6.40 6.20 6.20 31.2 (+11.4%) 1.3 表 3 测试点2数据Table 3. Test point 2降雨
场次量筒2实测
/mm监测设备 上报数据1
/mm上报数据2
/mm上报数据3
/mm上报数据4
/mm上报数据5
/mm累计雨量数据与
量筒实测误差上报数据离散系数
(标准差/平均值)/%1 27 压电雨量计2 5.52 5.70 5.65 5.51 5.70 28.08(+3.9%) 1.5 翻斗式雨量计2 5.30 5.30 5.00 5.00 5.00 26.70(−1.1%) 6.3 2 27 压电雨量计2 5.65 5.46 5.40 5.32 5.35. 27.18(+0.6%) 2.2 翻斗式雨量计2 6.20 6.30 6.20 6.00 6.00 30.07(+11.1%) 2.0 从压电式雨量计与翻斗雨量计采集数据结果对比来看,可以看见两者测量的雨量值相近,对比标准化量筒测量结果,压电式雨量计表现更为精确,误差范围可控制在4%以内,且离散系数可达2.5%以内。
2.2 真实降雨环境试验
选择2021年6月5日16:00—6月15日9:00 和6月28日21:00—6月29日11:00之间两个降雨时间段,对云南省德宏州盈江县苏典乡政府驻地泥石流沟内安装的压电式雨量计进行真实降雨环境试验,并将输出结果与标准量筒结果进行对比。如试验照片所示(图2)。6月5日14:00—6月15日9:00的降雨过程中,量筒测值为225 mm,压电式雨量计采集数值为230.48 mm,相对误差为2.4%。6月28日21:00—6月29日11:00的降雨,量筒测值为178 mm,压电式雨量计采集数值为178.65 mm,降雨时长14 h,相对误差为0.4%(表4)。
表 4 采集记录表Table 4. Data collection record table序号 采集时间 量筒雨量
/mm压电式雨量
计雨量/mm相对
误差/%1 6月5日14:00—6月15日9:00 225 230.48 2.4 2 6月28日21:00—6月29日11:00 178 178.65 0.4 2.3 误差分析
在模拟降雨环境和实际降雨中分别进行了压电式雨量计精度测定,在模拟降雨环境下监测精度分别为1.7%、0.2%、3.9%和0.6%,在实际降雨中监测精度分别为2.4%和0.4%。误差来源分析如下:
(1)室内试验过程中,4组测试结果压电式雨量计测定均高于量筒标定值,是由于雨滴降落有可能对监测盘产生2次冲击,2次冲击会使测得雨量值偏大。4组测试数据中3组测试结果翻斗式雨量计采集值均高于量筒标定值,且误差范围大于压电式雨量计。分析原因可能是翻斗在翻转过程中,雨水未流尽时,又有雨水流入计量翻斗,造成测量值大于量筒标定值。
(2)受室内试验场降雨试验设计参数制约,目前只对70 mm/h,雨滴直径大小在 1~5 mm,雨滴终点速度在 1~8 m/s的降雨过程进行了模拟,测量精度小于4%,后期将尽可能覆盖各级降雨做更完整的对比。实际在使用过程中,压电式雨量计观测的雨量存在小雨测量偏小的情况,这种是由于压电式雨量计设计原理所导致的,若雨滴小于0.1 mm,压电式雨量计垂直动量趋近于0,会导致测量结果无雨。
(3)真实环境试验中,第一次降雨测试结果误差较大,原因可能是由于监测时长达235 h,考虑野外试验存在雨水蒸发等因素,导致量筒内雨量与实际降雨量会有偏差,误差相对较大,另外风速、气温等气象因素对雨量测量都会有影响,也会造成测量误差。
2.4 误差改进方法研究
(1)在雨强和雨滴直径可控的实验室环境,增加试验次数,测量不同雨强下的压电式雨量计与标准量筒的测量值误差,分析不同雨强下,雨滴动能、振幅、频率与电压波形的细微变化关系,进一步优化雨量算法。
(2)探索野外复杂场景下基于嵌入约束法和证据组合法的多源信息融合技术的质量控制方法,在雨量数据的基础上综合其他传感器设备获取的数据,比如温度、湿度、风速、风向等作为判定约束条件,进一步提高雨量测量的精准度。
3. 结论
精准的降雨量测量在地质灾害监测预警中意义重大[19 − 20]。在地灾监测复杂场景下,压电式雨量计相对于翻斗式雨量计无论是安装方式、量程大小、测量精度和后期维护上更具有普适性。
(1)相对于翻斗式雨量计,压电式雨量计为一体化整机,组件数量少,能够实现电子自动校正,减免了现场安装校准环节,在安装使用上更为便捷。
(2)压电式雨量计量程大于翻斗式雨量计,能够更加精准测量短时集中强降雨,根据雨滴下落最终动能识别降雨量,间接计算最大冲击压强、雨滴直径及降雨时长,瞬间雨量实时输出,数据采集实时性更好。
(3)相对于翻斗式雨量计每月定期清理雨量筒内的杂物,压电式雨量计顶面设计为弧面,且为特氟龙涂层,即使有鸟粪,灰尘等污物,在雨水的冲刷下,会自然脱落运行,后期运维简单。
-
表 1 喜德县降雨型地质灾害预警模型
Table 1 Rainfall-type geological hazard early warning model for Xide County
降雨阈值模型
(0.1≤D≤120 h)当日降雨量/
mm累计降雨量/
mm对应预警等级
及形式I15%>0.87D−0.277 8.64 25 注意级 I50%>3.05D−0.277 26.5 49 警示级 I70%>4.18D−0.277 41.52 73 警戒级 I90%>8.225 D−0.279 81.22 145 警报级 -
[1] 刘传正,陈春利. 中国地质灾害防治成效与问题对策[J]. 工程地质学报,2020,28(2):375 − 383. [LIU Chuanzheng,CHEN Chunli. Achievements and countermeasures in risk reduction of geological disasters in China[J]. Journal of Engineering Geology,2020,28(2):375 − 383. (in Chinese with English abstract) DOI: 10.13544/j.cnki.jeg.2019-232 LIU Chuanzheng, CHEN Chunli . Achievements and countermeasures in risk reduction of geological disasters in China[J]. Journal of Engineering Geology,2020 ,28 (2 ):375 −383 . (in Chinese with English abstract) DOI: 10.13544/j.cnki.jeg.2019-232[2] 温铭生,陈红旗,张鸣之,等. 四川茂县“6•24”特大滑坡特征与成因机制分析[J]. 中国地质灾害与防治学报,2017,28(3):1 − 7. [WEN Mingsheng,CHEN Hongqi,ZHANG Mingzhi,et al. Characteristics and formation mechanism analysis of the “6•24” catastrophic landslide of the June 24 of 2017,at Maoxian,Sichuan[J]. The Chinese Journal of Geological Hazard and Control,2017,28(3):1 − 7. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2017.03.01 WEN Mingsheng, CHEN Hongqi, ZHANG Mingzhi, et al . Characteristics and formation mechanism analysis of the “6•24” catastrophic landslide of the June 24 of 2017, at Maoxian, Sichuan[J]. The Chinese Journal of Geological Hazard and Control,2017 ,28 (3 ):1 −7 . (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2017.03.01[3] 李爱农,南希,张正健,等. 茂县“6•24”特大高位远程崩滑灾害遥感回溯与应急调查[J]. 自然灾害学报,2018,27(2):43 − 51. [LI Ainong,NAN Xi,ZHANG Zhengjian,et al. Remote sensing research on development characteristics and emergency investigation of Mao County long range and high position landslide on June 24th,2017[J]. Journal of Natural Disasters,2018,27(2):43 − 51. (in Chinese with English abstract) DOI: 10.13577/j.jnd.2018.0205 LI Ainong, NAN Xi, ZHANG Zhengjian, et al . Remote sensing research on development characteristics and emergency investigation of Mao County long range and high position landslide on June 24th, 2017[J]. Journal of Natural Disasters,2018 ,27 (2 ):43 −51 . (in Chinese with English abstract) DOI: 10.13577/j.jnd.2018.0205[4] 张永双,巴仁基,任三绍,等. 中国西藏金沙江白格滑坡的地质成因分析[J]. 中国地质,2020,47(6):1637 − 1645. [ZHANG Yongshuang,BA Renji,REN Sanshao,et al. An analysis of geo-mechanism of the Baige landslide in Jinsha River,Tibet[J]. Geology in China,2020,47(6):1637 − 1645. (in Chinese with English abstract) DOI: 10.12029/gc20200603 ZHANG Yongshuang, BA Renji, REN Sanshao, et al . An analysis of geo-mechanism of the Baige landslide in Jinsha River, Tibet[J]. Geology in China,2020 ,47 (6 ):1637 −1645 . (in Chinese with English abstract) DOI: 10.12029/gc20200603[5] 冯文凯,张国强,白慧林,等. 金沙江“10•11”白格特大型滑坡形成机制及发展趋势初步分析[J]. 工程地质学报,2019,27(2):415 − 425. [FENG Wenkai,ZHANG Guoqiang,BAI Huilin,et al. A preliminary analysis of the formation mechanism and development tendency of the huge Baige landslide in Jinsha River on October 11,2018[J]. Journal of Engineering Geology,2019,27(2):415 − 425. (in Chinese with English abstract) DOI: 10.13544/j.cnki.jeg.2018-392 FENG Wenkai, ZHANG Guoqiang, BAI Huilin, et al . A preliminary analysis of the formation mechanism and development tendency of the huge Baige landslide in Jinsha River on October 11, 2018[J]. Journal of Engineering Geology,2019 ,27 (2 ):415 −425 . (in Chinese with English abstract) DOI: 10.13544/j.cnki.jeg.2018-392[6] 许强,郑光,李为乐,等. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J]. 工程地质学报,2018,26(6):1534 − 1551. [XU Qiang,ZHENG Guang,LI Weile,et al. Study on successive landslide damming events of Jinsha River in Baige Village on octorber 11 and November 3,2018[J]. Journal of Engineering Geology,2018,26(6):1534 − 1551. (in Chinese with English abstract) DOI: 10.13544/j.cnki.jeg.2018-406 XU Qiang, ZHENG Guang, LI Weile, et al . Study on successive landslide damming events of Jinsha River in Baige Village on octorber 11 and November 3, 2018[J]. Journal of Engineering Geology,2018 ,26 (6 ):1534 −1551 . (in Chinese with English abstract) DOI: 10.13544/j.cnki.jeg.2018-406[7] 郑琅,张欣,王立娟. 四川省甘洛县山体滑坡应急调查与成因机制分析[J]. 人民长江,2022,53(8):117 − 122. [ZHENG Lang,ZHANG Xin,WANG Lijuan. Emergency investigation and formation mechanism of landslide in Ganluo County,Sichuan Province[J]. Yangtze River,2022,53(8):117 − 122. (in Chinese with English abstract) DOI: 10.16232/j.cnki.1001-4179.2022.08.019 ZHENG Lang, ZHANG Xin, WANG Lijuan . Emergency investigation and formation mechanism of landslide in Ganluo County, Sichuan Province[J]. Yangtze River,2022 ,53 (8 ):117 −122 . (in Chinese with English abstract) DOI: 10.16232/j.cnki.1001-4179.2022.08.019[8] 张海泉,何文秀,赵波,等. 四川丹巴县“6•17”梅龙沟泥石流-阿娘寨滑坡灾害链现场调查与监测分析[J]. 科学技术与工程,2021,21(29):12481 − 12489. [ZHANG Haiquan,HE Wenxiu,ZHAO Bo,et al. Analysis of field investigation and monitoring of “6•17” meilong valley debris flow-aniangzhai landslide disaster chain in Danba County,Sichuan Province[J]. Science Technology and Engineering,2021,21(29):12481 − 12489. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2021.29.017 ZHANG Haiquan, HE Wenxiu, ZHAO Bo, et al . Analysis of field investigation and monitoring of “6•17” meilong valley debris flow-aniangzhai landslide disaster chain in Danba County, Sichuan Province[J]. Science Technology and Engineering,2021 ,21 (29 ):12481 −12489 . (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2021.29.017[9] 宋亚兵,胡桂胜,贺拿,等. 丹巴县“6•17”阿娘寨村滑坡体特征及成因初步分析[J]. 科学技术与工程,2021,21(22):9243 − 9249. [SONG Yabing,HU Guisheng,HENA,et al. Preliminary analysis on the characteristics and causes of landslide in “6•17” Aniangzhai Village in Danba County[J]. Science Technology and Engineering,2021,21(22):9243 − 9249. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2021.22.009 SONG Yabing, HU Guisheng, HENA, et al . Preliminary analysis on the characteristics and causes of landslide in “6•17” Aniangzhai Village in Danba County[J]. Science Technology and Engineering,2021 ,21 (22 ):9243 −9249 . (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2021.22.009[10] 李宇嘉,陈宁生,杨溢,等. 汉源县中海村“8•21”雨后型滑坡特征与成因[J]. 成都理工大学学报(自然科学版),2022,49(2):185 − 195. [LI Yujia,CHEN Ningsheng,YANG Yi,et al. Characteristics and causes of 8•21 rainfall-induced landslide at Zhonghai Village,Hanyuan County,Sichuan,China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2022,49(2):185 − 195. (in Chinese with English abstract) LI Yujia, CHEN Ningsheng, YANG Yi, et al . Characteristics and causes of 8•21 rainfall-induced landslide at Zhonghai Village, Hanyuan County, Sichuan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2022 ,49 (2 ):185 −195 . (in Chinese with English abstract)[11] 殷跃平. 加强城镇化进程中地质灾害防治工作的思考[J]. 中国地质灾害与防治学报,2013,24(4):5 − 8. [YIN Yueping. Thoughts on strengthening the prevention and control of geological disasters in the process of urbanization[J]. The Chinese Journal of Geological Hazard and Control,2013,24(4):5 − 8. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2013.04.006 YIN Yueping . Thoughts on strengthening the prevention and control of geological disasters in the process of urbanization[J]. The Chinese Journal of Geological Hazard and Control,2013 ,24 (4 ):5 −8 . (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2013.04.006[12] 铁永波,徐伟,向炳霖,等. 西南地区地质灾害风险“点面双控”体系构建与思考[J]. 中国地质灾害与防治学报,2022,33(3):106 − 113. [TIE Yongbo,XU Wei,XIANG Binglin,et al. The thoughts on construction of “double-control of point and zone” system of geological hazard risk in southwest China[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):106 − 113. (in Chinese with English abstract) TIE Yongbo, XU Wei, XIANG Binglin, et al . The thoughts on construction of “double-control of point and zone” system of geological hazard risk in southwest China[J]. The Chinese Journal of Geological Hazard and Control,2022 ,33 (3 ):106 −113 . (in Chinese with English abstract)[13] 石菊松,吴树仁,张永双,等. 应对全球变化的中国地质灾害综合减灾战略研究[J]. 地质论评,2012,58(2):309 − 318. [SHI Jusong,WU Shuren,ZHANG Yongshuang,et al. Integrated landslide mitigation strategies study for global change in China[J]. Geological Review,2012,58(2):309 − 318. (in Chinese with English abstract) DOI: 10.3969/j.issn.0371-5736.2012.02.013 SHI Jusong, WU Shuren, ZHANG Yongshuang, et al . Integrated landslide mitigation strategies study for global change in China[J]. Geological Review,2012 ,58 (2 ):309 −318 . (in Chinese with English abstract) DOI: 10.3969/j.issn.0371-5736.2012.02.013[14] 马寅生,张业成,张春山,等. 地质灾害风险评价的理论与方法[J]. 地质力学学报,2004,10(1):7 − 18. [MA Yinsheng,ZHANG Yecheng,ZHANG Chunshan,et al. Theory and approaches to the risk evaluation of geological hazards[J]. Journal of Geomechanics,2004,10(1):7 − 18. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-6616.2004.01.002 MA Yinsheng, ZHANG Yecheng, ZHANG Chunshan, et al . Theory and approaches to the risk evaluation of geological hazards[J]. Journal of Geomechanics,2004 ,10 (1 ):7 −18 . (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-6616.2004.01.002[15] 张茂省,薛强,贾俊,等. 山区城镇地质灾害调查与风险评价方法及实践[J]. 西北地质,2019,52(2):125 − 135. [ZHANG Maosheng,XUE Qiang,JIA Jun,et al. Methods and practices for the investigation and risk assessment of geo-hazards in mountainous towns[J]. Northwestern Geology,2019,52(2):125 − 135. (in Chinese with English abstract) DOI: 10.19751/j.cnki.61-1149/p.2019.02.013 ZHANG Maosheng, XUE Qiang, JIA Jun, et al . Methods and practices for the investigation and risk assessment of geo-hazards in mountainous towns[J]. Northwestern Geology,2019 ,52 (2 ):125 −135 . (in Chinese with English abstract) DOI: 10.19751/j.cnki.61-1149/p.2019.02.013[16] 杨柳,牟鑫亮,李晨,等. 延安市宝塔区地质灾害风险评价[J]. 山地学报,2020,38(5):679 − 690. [YANG Liu,MU Xinliang,LI Chen,et al. Risk assessment of geological hazards in Baota District,Yan’an City,Shaanxi,China[J]. Mountain Research,2020,38(5):679 − 690. (in Chinese with English abstract) DOI: 10.16089/j.cnki.1008-2786.000545 YANG Liu, MU Xinliang, LI Chen, et al . Risk assessment of geological hazards in Baota District, Yan’an City, Shaanxi, China[J]. Mountain Research,2020 ,38 (5 ):679 −690 . (in Chinese with English abstract) DOI: 10.16089/j.cnki.1008-2786.000545[17] 唐亚明,张茂省,李政国,等. 国内外地质灾害风险管理对比及评述[J]. 西北地质,2015,48(2):238 − 246. [TANG Yaming,ZHANG Maosheng,LI Zhengguo,et al. Review and comparison onInland and overseas geo-hazards risk management[J]. Northwestern Geology,2015,48(2):238 − 246. (in Chinese with English abstract) DOI: 10.3969/j.issn.1009-6248.2015.02.025 TANG Yaming, ZHANG Maosheng, LI Zhengguo, et al . Review and comparison onInland and overseas geo-hazards risk management[J]. Northwestern Geology,2015 ,48 (2 ):238 −246 . (in Chinese with English abstract) DOI: 10.3969/j.issn.1009-6248.2015.02.025[18] 刘毅飞,王欣凯,蔡廷禄,等. 福建海坛岛地质灾害特征及风险评价[J]. 灾害学,2016,31(4):122 − 127. [LIU Yifei,WANG Xinkai,CAI Tinglu,et al. Characteristic and risk assessment of geological hazard in Haitan Island,Fujian Province[J]. Journal of Catastrophology,2016,31(4):122 − 127. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-811X.2016.04.021 LIU Yifei, WANG Xinkai, CAI Tinglu, et al . Characteristic and risk assessment of geological hazard in Haitan Island, Fujian Province[J]. Journal of Catastrophology,2016 ,31 (4 ):122 −127 . (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-811X.2016.04.021[19] 罗路广,裴向军,谷虎,等. 基于GIS的“8•8”九寨沟地震景区地质灾害风险评价[J]. 自然灾害学报,2020,29(3):193 − 202. [LUO Luguang,PEI Xiangjun,GU Hu,et al. Risk assessment of geohazards induced by “8•8” earthquake based on GIS in Jiuzhaigou scenic area[J]. Journal of Natural Disasters,2020,29(3):193 − 202. (in Chinese with English abstract) LUO Luguang, PEI Xiangjun, GU Hu, et al. Risk assessment of geohazards induced by “8•8” earthquake based on GIS in Jiuzhaigou scenic area[J]. Journal of Natural Disasters, 2020, 29(3): 193 − 202. (in Chinese with English abstract)
[20] 王家柱,高延超,铁永波,等. 基于斜坡单元的山区城镇滑坡灾害易发性评价——以康定为例[J]. 沉积与特提斯地质,2023,43(3):640 − 650. [WANG Jiazhu,GAO Yanchao,TIE Yongbo,et al. Landslide susceptibility assessment based on slope units of mountainous cities and towns: A case study of Kangding city[J]. Sedimentary Geology and Tethyan Geology,2023,43(3):640 − 650. WANG Jiazhu, GAO Yanchao, TIE Yongbo, et al . Landslide susceptibility assessment based on slope units of mountainous cities and towns: A case study of Kangding city[J]. Sedimentary Geology and Tethyan Geology,2023 ,43 (3 ):640 −650 .