ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

原状黄土土-水特征曲线与湿陷性的相关性

陈家乐, 倪万魁, 王海曼, 荣誉

陈家乐,倪万魁,王海曼,等. 原状黄土土-水特征曲线与湿陷性的相关性[J]. 中国地质灾害与防治学报,2024,35(2): 107-114. DOI: 10.16031/j.cnki.issn.1003-8035.202211056
引用本文: 陈家乐,倪万魁,王海曼,等. 原状黄土土-水特征曲线与湿陷性的相关性[J]. 中国地质灾害与防治学报,2024,35(2): 107-114. DOI: 10.16031/j.cnki.issn.1003-8035.202211056
CHEN Jiale,NI Wankui,WANG Haiman,et al. Correlation between soil-water characteristic curve and collapsibility in undisturbed loess[J]. The Chinese Journal of Geological Hazard and Control,2024,35(2): 107-114. DOI: 10.16031/j.cnki.issn.1003-8035.202211056
Citation: CHEN Jiale,NI Wankui,WANG Haiman,et al. Correlation between soil-water characteristic curve and collapsibility in undisturbed loess[J]. The Chinese Journal of Geological Hazard and Control,2024,35(2): 107-114. DOI: 10.16031/j.cnki.issn.1003-8035.202211056

原状黄土土-水特征曲线与湿陷性的相关性

详细信息
    作者简介:

    陈家乐(1999—),男,安徽宿州人,硕士研究生,主要从事黄土方面的研究。E-mail:945844224@qq.com

    通讯作者:

    倪万魁(1965—),男,宁夏固原人,博士,教授,主要从事黄土力学方面的研究。E-mail:niwankui@che.edu.cn

  • 中图分类号: P694

Correlation between soil-water characteristic curve and collapsibility in undisturbed loess

  • 摘要:

    为了研究原状黄土土-水特征曲线与黄土湿陷性之间的联系,在陕西西安长安区取地表以下30 m范围内的原状黄土土样,进行基本物理指标试验和湿陷性试验。对不同典型地层的黄土-古土壤试样进行土水特征曲线试验,通过电镜扫描从微观角度分析。研究结果表明:大孔隙的数量与饱和体积含水率呈正相关;中孔隙的数目与过渡区斜率的大小呈正相关,孔隙数目越多土体失水速度越快;微小孔隙的数目和土的塑性指数影响残余含水率的大小。对于不同深度土层,饱和体积含水率和过渡区斜率与土层的湿陷系数呈正相关;塑性指数接近土层的湿陷系数对残余体积含水率的影响不明显;古土壤层的SWCC与湿陷系数之间存在与黄土层相同的正相关性。文章从非饱和土力学的方向去研究黄土的湿陷性,为湿陷性的研究提供一种新的研究角度。

    Abstract:

    This study investigates the correlation between the soil-water characteristic curve (SWCC) of undisturbed loess and its collapsibility. Undisturbed loess soil samples, obtained from depths up to 30 meters below the surface in Chang’an District, Xi’an City, Shaanxi Province, were taken for basic physical index tests and collapsibility assessments. SWCC analyses of loess-paleosol samples from different typical strata were conducted and analyzed using scanning electron microscope. The findings reveal a positive correlation between the number of macropores and saturated volumetric water content. Additionaly, the number of pores is positively correlated with the slope of the transition zone, indicating that a higher pore count accelerates the soil's water loss rate. The number of tiny voids and the plasticity index of soil affect the residual moisture content. For different soil layers, saturated volumetric water content and slope of transition zone exhibit a positive correlation with collapsible coefficient. The influence of collapsible coefficient of plastic index close to soil layer on residual volumetric water content is not obvious. The study also indicates a positive correlation between SWCC and the collapsibility coefficient of the loess layer. By approaching loess collapsibility from the direction of unsaturated soil mechanics, this paper introduces a novel research angle for the study of collapsibility.

  • 黄土是一种分布在干旱、半干旱地区形成的第四纪沉积物,前人对于黄土的形成过程和当时的环境已经做了大量研究[14]。随着近年来西部大开发策略和“一带一路”政策的实施,在黄土地区开展的建设日益增多,许多黄土地区施工所遇到的问题也随之出现,学者开始重视对黄土地区治理及保护等方面的研究[5]。黄土与气候变迁是我国第四纪研究中十分具有特色的内容,当前该方面的研究已经处于世界前列[6]。湿陷性是黄土最主要的工程性质之一,湿陷变形是一种特殊的塑性变形,最大的特点就是突变性、非连续性和不可逆性[7]

    黄土湿陷性的影响因素较多,对于一些基本的物理指标对湿陷性的影响并非是单独作用而是具有一定的相关性[8],学者普遍认为造成湿陷性发生最大的影响因子为孔隙比和含水率[710]。除了黄土自身因素的影响,外部试验方法对湿陷系数的测量也具有一定的干扰,湿陷系数曲线因为试验方法的不同和增湿或减湿也呈现出不同的规律[11]。前人尝试从微观结构上分析黄土湿陷性的发生机理,沙爱民等[12]对不同地区黄土的湿陷微观结构进行观测,建立湿陷性和微观结构的关系。可见黄土的湿陷性极为复杂,受到多种因素影响控制。

    黄土作为一种非饱和土的一种,对水的吸力大小将直接影响实际工程中黄土层的含水率。土-水特征曲线(soil-water characteristic curve,SWCC)在非饱和土力学中有着很重要的作用,对于非饱和土的强度、渗透、体积变化等特征都可以从该曲线中得到[13]。基于前人对于SWCC的研究,发现SWCC同样受到多种因素的影响,其中不同土层之间SWCC的变化很大程度上是由于孔隙比的不同而引起的[14]。在SWCC的微观结构方面,李同录等通过微观图像处理研究更新统黄土的微观结构与土-水特征曲线之间的关系;张玉伟等[14]研究黄土孔隙结构变化情况下的土水特征曲线模型变化特征。当前常用的用来描述SWCC曲线的模型主要有Van Genuchten模型和Fredlund-Xing模型,模型其中的参数都是通过拟合得来[15]。传统的黄土湿陷性和SWCC试验复杂且费时,很多学者基于理论和试验对黄土的湿陷性和土水特征曲线进行预测。对于湿陷性方面,一些学者研究了物理力学性质和湿陷性的关系和预测[1618];朱凤基等[9]对湿陷系数的影响因素进行相关性分析;陈开圣等[1921]、胡全[21]通过微观结构对湿陷性的预测。对于土水特征曲线方面,王海曼等[22]通过孔隙比对于土水特征曲线的预测;张洁等[23]在微观层面通过黄土粒径分布曲线对土水特征曲线的研究。

    结合前人的研究成果,分析得出黄土的湿陷性和土水特征曲线的预测无论是从微观层面还是从物理指标方面,二者有着很强的相关系。本文以基本物理指标和电镜扫描(SEM)为切入点,通过对比研究不同黄土层之间的SWCC和湿陷性的相关性,从宏观和微观的角度具体分析二者相关性产生的原因。本文尝试从非饱和土力学方面去评价黄土的湿陷性,为黄土湿陷性的研究提供一种新的角度。

    本文研究所采用的土样取自于西安长安区。为了研究应力历史和沉积环境对黄土湿陷性和持水特性的影响,本研究按深度取了更新统(Qp)典型土层的黄土试样,分别为6 m黄土、11 m古土壤、15 m黄土、23 m古土壤和28 m黄土。考虑场地复杂性及外界设备等因素对试验结果的干扰,勘察取样阶段在场地内设置不同的钻探点对深度范围内的黄土进行取样。具体基本物理指标见表1

    表  1  试验土样基本物理参数
    Table  1.  Basic physical parameters of test soil samples
    地层 深度/m 天然含水率/% 干密度/(g·cm−3 孔隙比 饱和度/% 液限/% 塑限/% 塑性指数 液性指数
    6 m黄土(Qp) 6 21.8 1.46 0.849 70.5 33.5 21.4 12.1 0.05
    11 m古土壤(Qp) 11 19.6 1.61 0.677 78.8 35.2 22.0 13.2 <0
    15 m黄土(Qp) 15 22.3 1.40 0.933 65.1 33.8 22.2 11.7 0.05
    23 m古土壤(Qp) 23 20.8 1.55 0.745 75.9 35.4 22.2 13.3 <0
    28 m黄土(Qp) 28 22.8 1.48 0.833 75.0 33.9 22.2 11.7 0.05
    下载: 导出CSV 
    | 显示表格

    本次室内试验测量黄土的湿陷性采用双线法。每一深度的土层切取两个环刀试样,将两个土样放在固结仪上,设置稳定标准为每24 h形变量小于0.001 mm。其中一个土样在天然含水率状态下进行分级加压,直至最后一级荷载稳定记录读数为$ hp $;另一个土样注水后分级施加荷载,直至最后一级荷载后稳定记录读数为$ hp' $。依据式(1)得出黄土的湿陷系数。

    取原状土样的环刀施加饱和自重压力,对小于等于50 kPa的一次性施加;大于50 kPa的分级加压,且加压小于50 kPa,加压时间不小于15 min,直至饱和自重压力。加压后每隔1 h记录一次,直至变形稳定,记录为hz。向容器内加入纯水,每隔1 h记录一次直至稳定,记录为hz',根据式(2)计算自重湿陷系数${\delta } $zs

    $$ \delta_{{\mathrm{s}}}= \frac{hp-hp'}{h} $$ (1)
    $$ {\delta } _{{\mathrm{zs}}}= \frac{h\textit{z}-h\textit{z}'}{h} $$ (2)

    式中:δs——湿陷系数;

    hphz——试样变形稳定后的高度/mm;

    hp'hz'——试样浸水变形稳定后的高度/mm;

    $ \mathrm{\delta } $zs——自重湿陷系数;

    综合考虑土水特征曲线的试验方法,其中滤纸法的试验结果准确,基质吸力测量范围大[24]。因此本次试验采用滤纸法,对每一地层的原状黄土样烘干后测量质量,用胶头滴管依次缓慢的滴定土样,直到土样达到预制的含水率,在保湿器内放置3 d。将滤纸剪成相应样式,放在烘箱内110 °C烘10 h,滤纸称重后每3层为一组夹放在2个环刀之间,用电工胶裹住后用锡纸包住并在恒温箱内放置10 d,10 d后采用精度0.0001 g的天平秤中间滤纸的质量,求得滤纸含水率并根据式(2)测得相应的基质吸力,测量试验后的环刀内土体的含水率,并根据Van Genuchten模型,采用式(3)进行拟合。

    $$ \left\{\begin{split} & lg\psi=5.327-0.077\; 9\omega_{\mathrm{f}_{\mathrm{p}}},\omega_{\mathrm{f}_{\mathrm{p}}} < 45.3\% \\ & lg\psi=2.412-0.013\; 5\omega_{\mathrm{f}_{\mathrm{p}}},\omega\mathrm{_{f_{\mathrm{p}}}}\geqslant45.3\% \end{split} \right. $$ (3)
    $$ \theta=\theta_{\mathrm{r}}+\left(\theta_{\mathrm{s}}-\theta_{\mathrm{r}}\right)\left[\frac{1}{1+\left(a\psi\right)^n}\right]^m $$ (4)

    式中:$ \psi $——基质吸力/kPa;

    $ \omega\mathrm{_{f_p}} $——滤纸体积含水率/%;

    $ \theta $——体积含水率/%;

    $ {\theta }_{{\mathrm{r}}} $——残余体积含水率/%;

    $ {\theta }_{{\mathrm{s}}} $——饱和体积含水率/%;

    amn——拟合结果。

    用小刀将原状土样切成直径10 mm、高15 mm的圆柱体,中间位置刻凹槽;将土样从中间凹槽处掰开,在自然状态下风干;风干后的土样固定在靶台上进行喷镀金膜,保证土样具有良好的导电性;镀金后放在扫描电子显微镜上观察和拍照(图1)。为了能更好地看清土样的孔隙分布情况,采集500倍、1000倍、2000倍下的土样照片,对比发现在1000倍下土样的孔隙能清楚地展示出来,因此本试验结果采用1000倍的电镜扫描图进行分析。

    图  1  试验图片
    Figure  1.  Experimental Setup

    对选取的典型黄土与古土壤层的湿陷系数见表2,其中15 m的Qp黄土湿陷系数最大,根据《湿陷性黄土地区建筑标准》划分标准来判别,2层古土壤为轻微湿陷性土层,另外3层黄土均为中等湿陷性土层;深度范围内土层均为非自重湿陷性土。

    表  2  各地层黄土湿陷系数
    Table  2.  Loess collapsibility coefficient of various strata in loess regions
    土层 起始湿陷压力/kPa 自重湿陷系数 湿陷系数
    6 m黄土(Qp) 50 0.015 0.032
    11 m古土壤(Qp) 200 0.008 0.008
    15 m黄土(Qp) 50 0.038 0.042
    23 m古土壤(Qp) 200 0.017 0.015
    28 m黄土(Qp) 150 0.016 0.016
    下载: 导出CSV 
    | 显示表格
    图  2  各地层黄土湿陷系数e-P压缩曲线
    Figure  2.  e-P Compression curves of loess collapsibility coefficients in various strata of loess

    将测得的体积含水率与基质吸力的数据使用origin软件根据Van Genuchten模型进行拟合,拟合结果及相关参数见表3图2。每一层土的SWCC拟合见图3

    表  3  SWCC的VG拟合相关参数
    Table  3.  VG fitting parameters of SWCC
    土层 残余体积
    含水率
    /%
    饱和体积
    含水率
    /%
    a n m R2
    6 m黄土(Qp) 7.76 45.92 0.0563 1.9913 0.4978 0.9883
    11 m古土壤(Qp) 8.63 40.37 0.0160 2.4253 0.5877 0.9997
    15 m黄土(Qp) 7.93 48.27 0.2626 1.6456 0.3923 0.9985
    23 m古土壤(Qp) 8.67 42.70 0.0315 2.527 0.6042 0.9740
    28 m黄土(Qp) 8.63 45.44 0.0799 1.9027 0.4744 0.9936
    下载: 导出CSV 
    | 显示表格
    图  3  SWCC拟合结果图
    Figure  3.  SWCC fitting results figure

    由于黄土层与古土壤层的湿陷系数相差较大,为了更好的探究土水特征曲线与湿陷性的相关性,应先将二者分开进行讨论。

    对于黄土地层,由试验数据可得,研究范围内的黄土,第二层15 m的黄土层干密度最小,天然状态下含水率较高,湿陷系数较大,是发生湿陷的主要土层;其次为6 m的第一层黄土;28 m的湿陷性最小。在黄土层之间根据图4(a)所示不同深度下黄土的SWCC曲线图,可以明显地观察到第二层黄土的饱和体积含水率最大,过渡区的斜率最大,随着基质吸力的增大含水率下降最快;6 m的第一层黄土饱和含水率较小,过渡区的斜率较为缓和;28 m的黄土饱和含水率最小,过渡区最为缓和。三层黄土的残余区都接近平稳,并且残余体积含水率基本上相等。综合上述试验数据,可以得出对湿陷性黄土而言,湿陷性强的土层所对应的饱和体积含水率和过渡区斜率较大,因此不同深度的原状Qp黄土的SWCC的饱和体积含水率和过渡区斜率与湿陷系数呈正相关;而残余体积含水率与湿陷系数的相关性不强。

    图  4  不同深度黄土与古土壤SWCC对比图
    Figure  4.  Comparison of SWCC between loess and paleosol at different depths

    对于古土壤地层,由前文研究数据可得研究范围内第二层古土壤的湿陷系数大于第一层古土壤,观察图4(b)古土壤层的SWCC曲线对比图,发现第二层古土壤的饱和体积含水率大于第一层古土壤,在过渡区二者的斜率接近相等,残余区二者的曲线近乎重合,残余体积含水率仅相差0.04%。可以推断出古土壤的SWCC与湿陷性有着与黄土地层相似的相关性,既饱和体积含水率与湿陷系数呈正相关,残余体积含水率与湿陷系数关系不明显,唯一不同之处在于过渡区的斜率两层古土壤呈现近乎平行的趋势,为更加全面的探究二者的相关系,进行电镜扫描试验从微观层面进行研究。

    古土壤层相较于黄土层是沉积年代的环境不同所导致[2],二者的外观、土颗粒的胶结形式和孔隙都有着较大的差异。通过观测不同土层在电镜扫描(SEM)下的微观结构图5(a)—(e),其中6 m Qp黄土土质疏松,富含大孔隙,结构为絮凝胶结结构和支架大孔半胶结结构;15 m Qp黄土土质均一,疏松且富含大孔隙,结构为絮凝胶结结构和支架大孔半胶结结构;28 m Qp黄土相较于15 m处黄土颗粒胶结形式差别不大,但是能明显看出孔隙尤其是大中孔隙数量减少,结构更为密实。可以观察得出三层黄土的颗粒胶结结构相似,并且差别较大的是孔隙的大小及分布。古土壤层的土颗粒排列更为密实,两个不同深度古土壤胶结形式相同,胶结形式主要为絮凝胶结结构和镶嵌微孔半胶结结构,二者的湿陷性均较小。前人的研究表明,湿陷性的发生与黄土颗粒的胶结形式关系不大[2526],并且湿陷性的发生主要是大中孔隙数量的减少,黄土的微小孔隙在湿陷前后数量增多[27]。使用image软件对电镜扫描图进行分析,按照黄土孔隙的划分标准[25]进行划分,结果见表4。对比研究范围内的五层黄土的孔隙分布图,发现第二层黄土的大中孔隙数量之和占比最多,与其对应的土水特征曲线中的饱和体积含水率最大,过渡区斜率最大,黄土的湿陷系数也最大,与前文试验结果相符合;第二层古土壤中的大孔隙含量高于第一层古土壤,二者中孔隙含量相等,结合前文二者的湿陷系数大小,发现第一层古土壤的湿陷性小于第二层古土壤,且土水特征曲线中饱和体积含水率较大,二者过渡区斜率相等,可以推断出大孔隙的数量决定着饱和体积含水率的大小,过渡区斜率主要由中孔隙控制,黄土层同样符合该结论。结合表1内各个土层的基本物理指标,发现各黄土层的塑性指数基本相同,两个古土壤层的塑性指数也相差很小,但是黄土与古土壤之间存在一定差异,二者土颗粒的黏性颗粒的含量不同,二者的残余体积含水率也有所不同,可以推断残余体积含水率受到黏性颗粒含量和土体微观结构的共同作用,因此该系数与湿陷性之间的相关性不明显。

    图  5  电镜扫描结果及各土层SWCC
    Figure  5.  Scanning electron microscope results and SWCC of each soil layer
    表  4  各个土层孔隙含量
    Table  4.  Porosity content of each soil layer
    孔隙
    类型
    6 m黄土
    孔隙比/%
    11 m古土壤
    孔隙比/%
    15 m黄土
    孔隙比/%
    23 m古土壤
    孔隙比/%
    28 m黄土
    孔隙比/%
    大孔隙 12 6 13 8 10
    中孔隙 24 18 26 18 20
    小孔隙 20 27 18 26 24
    微孔隙 44 49 43 48 46
    下载: 导出CSV 
    | 显示表格

    (1)对于不同深度的原状Qp黄土层而言,土水特征曲线中饱和含水率较大且过渡区曲线的斜率较大位置的土层所对应的湿陷系数较大,该土层由于对水的亲和性强且湿陷性强,在实际施工过程中应该作为着重考虑的土层。

    (2)古土壤层湿陷系数较小,其土水特征曲线和湿陷性之间有着跟黄土层一样的相关性,通过观测其微观结构并且进行孔隙分析,得出饱和体积含水率由土体中大孔隙的数目决定,过渡区斜率主要受中孔隙数量的影响,土体中的中孔隙含量越多,土体的失水速度越快。

    (3)对比不同类型的黄土层与古土壤层,发现湿陷性的强弱主要与土水特征曲线的边界区的饱和体积含水率大小和过渡区的斜率大小有关,对于残余区的残余体积含水率相关性较弱。在不同土层之间塑性指数接近的情况下,各个土层无论湿陷系数是多少,残余体积含水率差异很小。

  • 图  1   试验图片

    Figure  1.   Experimental Setup

    图  2   各地层黄土湿陷系数e-P压缩曲线

    Figure  2.   e-P Compression curves of loess collapsibility coefficients in various strata of loess

    图  3   SWCC拟合结果图

    Figure  3.   SWCC fitting results figure

    图  4   不同深度黄土与古土壤SWCC对比图

    Figure  4.   Comparison of SWCC between loess and paleosol at different depths

    图  5   电镜扫描结果及各土层SWCC

    Figure  5.   Scanning electron microscope results and SWCC of each soil layer

    表  1   试验土样基本物理参数

    Table  1   Basic physical parameters of test soil samples

    地层 深度/m 天然含水率/% 干密度/(g·cm−3 孔隙比 饱和度/% 液限/% 塑限/% 塑性指数 液性指数
    6 m黄土(Qp) 6 21.8 1.46 0.849 70.5 33.5 21.4 12.1 0.05
    11 m古土壤(Qp) 11 19.6 1.61 0.677 78.8 35.2 22.0 13.2 <0
    15 m黄土(Qp) 15 22.3 1.40 0.933 65.1 33.8 22.2 11.7 0.05
    23 m古土壤(Qp) 23 20.8 1.55 0.745 75.9 35.4 22.2 13.3 <0
    28 m黄土(Qp) 28 22.8 1.48 0.833 75.0 33.9 22.2 11.7 0.05
    下载: 导出CSV

    表  2   各地层黄土湿陷系数

    Table  2   Loess collapsibility coefficient of various strata in loess regions

    土层 起始湿陷压力/kPa 自重湿陷系数 湿陷系数
    6 m黄土(Qp) 50 0.015 0.032
    11 m古土壤(Qp) 200 0.008 0.008
    15 m黄土(Qp) 50 0.038 0.042
    23 m古土壤(Qp) 200 0.017 0.015
    28 m黄土(Qp) 150 0.016 0.016
    下载: 导出CSV

    表  3   SWCC的VG拟合相关参数

    Table  3   VG fitting parameters of SWCC

    土层 残余体积
    含水率
    /%
    饱和体积
    含水率
    /%
    a n m R2
    6 m黄土(Qp) 7.76 45.92 0.0563 1.9913 0.4978 0.9883
    11 m古土壤(Qp) 8.63 40.37 0.0160 2.4253 0.5877 0.9997
    15 m黄土(Qp) 7.93 48.27 0.2626 1.6456 0.3923 0.9985
    23 m古土壤(Qp) 8.67 42.70 0.0315 2.527 0.6042 0.9740
    28 m黄土(Qp) 8.63 45.44 0.0799 1.9027 0.4744 0.9936
    下载: 导出CSV

    表  4   各个土层孔隙含量

    Table  4   Porosity content of each soil layer

    孔隙
    类型
    6 m黄土
    孔隙比/%
    11 m古土壤
    孔隙比/%
    15 m黄土
    孔隙比/%
    23 m古土壤
    孔隙比/%
    28 m黄土
    孔隙比/%
    大孔隙 12 6 13 8 10
    中孔隙 24 18 26 18 20
    小孔隙 20 27 18 26 24
    微孔隙 44 49 43 48 46
    下载: 导出CSV
  • [1] 雷祥义. 秦岭黄土的粒度分析及其成因初步探讨[J]. 地质学报,1998,72(2):178 − 188. [LEI Xiangyi. Grain-size analysis and genesis of loess in the Qinling mountains[J]. Acta Geologica Sinica,1998,72(2):178 − 188. (in Chinese with English abstract)]

    LEI Xiangyi. Grain-size analysis and genesis of loess in the Qinling mountains[J]. Acta Geologica Sinica, 1998, 72(2): 178 − 188. (in Chinese with English abstract)

    [2] 范文,魏亚妮,于渤,等. 黄土湿陷微观机理研究现状及发展趋势[J]. 水文地质工程地质,2022,49(5):144 − 156. [FAN Wen,WEI Yani,YU Bo,et al. Research progress and prospect of loess collapsible mechanism in micro-level[J]. Hydrogeology & Engineering Geology,2022,49(5):144 − 156. (in Chinese with English abstract)]

    FAN Wen, WEI Yani, YU Bo, et al. Research progress and prospect of loess collapsible mechanism in micro-level[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 144 − 156. (in Chinese with English abstract)

    [3] 毛正君,张瑾鸽,仲佳鑫,等. 梯田型黄土滑坡隐患发育特征与成因分析——以宁夏南部黄土丘陵区为例[J]. 中国地质灾害与防治学报,2022,33(6):142 − 152. [MAO Zhengjun,ZHANG Jinge,ZHONG Jiaxin,et al. Analysis of basic characteristics and deformation mechanism of loess potential landslide of terrace:Taking loess hilly region in southern Ningxia as an example[J]. The Chinese Journal of Geological Hazard and Control,2022,33(6):142 − 152. (in Chinese with English abstract)]

    MAO Zhengjun, ZHANG Jinge, ZHONG Jiaxin, et al. Analysis of basic characteristics and deformation mechanism of loess potential landslide of terrace: Taking loess hilly region in southern Ningxia as an example[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 142 − 152. (in Chinese with English abstract)

    [4] 张卜平,朱兴华,成玉祥,等. 黄土潜蚀机理及其致灾效应研究综述[J]. 中国地质灾害与防治学报,2021,32(6):41 − 52. [ZHANG Buping,ZHU Xinghua,CHENG Yuxiang,et al. A review on loess subsurface-erosion mechanism and it’s hazard effects[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):41 − 52. (in Chinese with English abstract)]

    ZHANG Buping, ZHU Xinghua, CHENG Yuxiang, et al. A review on loess subsurface-erosion mechanism and it’s hazard effects[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 41 − 52. (in Chinese with English abstract)

    [5] 李艳杰,唐亚明,邓亚虹,等. 降雨型浅层黄土滑坡危险性评价与区划——以山西柳林县为例[J]. 中国地质灾害与防治学报,2022,33(2):105 − 114. [LI Yanjie,TANG Yaming,DENG Yahong,et al. Hazard assessment of shallow loess landslides induced by rainfall:A case study of Liulin County of Shanxi Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):105 − 114. (in Chinese with English abstract)]

    LI Yanjie, TANG Yaming, DENG Yahong, et al. Hazard assessment of shallow loess landslides induced by rainfall: A case study of Liulin County of Shanxi Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 105 − 114. (in Chinese with English abstract)

    [6] 李同录,李颖喆,赵丹旗,等. 对水致黄土斜坡破坏模式及稳定性分析原则的思考[J]. 中国地质灾害与防治学报,2022,33(2):25 − 32. [LI Tonglu,LI Yingzhe,ZHAO Danqi,et al. Thoughts on modes of loess slope failure triggered by water infiltration and the principals for stability analysis[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):25 − 32. (in Chinese with English abstract)]

    LI Tonglu, LI Yingzhe, ZHAO Danqi, et al. Thoughts on modes of loess slope failure triggered by water infiltration and the principals for stability analysis[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 25 − 32. (in Chinese with English abstract)

    [7] 屈宏录,刘德仁,孙英萍,等. 深厚黄土地基浸水湿陷变形及竖向土压力作用分析[J]. 水文地质工程地质,2022,49(4):157 − 164. [QU Honglu,LIU Deren,SUN Yingping,et al. Analysis of collapsible deformation and vertical soil pressure action of thick loess foundation[J]. Hydrogeology & Engineering Geology,2022,49(4):157 − 164. (in Chinese with English abstract)]

    QU Honglu, LIU Deren, SUN Yingping, et al. Analysis of collapsible deformation and vertical soil pressure action of thick loess foundation[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 157 − 164. (in Chinese with English abstract)

    [8] 邵生俊,杨春鸣,马秀婷,等. 黄土的独立物性指标及其与湿陷性参数的相关性分析[J]. 岩土力学,2013,34(增刊2):27 − 34. [SHAO Shengjun,YANG Chunming,MA Xiuting,et al. Correlation analysis of collapsible parameters and independent physical indices of loess[J]. Rock and Soil Mechanics,2013,34(Sup2):27 − 34. (in Chinese with English abstract)]

    SHAO Shengjun, YANG Chunming, MA Xiuting, et al. Correlation analysis of collapsible parameters and independent physical indices of loess[J]. Rock and Soil Mechanics, 2013, 34(Sup2): 27 − 34. (in Chinese with English abstract)

    [9] 朱凤基,南静静,魏颖琪,等. 黄土湿陷系数影响因素的相关性分析[J]. 中国地质灾害与防治学报,2019,30(2):128 − 133. [ZHU Fengji,NAN Jingjing,WEI Yingqi,et al. Mathematical statistical analysis on factors affecting collapsible coefficient of loess[J]. The Chinese Journal of Geological Hazard and Control,2019,30(2):128 − 133. (in Chinese with English abstract)]

    ZHU Fengji, NAN Jingjing, WEI Yingqi, et al. Mathematical statistical analysis on factors affecting collapsible coefficient of loess[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(2): 128 − 133. (in Chinese with English abstract)

    [10] 蒲虹宇,张立峰,何毅,等. 甘肃通渭黄土滑坡二维形变时序监测[J]. 中国地质灾害与防治学报,2022,33(6):114 − 124. [PU Hongyu,ZHANG Lifeng,HE Yi,et al. Time-series monitoring of two-dimensional deformation of Tongwei loess landslide in Gansu Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(6):114 − 124. (in Chinese with English abstract)]

    PU Hongyu, ZHANG Lifeng, HE Yi, et al. Time-series monitoring of two-dimensional deformation of Tongwei loess landslide in Gansu Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 114 − 124. (in Chinese with English abstract)

    [11] 张茂花. 湿陷性黄土增(减)湿变形性状试验研究[D]. 西安:长安大学,2002. [ZHANG Maohua. Experimental study on wet deformation behavior of collapsible loess[D]. Xi’an:Changan University,2002. (in Chinese with English abstract)]

    ZHANG Maohua. Experimental study on wet deformation behavior of collapsible loess[D]. Xi’an: Changan University, 2002. (in Chinese with English abstract)

    [12] 沙爱民,陈开圣. 压实黄土的湿陷性与微观结构的关系[J]. 长安大学学报(自然科学版),2006,26(4):1 − 4. [SHA Aimin,CHEN Kaisheng. Relationship between collapsibility and microstructure of compacted loess[J]. Journal of Chang’an University (Natural Science Edition),2006,26(4):1 − 4. (in Chinese with English abstract)]

    SHA Aimin, CHEN Kaisheng. Relationship between collapsibility and microstructure of compacted loess[J]. Journal of Chang’an University (Natural Science Edition), 2006, 26(4): 1 − 4. (in Chinese with English abstract)

    [13] 江耀. 非饱和黄土特征曲线的研究[D]. 兰州:兰州大学,2012. [JIANG Yao. Study on characteristic curve of unsaturated loess[D]. Lanzhou:Lanzhou University,2012. (in Chinese with English abstract)]

    JIANG Yao. Study on characteristic curve of unsaturated loess[D]. Lanzhou: Lanzhou University, 2012. (in Chinese with English abstract)

    [14] 张玉伟,宋战平,谢永利. 孔隙变化条件下黄土土水特征曲线预测模型[J]. 岩土工程学报,2022,44(11):2017 − 2025. [ZHANG Yuwei,SONG Zhanping,XIE Yongli. Prediction model for soil-water characteristic curve of loess under porosity change[J]. Chinese Journal of Geotechnical Engineering,2022,44(11):2017 − 2025. (in Chinese with English abstract)]

    ZHANG Yuwei, SONG Zhanping, XIE Yongli. Prediction model for soil-water characteristic curve of loess under porosity change[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2017 − 2025. (in Chinese with English abstract)

    [15] 康海伟. 原状黄土土-水特征曲线及孔隙特征研究[D]. 西安:长安大学,2020. [KANG Haiwei. Study on soil-water characteristic curve and pore characteristics of undisturbed loess[D]. Xi’an:Changan University,2020. (in Chinese with English abstract)]

    KANG Haiwei. Study on soil-water characteristic curve and pore characteristics of undisturbed loess[D]. Xi’an: Changan University, 2020. (in Chinese with English abstract)

    [16] 李萍,李同录. 黄土物理性质与湿陷性的关系及其工程意义[J]. 工程地质学报,2007,15(4):506 − 512. [LI Ping,LI Tonglu. Relation between loess collapsibility and physical properties and its engineering significance[J]. Journal of Engineering Geology,2007,15(4):506 − 512. (in Chinese)]

    LI Ping, LI Tonglu. Relation between loess collapsibility and physical properties and its engineering significance[J]. Journal of Engineering Geology, 2007, 15(4): 506 − 512. (in Chinese)

    [17] 武小鹏. 基于试坑浸水试验的大厚度黄土湿陷及渗透特性研究[D]. 兰州:兰州大学,2016. [WU Xiaopeng. Study on collapsibility and permeability of thick loess based on immersion test in test pit[D]. Lanzhou:Lanzhou University,2016. (in Chinese with English abstract)]

    WU Xiaopeng. Study on collapsibility and permeability of thick loess based on immersion test in test pit[D]. Lanzhou: Lanzhou University, 2016. (in Chinese with English abstract)

    [18] 赵景波,楚纯洁,马延东,等. 陕西洛川L1~S4黄土-古土壤湿陷性及其成因研究[J]. 第四纪研究,2014,34(2):399 − 406. [ZHAO Jingbo,CHU Chunjie,MA Yandong,et al. Collapsibility from l1 loess to s4 paleosol and its causes in the Luochuan,Shaanxi Province[J]. Quaternary Sciences,2014,34(2):399 − 406. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1001-7410.2014.02.14

    ZHAO Jingbo, CHU Chunjie, MA Yandong, et al. Collapsibility from l1 loess to s4 paleosol and its causes in the Luochuan, Shaanxi Province[J]. Quaternary Sciences, 2014, 34(2): 399 − 406. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-7410.2014.02.14

    [19] 陈开圣,沙爱民. 基于数字图像处理技术压实黄土微观结构研究[J]. 公路,2009(12):152 − 7. [CHEN Shengkai,SHA Aimin. Study on microstructure of compacted loess based on digital image processing technology[J]. Highway,2009(12):152 − 7. (in Chinese with English abstract)]

    CHEN Shengkai, SHA Aimin. Study on microstructure of compacted loess based on digital image processing technology[J]. Highway, 2009(12): 152 − 7. (in Chinese with English abstract)

    [20] 陈开圣,沙爱民. 压实黄土不同含水率下微观结构特征[J]. 公路,2009(11):103 − 7. [CHEN Shengkai,SHA Aimin. Microstructure characteristics of compacted loess under different water content[J]. Highway,2009(11):103 − 7. (in Chinese with English abstract)]

    CHEN Shengkai, SHA Aimin. Microstructure characteristics of compacted loess under different water content[J]. Highway, 2009(11): 103 − 7. (in Chinese with English abstract)

    [21] 胡全. 基于电镜图像的土壤微观结构关键要素分析方法研究[D]. 杨凌:西北农林科技大学,2015. [HU Quan. Study on key elements analysis method of soil microstructure based on electron microscope image[D]. Yangling:Northwest A & F University,2015. (in Chinese with English abstract)]

    HU Quan. Study on key elements analysis method of soil microstructure based on electron microscope image[D]. Yangling: Northwest A & F University, 2015. (in Chinese with English abstract)

    [22] 王海曼,倪万魁,刘魁. 延安压实黄土土-水特征曲线的快速预测方法[J]. 岩土力学,2022,43(7):1845 − 1853. [WANG Haiman,NI Wankui,LIU Kui. Rapid prediction method of soil-water characteristic curve of Yan’an compacted loess[J]. Rock and Soil Mechanics,2022,43(7):1845 − 1853. (in Chinese with English abstract)]

    WANG Haiman, NI Wankui, LIU Kui. Rapid prediction method of soil-water characteristic curve of Yan’an compacted loess[J]. Rock and Soil Mechanics, 2022, 43(7): 1845 − 1853. (in Chinese with English abstract)

    [23] 张洁,阳帅,谭泽颖,等. 基于粒径分布曲线的非饱和砂土土水特征曲线概率预测模型[J]. 工程地质学报,2022,30(2):301 − 308. [ZHANG Jie,YANG Shuai,TAN Zeying,et al. Probabilistic prediction of soil water characteristic curve of unsaturated sand based on particle size distribution[J]. Journal of Engineering Geology,2022,30(2):301 − 308. (in Chinese with English abstract)]

    ZHANG Jie, YANG Shuai, TAN Zeying, et al. Probabilistic prediction of soil water characteristic curve of unsaturated sand based on particle size distribution[J]. Journal of Engineering Geology, 2022, 30(2): 301 − 308. (in Chinese with English abstract)

    [24] 潘登丽. 土水特征曲线的基本参数和模型研究[D]. 西安:长安大学,2021. [PAN Dengli. Study on basic parameters and model of soil-water characteristic curve[D]. Xi’an:Changan University, 2021. (in Chinese with English abstract)]

    PAN Dengli. Study on basic parameters and model of soil-water characteristic curve[D]. Xi’an: Changan University, 2021. (in Chinese with English abstract)

    [25] 雷祥义. 中国黄土的孔隙类型与湿陷性[J]中国科学,1987,(12):1309 − 18. [LEI Xiangyi. Pore types and collapsibility of loess in China [J] Scientia Sinica,1987,(12):1309 − 18. (in Chinese with English abstract)]

    LEI Xiangyi. Pore types and collapsibility of loess in China [J] Scientia Sinica, 1987, (12): 1309 − 18. (in Chinese with English abstract)

    [26] 刘鑫,苗雪青,黄良,等. 5种排水条件下饱和重塑黄土三轴剪切特性[J]. 吉林大学学报(地球科学版),2023,53(5):1499 − 1509. [LIU Xin,MIAO Xueqing,HUANG Liang,et al. Triaxial shear behavior of saturated remolded loess subjected to five drainage conditions[J]. Journal of Jilin University (Earth Science Edition),2023,53(5):1499 − 1509. (in Chinese with English abstract)]

    LIU Xin, MIAO Xueqing, HUANG Liang, et al. Triaxial shear behavior of saturated remolded loess subjected to five drainage conditions[J]. Journal of Jilin University (Earth Science Edition), 2023, 53(5): 1499 − 1509. (in Chinese with English abstract)

    [27] 李征征,高晓雯. 重塑黄土的湿陷性与微观试验研究[J]. 科学技术与工程,2018,18(3):319 − 327. [LI Zhengzheng,GAO Xiaowen. Study on collapsibility of remolded loess by model test and evaluation of loess collapsibility[J]. Science Technology and Engineering,2018,18(3):319 − 327. (in Chinese with English abstract)]

    LI Zhengzheng, GAO Xiaowen. Study on collapsibility of remolded loess by model test and evaluation of loess collapsibility[J]. Science Technology and Engineering, 2018, 18(3): 319 − 327. (in Chinese with English abstract)

  • 期刊类型引用(4)

    1. 齐伟,徐鹏,林长轩. 新型固化材料对关中地区湿陷性黄土固化性能研究. 公路. 2025(01): 130-136 . 百度学术
    2. 翁天赐,熊勇林,韩哲. 饱和土有限应变弹塑性本构模型研究. 水文地质工程地质. 2025(02): 94-103 . 百度学术
    3. 张曦,骆建文,潘俊义,刘斌,杨楠. 陕西榆林毛乌素沙漠南缘风积沙的湿陷规律及其影响因素. 中国地质灾害与防治学报. 2024(04): 75-84 . 本站查看
    4. 刘建磊,卫童瑶,惠寒斌,姜耀飞. 大厚度非连续湿陷性黄土浸水变形特征分析. 地质力学学报. 2024(06): 921-932 . 百度学术

    其他类型引用(0)

图(5)  /  表(4)
计量
  • 文章访问数:  185
  • HTML全文浏览量:  66
  • PDF下载量:  78
  • 被引次数: 4
出版历程
  • 收稿日期:  2022-11-29
  • 修回日期:  2023-03-26
  • 刊出日期:  2024-04-24

目录

/

返回文章
返回