ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

基于多源遥感数据的高位滑坡特征分析以广元市利州区荣山镇岩窝村滑坡为例

王猛, 何德伟, 贾志宏, 胡至华

王猛,何德伟,贾志宏,等. 基于多源遥感数据的高位滑坡特征分析−以广元市利州区荣山镇岩窝村滑坡为例[J]. 中国地质灾害与防治学报,2023,34(6): 57-68. DOI: 10.16031/j.cnki.issn.1003-8035.202211045
引用本文: 王猛,何德伟,贾志宏,等. 基于多源遥感数据的高位滑坡特征分析−以广元市利州区荣山镇岩窝村滑坡为例[J]. 中国地质灾害与防治学报,2023,34(6): 57-68. DOI: 10.16031/j.cnki.issn.1003-8035.202211045
WANG Meng,HE Dewei,JIA Zhihong,et al. Analysis of high-position landslide characteristics based on multi-source remote sensing data:A case study of the Yanwo Village landslide in Rongshan Town, Lizhou District, Guangyuan City[J]. The Chinese Journal of Geological Hazard and Control,2023,34(6): 57-68. DOI: 10.16031/j.cnki.issn.1003-8035.202211045
Citation: WANG Meng,HE Dewei,JIA Zhihong,et al. Analysis of high-position landslide characteristics based on multi-source remote sensing data:A case study of the Yanwo Village landslide in Rongshan Town, Lizhou District, Guangyuan City[J]. The Chinese Journal of Geological Hazard and Control,2023,34(6): 57-68. DOI: 10.16031/j.cnki.issn.1003-8035.202211045

基于多源遥感数据的高位滑坡特征分析——以广元市利州区荣山镇岩窝村滑坡为例

基金项目: 中国华电集团有限公司科研项目(JS-LW-FW/ZX-084;JS-YBT-FW/YF-2022-30);成都市地质环境监测站委托项目(2068-2340ZHBC-1621)
详细信息
    作者简介:

    王 猛(1980-),男,重庆北碚人,硕士,高级工程师,主要从事地质灾害遥感应用研究工作。E-mail:wangmengscrs@qq.com

    通讯作者:

    何德伟(1980-) ,男,四川眉山人,硕士,高级工程师,主要从事地质灾害调查评价与防治工作。E-mail:68195493@qq.com

  • 中图分类号: P642.22

Analysis of high-position landslide characteristics based on multi-source remote sensing data:A case study of the Yanwo Village landslide in Rongshan Town, Lizhou District, Guangyuan City

  • 摘要: 2021年10月6日13时许,四川省广元市利州区荣山镇岩窝村三组发生高位滑坡灾害。滑坡造成4处民房、3条电力线路被毁,掩埋170 m长的乡村公路,堵塞河道350 m。利用高位滑坡滑前多期卫星数据、滑坡滑后高精度无人机航空影像以及机载LiDAR数据等多源遥感信息源,采用三维立体+时间的四维分析方法,研究高位滑坡特征及其滑动模式。从高位滑坡发育背景入手,通过高位滑坡滑前变形特征以及高位滑动过程动态分析,总结高位滑坡变形破坏特征及滑动模式。根据滑坡已经发生过程推演及后部残留滑坡体稳定性分析结果,预测分析高位滑坡未来滑动的三种滑动模式:一是滑坡后缘继续错落和活动,挤压前部滑坡体直接剪出;二是滑坡后缘继续错落和活动,沿着已有滑坡通道发生推移式滑坡;三是前部滑坡体启动,引发中后部滑坡体发生牵引式滑坡。高位滑坡在西南山区屡见不鲜,在早期地质灾害隐患调查中应有效识别、加强防灾减灾措施。
    Abstract: On October 6, 2021, a high-position landslide disaster occurred in Yanwo Village, Rongshan Town, Lizhou District, Guangyuan City,Sichuan Province, around 13: 00. The landslide resulted in the destruction of 4 houses, 3 power lines, the burial of a 170-meter-long rural road, and the blockage of a 350-meter-long river channel. By utilizing a variety of remote sensing information sources, including multi-period satellite data before and after landslide, high-precision UAV aerial images, and airborne LiDAR data, the characteristics of high landslide and its sliding mode are studied by using a four-dimensional analysis approach combining three-dimensional space with time. Starting from the development background of high landslide, the deformation and failure characteristics and sliding mode of high landslide are summarized by analyzing the deformation characteristics before sliding and the dynamic procession of the high landslide. Based on the deduced landslide progression and the stability evaluation of the residual landslide at the rear, three sliding modes for future high-position landslide events are predicted and analyzed: Firstly, the back edge of landslide continues to be disjointed and move, causing a direct shear failure of the front part of the landslide by squeezing. Secondly, the trailing edge of the landslide continues to be disjointed and move, resulting in the sliding landslide occurs along the existing landslide channel. Thirdly, the initiation of the front part of the landslide trigger a tractional landslide in the middle and rear parts of the landslide. High-position landslides are common in the southwest mountainous areas, and during early geological hazard investigations, they should be effectively identified, and disaster prevention and mitigation measures should be strengthened.
  • 河南某金矿属全国16个重点成矿带中的豫西成矿带。已探明矿种钼、钨、铅、金、铁等40多种,矿产种类多,开采价值大,矿业活动带来巨大经济价值,也引发矿渣型泥石流等地质灾害问题[1-7],2010年7月24日当地普降暴雨,境内共发生矿渣型泥石流29次,死亡68人,失踪21人,经济损失19.8亿,教训非常惨重。

    目前对矿渣型泥石流的研究主要体现在成灾模式、启动机理、危险评价等方面,邓龙胜等[8]通过计算洪峰流量,评价了矿渣型泥石流的泥沙携带力、冲击力以及揭底深度;李荣等[9]、陈媛儿[10]、谢鉴衡[11]、秦荣昱[12]、彭润译等[13]从沙粒启动的水动力条件入手得出非均匀沙的起动流速公式,与实际情况吻合;林玫玲等[14]采用PFC2D仿真软件,揭示矿渣颗粒转化为泥石流时的内部力学特征与降雨强度的大小关系;李建林等[15]通过研究矿渣泥石流的沟谷形态得出沟道比降、汇水面积和沟道长度三个因素中汇水面积对其发育和行成的影响最为显著;唐亚明等[16]模拟了特定雨力下,泥石流的冲击范围,并引入泥石流危险因子做了危险程度的分区评价,提出了在渣堆处修建挡墙等工程治理措施;杨敏等[17]、徐友宁等[18]对潼关金矿区矿渣堆数目、体积、稳定性进行实地调研,并提出对废渣堆进行资源化利用等防治措施。前人研究成果均提到了矿渣泥石流是由废弃渣堆引起,并提出治理渣堆的必要性,但并没有对渣堆危险性高低进行分类评价,也没有提出精准合理的防治措施。

    文中在以豫西某金矿区大南沟、后木寺沟16个渣堆为研究对象进行分析阐述,和前人相同之处是借鉴了启动流速(Uc[9-13]以及《桥涵水文》第五版[19]中洪峰流量(Q)的计算公式,不同之处在于①考虑渣堆阻塞行洪通道等因素,进一步计算出渣堆断面处的泄洪流速(Us),并结合启动流速(Uc)计算稳定性大小即Fs=Uc/Us;②考虑渣堆之间的相互影响,分析不同重现期雨力条件下,单个计算渣堆失稳转化成泥石流时的危险系数;③将渣堆的危险高低进行精细计算,科学归类。以期达到精准分类,科学防治、经济节约等目的。

    豫西某金矿地处秦岭山脉东段,熊耳山西南部,伏牛山西段北部(图1),气候属暖温带半湿润大陆性季风气候,降雨量大且集中。海拨最高1671.4 m,最低1000 m,坡度较陡,区内地形切割强烈,沟谷呈“V”字型;植被覆盖度高,草木茂盛,基岩裸露较差。

    图  1  豫西某金矿区域位置图
    Figure  1.  The gold mine location in the western Henan

    该区域出露岩性主要为安山岩、流纹斑岩、片麻岩、冲洪积物。马超营断裂发育演化,共经历6期次地质活动,7次构造事件[19],其间热液侵入成矿,该金矿床位于马超营区域性断裂带与北东向上宫—星星印断裂带的交汇部位,从1979年建矿开采至今已有40余年历史。开采规模25×104 t/a,地下开采,开采规模大,废石渣、矿渣多且堆放不合理,严重阻塞沟道,在降雨条件下极易失稳形成泥石流。

    因马超营断裂(图1)6期次的构造活动(嵩阳发展—中远古形成—后期改造)[19],在强烈复杂的构造活动过程中形成有利于沟谷型泥石流发育的“哑铃状”特殊地形(图2):即两头(形成区、堆积区)呈“喇叭状”,中间(流通区)狭窄,该区域西高东低,相对高差670 m,沟谷总长度14 km,物源区平均纵坡降170‰,最大纵坡降377‰。

    图  2  豫西某金矿泥石流形态特征图
    Figure  2.  Morphological characteristic map of the debris flow in western Henan

    豫西某金矿矿区岩石力学性质分别为安山岩、流纹斑岩抗压强度64~97 MPa,片麻岩抗压强度659 MPa,为坚硬块状岩体,不易风化,岩层层面、贯通的断裂结构面倾向与坡面反向,不具备发生大规模崩塌滑坡的可能性,且在现场调查过程中山坡的风化层较薄,仅在山麓、沟谷中下游可见坡积物、冲洪积物,未见大范围的崩积物,因此自然条件下发生泥石流的可能性较小。现场测量图2中的1-1′剖面,得出剖面图如图3所示。

    图  3  豫西某金矿工程地质剖面图
    1—安山岩;2—冲积物;3—流纹斑岩;4—破碎带;5—金矿脉;6—正长斑岩;7—断层;8—砂岩; 9—片麻岩;10—不整合接触
    Figure  3.  Engineering geological plan of the gold mine in western Henan

    豫西某金矿常期以民采为主,大量的围岩因不具加工价值而沿坡面、沟道随意堆弃,这些堆积物自身稳定性差,在降雨等条件下容易失稳。据现场调查统计了渣堆16处,总计体积12.05×104 m3,均有可能失稳致灾。各渣堆的分布位置及其他参数如图24表1所示。

    图  4  豫西某金矿渣堆分布图
    Figure  4.  Distribution map of the gold slag heaps in western Henan
    表  1  豫西某金矿渣堆体积及压占沟谷比例统计表
    Table  1.  Statistical table of volume and proportion of the slag in a gold slag pile in western Henan
    矿渣ZD1ZD2ZD3ZD4ZD5ZD6ZD7ZD8
    体积/(104 m31.20.090.120.070.140.50.051.4
    压占沟谷比例/%5043836972717448
    矿渣ZD9ZD10ZD11ZD12ZD13ZD14ZD15ZD16
    体积/(104 m322.51.20.290.40.30.251.54
    压占沟谷比例/%7455777160674988
    下载: 导出CSV 
    | 显示表格

    豫西某金矿区渣堆厚度一般在2~7 m,平均厚度4.3 m,少数可达12 m,渣堆均不同程度堵塞沟道,有的在沿山坡呈阶梯状堆积,部分位于沟谷左侧,部分位于沟谷右侧,密实度差,渣堆顶部颗粒较细,底部颗粒较粗,分选差,棱角明显。渣堆不同程度堵塞沟道,有的在沿山坡呈阶梯状堆积,在沟谷底部部分占压行洪通道(图5),有的沿沟谷底部堆积,几乎全部占压行洪通道(图6);现场量测各渣堆体积以及压占沟谷比例结果见表1

    图  5  后木寺ZD2渣堆堵塞沟道示意图
    Figure  5.  Schematic diagram of Houmusi ZD2 slag pile blocking the channel
    图  6  大南沟渣堆ZD16堵塞沟道示意图
    Figure  6.  Schematic diagram of Danangouslag ZD16 pile blocking the channel

    豫西某金矿区降雨多集中在7—9月,年降水量最高1386.6 mm,最少403.3 mm,月最大降水量423.4 mm,24 h最大降水量159.2 mm。根据当地气象局实际观测近10a最大降水量49 mm/h,查阅资料《桥涵水文》[19]可知当地100 a一遇降雨量90 mm/h、50 a一遇降雨量为80 mm/h,25 a一遇降雨量为60 mm/h,充沛的降雨为泥石流的启动提供了水动力条件,历年7—9月实测降雨量变化曲线见图7

    图  7  豫西某金矿历年降雨量
    Figure  7.  Rainfall in western Henan gold mine over the years

    文中先不考虑渣堆之间的相互影响,计算分析16处渣堆的稳定性大小,然后在根据计算出的稳定性大小分析其相互影响关系,对渣堆稳定性进行修正,最终计算出考虑相互影响后的稳定性大小。

    豫西某金矿的主要诱发条件为短时强降雨、所以降雨引发洪峰流量可按下式计算[20]

    $$ Q = 0.278\left(\frac{{{S _{\rm{P}}}}}{{{\tau ^n}}} - \mu \right)F $$ (1)
    $$ \tau = {{{K}}_{\text{3}}}{\left(\frac{L}{{\sqrt I }}\right)^{\alpha _1^{}}} $$ (2)
    $$ \mu ={K}_{\text{1}}({S} _{{\rm{P}}})^{{\beta }_{1}} $$ (3)

    式中:$ Q $——洪峰流量/(m3·s−1);

    Sp——雨力/(mm·h−1);

    τ——汇流时间/s;

    n——暴雨递减指数,取0.45;

    µ——损失参数,取15.85 mm/h;

    F——汇流面积/km2

    K3——地区参数,取0.63;

    L——主河道长度/km;

    I——主河道平均比降/‰;

    α1——汇流参数,取0.15;

    $ {K}_{1} $——地区参数,取1;

    β1——指数,取−1。

    根据现场测量结果行洪宽度以及水深,因为沟谷呈“V”字形,所以设计平均宽度取测量渣堆顶端处长度的一半,则泄洪流速($U_{\rm{s}} $)计算公式如下:

    $$ U_{\rm{s}} = \frac{Q}{{h b}} \text{;} $$ (4)

    式中:$ U_{\rm{s}}$——泄洪流速/(m·s−1);

    Q——洪峰流量/(m3·s−1);

    h——设计水深/m;

    b——设计行洪宽度/m,其余参数同前文一致。

    根据泥沙启动临界流速公式[9-13]

    $$ {U_{\rm{c}}} = 3.91{d^{\tfrac{1}{3}}}{h^{\tfrac{1}{6}}}\sqrt {\sqrt {\frac{{{m^2} + m_0^2{{\cos }^2}\theta }}{{1 + {m^2}}}} - \frac{{{m_0}\sin \theta }}{{\sqrt {1 + {m^2}} }}} \text{;} $$ (5)

    式中:${U_{\rm{c}}} $——启动流速/(m·s−1);

    d——粒径/m;

    h——设计水深/m;

    α——斜坡倾角/(°),m=cotα

    φ——渣堆摩擦角/(°),m0=tanφ

    θ—流向与沙粒所在坡脚水平线的交角/(°)。取 θ=90°。

    文中将某个渣堆断面处的泄洪流速及启动流速理论计算值作为计算稳定性的依据,计算公式如下:

    $$ F_{\rm{s}} = \frac{{U_{\rm{c}}}}{{U_{\rm{s}}}} \text{;} $$ (6)

    式中:$U_{\rm{c}}$$U_{\rm{s}}$——与前文意义一致。

    因为目前对于渣堆在洪水冲击下的稳定性判定没有权威的标准,所以文中引入《建筑边坡工程规范》的判定标准,即假设稳定性系数$F_{\rm{s}} $<1为高危险(失稳),1≤$F_{\rm{s}} $≤1.15为中危险(临界),$F_{\rm{s}} $>1.15为低危险(稳定)。

    通过实地调查测量每个渣堆所对应的对应的汇水面积(F)、沟谷长度(L),纵坡降(I),设计水深(h),行洪宽度(b)等参数作为计算Us的依据,参数值如表2所示。

    表  2  渣堆泄洪流速Us计算参数测量结果表
    Table  2.  The measurement result of calculation parameters of flood discharge velocity of the slag pile
    渣堆编号ZD1ZD2ZD3ZD4ZD5ZD6ZD7ZD8
    F/km20.1760.1760.270.270.4690.4690.6160.176
    L/km0.470.470.610.610.720.790.791.01
    I/‰462462418418387373373314
    h/m222.52.52.5222
    b/m1.53.52.53.353.051111.51.5
    渣堆编号ZD9ZD10ZD11ZD12ZD13ZD14ZD15ZD16
    F/km20.851.681.821.820.2320.2830.4310.511
    L/km1.521.521.660.520.660.840.971.13
    I/‰283283269514456400374332
    h/m2.52222.52.522
    b/m2.79.526.518.54.3524.54
    下载: 导出CSV 
    | 显示表格

    现场调查各渣堆的摩擦角($\varphi $)、其底部沟谷的坡度($\alpha $),并通过筛分试验,得到渣堆的平均粒径(d50=0.0123 m)等参数作为计算$U_{\rm{c}} $的依据,坡度($\alpha $)及摩擦角($\varphi$)测量值如表3所示。

    表  3  渣堆启动流速(Uc)计算参数测量结果表
    Table  3.  The measurement result of calculation parameters of startup flow rate of the slag pile
    渣堆编号ZD1ZD2ZD3ZD4ZD5ZD6ZD7ZD8
    α/(°)1414910.8414.1610.456.766
    φ/(°)3432202241231833
    渣堆编号ZD9ZD10ZD11ZD12ZD13ZD14ZD15ZD16
    α/(°)74412.8412.958.3811.146
    φ/(°)3034293033241729
    下载: 导出CSV 
    | 显示表格

    分别带入Sp=49 mm/h,Sp=60 mm/h,Sp=80 mm/h,Sp=90 mm/h,计算4种雨力条件下的稳定性系数其计算过程如图8所示,结果如表4所示。

    图  8  渣堆稳定性系数计算过程图
    Figure  8.  Calculation process diagram of stability coefficient of slag heap

    通过计算可知UsSpFLIhb决定,FLI均由渣堆所处沟谷的地形地貌决定,对于堆积形态、堆积位置已定的渣堆,其值是定值,对于确定的渣堆断面,hb也是定值,只有Sp是变量,因此Us也只与Sp有关。因此只要给定Sp就可计算出Us

    表  4  不同雨力工况下渣堆稳定性计算结果表
    Table  4.  The calculation result of slag pile stability under different rain conditions
    近10 a最大值计算
    结果(49 mm/h)
    渣堆编号ZD1ZD2ZD3ZD4ZD5ZD6ZD7ZD8
    Fs0.902.111.401.850.902.762.260.51
    渣堆编号ZD9ZD10ZD11ZD12ZD13ZD14ZD15ZD16
    Fs0.721.881.332.641.011.250.950.68
    25 a一遇计算
    结果(60 mm/h)
    渣堆编号ZD1ZD2ZD3ZD4ZD5ZD6ZD7ZD8
    Fs0.721.701.121.490.722.221.810.41
    渣堆编号ZD9ZD10ZD11ZD12ZD13ZD14ZD15ZD16
    Fs0.581.511.072.120.811.000.760.54
    50 a一遇计算
    结果(80 mm/h)
    渣堆编号ZD1ZD2ZD3ZD4ZD5ZD6ZD7ZD8
    Fs0.531.250.831.090.531.631.330.30
    渣堆编号ZD9ZD10ZD11ZD12ZD13ZD14ZD15ZD16
    Fs0.421.110.791.560.600.740.560.40
    100 a一遇计算
    结果(90 mm/h)
    渣堆编号ZD1ZD2ZD3ZD4ZD5ZD6ZD7ZD8
    Fs0.471.100.730.960.471.441.180.26
    渣堆编号ZD9ZD10ZD11ZD12ZD13ZD14ZD15ZD16
    Fs0.370.980.691.380.530.650.490.35
    下载: 导出CSV 
    | 显示表格

    通过计算可知Uc由渣堆堆积形态以及渣堆的粒径级配所决定,与Sp大小无关。对于堆积形态确定的渣堆,其Uc是定值,不随Sp的变化而改变。经过计算得到以上4种雨力条件下的稳定性系数后,采用3.1.5的判定标准,对其稳定性高低进行判断,结果如表4所示。

    通过分析表5可知高危渣堆在雨力Sp=49 mm/h、Sp=60 mm/h、Sp=80 mm/h、Sp=90 mm/h条件下占比分别为38%、44%、63%、75%,中低危渣堆分别为6%、19%、12%、6%,低危渣堆占比56%、38%、25%、19%,随着雨力不断增大,高危渣堆占比不断增大,低危渣堆不断减少;不考虑渣堆相互影响的情况下,各种雨力大小工况下,各渣堆危险高低排序不变。不考虑渣堆相互影响的各雨力条件下渣堆的危险程度分布如图9所示。

    表  5  不同雨力下渣堆危险性以及稳定性系数
    Table  5.  Ranking table of slag pile stability under different rain conditions
    渣堆
    编号
    ZD
    8
    ZD
    16
    ZD
    9
    ZD
    1
    ZD
    5
    ZD
    15
    ZD
    13
    ZD
    14
    ZD
    11
    ZD
    3
    ZD
    4
    ZD
    10
    ZD
    2
    ZD
    7
    ZD
    12
    ZD
    6
    49 mm/hFs0.510.680.720.900.900.951.011.251.331.401.851.882.112.262.642.76
    60 mm/hFs0.410.540.580.720.720.760.811.001.071.121.491.511.701.812.122.22
    80 mm/hFs0.300.400.420.530.530.560.600.740.790.831.091.111.251.331.561.63
    90 mm/hFs0.260.350.370.470.470.490.530.650.690.730.960.981.101.181.381.44
    下载: 导出CSV 
    | 显示表格
    图  9  不同雨强工况下渣堆危险程度图
    Figure  9.  Dangerous degree map of slag heap under different rain intensities

    结合表5图9可以看出这4种雨力计算过程中均存在同一条沟上游渣堆失稳后会对下游渣堆稳定性造成影响,例如图9(a)中ZD1在Sp=49 mm/h时首先失稳汇入主沟,会对ZD2以及下游渣堆产生影响,因此要在不考虑渣堆相互影响的计算基础上对渣堆的稳定性系数做出修正。

    为了分析渣堆之间的相互影响,考虑到同一条沟上游渣堆失稳后主要是增加洪水重度,增大洪峰流量,进而增加下游泄洪流速,降低了下游的渣堆的稳定性,因此采用《中国泥石流》[21]中式(7)以及《工程地质手册》[22]式(8)进行修正。

    $$ {\gamma _{\rm{c}}} = \tan J + {k_0} \cdot {k_r} \cdot {k_1} \cdot {A^{0.11}} \text{;} $$ (7)

    式中:γc——泥石流容重/(kN·m−3);

    J——物源区平均坡度;

    k0——补给系数;

    kr——岩性系数;

    k1——稀释系数;

    A——物源区储备体积与汇水面积比。

    (按照文献[21]k0取1,kr取1,k1取0.9)。

    $$ {Q_{\rm{c}}} = Q\left(1 + \frac{{{\gamma _{\rm{c}}} - 1}}{{{\gamma _{\rm{s}}} - {\gamma _{\rm{c}}}}}\right) $$ (8)

    式中:Qc——修正后洪峰流量/(m3·s−1);

    γs——沙粒的密度/(kg·m−3),取2.72 kg·m−3;其余参数同前文一致。

    考虑渣堆相互影响后的修正过程如图10所示。

    图  10  渣堆稳定性系数修正过程图
    Figure  10.  Correction process diagram of slag pile stability coefficient

    用3.3.2的过程,将4种雨力的稳定性系数进行修正后,其计算结果见表6

    表  6  不同雨力工况下渣堆稳定性修正计算结果表
    Table  6.  The calculation result of slag pile stability correction under different rain conditions
    近10年最大观测雨强
    修正结果(49 mm/h)
    渣堆编号ZD1ZD2ZD3ZD4ZD5ZD6ZD7ZD8
    Fs0.901.411.011.330.702.261.800.43
    渣堆编号ZD9ZD10ZD11ZD12ZD13ZD14ZD15ZD16
    Fs0.621.481.122.641.011.250.950.62
    25年一遇雨强修正
    结果(60 mm/h)
    渣堆编号ZD1ZD2ZD3ZD4ZD5ZD6ZD7ZD8
    Fs0.721.130.811.060.561.701.440.34
    渣堆编号ZD9ZD10ZD11ZD12ZD13ZD14ZD15ZD16
    Fs0.471.220.872.120.810.840.630.45
    50年一遇雨强修正
    结果(80 mm/h)
    渣堆编号ZD1ZD2ZD3ZD4ZD5ZD6ZD7ZD8
    Fs0.530.830.590.780.411.241.050.25
    渣堆编号ZD9ZD10ZD11ZD12ZD13ZD14ZD15ZD16
    Fs0.350.880.621.560.600.620.460.33
    100年一遇雨强修正
    结果(90 mm/h)
    渣堆编号ZD1ZD2ZD3ZD4ZD5ZD6ZD7ZD8
    Fs0.470.730.520.680.361.100.930.22
    渣堆编号ZD9ZD10ZD11ZD12ZD13ZD14ZD15ZD16
    Fs0.310.780.551.380.530.540.410.29
    下载: 导出CSV 
    | 显示表格

    采用3.1.5条的判定方法,即假设稳定性系数Fs<1为高危险(失稳),1≤Fs≤1.15为中危险(临界),Fs>1.15为低危险(稳定)。

    通过表7计算结果可知高危渣堆在雨力Sp=49 mm/h、Sp=60 mm/h、Sp=80 mm/h、Sp=90 mm/h条件下占比分别为38%、63%、81%、88%,中危渣堆分别为19%、12%、6%、6%,低危渣堆占比44%、25%、13%、6%,对比表5计算结果,可知考虑渣堆相互影响后,相同雨力条件下,高位渣堆在增加,低危渣堆在减少,这是由于上游渣堆失稳后增大了下有渣堆的致灾风险,不同雨力条件下,各渣堆危险高低排序不同。这是考虑了相似沟道渣堆相互影响的结果,说明考虑渣堆相互影响更符合实际。考虑渣堆相互影响后各雨力条件下的渣堆危险性分布如图11所示。

    表  7  修正后不同雨力下渣堆危险性以及稳定性系数
    Table  7.  Ranking table of slag pile stability under different rain conditions after correction
    49 mm/h渣堆编号ZD
    8
    ZD
    9
    ZD
    16
    ZD
    5
    ZD
    1
    ZD
    15
    ZD
    3
    ZD
    13
    ZD
    11
    ZD
    14
    ZD
    4
    ZD
    2
    ZD
    10
    ZD
    7
    ZD
    6
    ZD
    12
    Fs0.430.620.620.700.900.951.011.011.121.251.331.411.481.802.262.64
    60 mm/h渣堆编号ZD
    8
    ZD
    16
    ZD
    9
    ZD
    5
    ZD
    15
    ZD
    1
    ZD
    3
    ZD
    13
    ZD
    14
    ZD
    11
    ZD
    4
    ZD
    2
    ZD
    10
    ZD
    7
    ZD
    6
    ZD
    12
    Fs0.340.450.470.560.630.720.810.810.840.871.061.131.221.441.702.12
    80 mm/h渣堆编号ZD
    8
    ZD
    16
    ZD
    9
    ZD
    5
    ZD
    15
    ZD
    1
    ZD
    3
    ZD
    13
    ZD
    11
    ZD
    14
    ZD
    4
    ZD
    2
    ZD
    10
    ZD
    7
    ZD
    6
    ZD
    12
    Fs0.250.330.350.410.460.530.590.600.620.620.780.830.881.051.241.56
    90 mm/h渣堆编号ZD
    8
    ZD
    16
    ZD
    9
    ZD
    5
    ZD
    15
    ZD
    1
    ZD
    3
    ZD
    13
    ZD
    14
    ZD
    11
    ZD
    4
    ZD
    2
    ZD
    10
    ZD
    7
    ZD
    6
    ZD
    12
    Fs0.220.290.310.360.410.470.520.530.540.550.680.730.780.931.101.38
    下载: 导出CSV 
    | 显示表格
    图  11  修正后不同雨强工况下渣堆危险程度图
    Figure  11.  Dangerous degree map of slag heap under different rain intensities

    (1)该区泥石流隐患是人为原因,虽然马超营断裂演化形成有利于泥石流发生的地形条件,但废弃矿渣压占行洪通道才是主因。

    (2)渣堆泄洪流速(Us)计算需SpFLIhb等6个参数,启动流速(Uc)需αφd等3个参数;同一雨力条件下,渣堆失稳转化为泥石流的风险大小不同,取决于UsUc的比值;不同雨力条件下,对于特定堆弃场地、特定堆积形态,Us仅随Sp赋值而改变,而Uc是定值,稳定性系数(Fs)与Sp赋值有关。

    (3)渣堆的稳定性可通过不考虑相互影响算出初步结果,在分析相互影响关系进行修正等两个步骤进行;随着雨力增强,失稳渣堆增多,泥石流危害程度增大。

    结合金矿区降水及矿渣堆放现状,防灾的关键在于防渣,结合文中分析提出建议如下:

    (1)废渣堆放场地要提前规划,做好选址,避免因挤压行洪通道而增加泄洪流速,增大致灾风险。

    (2)渣堆防治要根据雨力大小,危险性高低做到分类防治、科学精准、经济节约。

    致谢:该项研究得到长安大学曹琰波副教授,中国地质调查局西安地质调查中心徐友宁研究员、朱立峰高工的悉心指导和栾川县自然资源局、栾川县金兴矿业有限责任公司的大力支持,在此一并表示感谢。

  • 图  1   “10•6”岩窝村滑坡无人机航测影像

    Figure  1.   “Oct. 6th” Yanwo Village landslide aerial survey photography image of UAV

    图  2   研究工作流程图

    Figure  2.   Workflow chart of the research process

    图  3   2013—2016年滑坡变形影像

    Figure  3.   Landslide deformation images from 2013 to 2016

    图  4   2016—2021年滑坡变形影像

    Figure  4.   Landslide deformation images from 2016 to 2021

    图  5   滑坡形成的拉张裂缝

    Figure  5.   Tensional fissure triggered by the landside

    图  6   纵向边界特点

    Figure  6.   Longitudinal boundary characteristics

    图  7   公路横向贯通裂缝

    Figure  7.   Transverse penetrating crack

    图  8   滑坡前缘堰塞湖

    Figure  8.   Landslide front edge barrier lake

    图  9   滑坡后壁直立陡坡照片

    Figure  9.   Photograph of the steep vertical backslope of the landslide

    图  10   滑坡后原房子荡然无存

    Figure  10.   Former houses completely destroyed after landslide

    图  11   1-1’纵剖面

    Figure  11.   Profile 1-1’ longitudinal cross-section

    图  12   2-2’纵剖面

    Figure  12.   Profile 2-2’ longitudinal cross-section

    表  1   岩窝村滑坡多源遥感数据列表

    Table  1   List of multi-source remote sensing data for the Yanwo Village landslide

    序号 数据日期 数据类型 分辨率/m 数据来源
    1 2013-02-12 光学卫星 0.5 Google地球
    2 2013-03-05 光学卫星 0.5 Google地球
    3 2013-04-01 光学卫星 0.5 Google地球
    4 2014-10-05 光学卫星 0.5 Google地球
    5 2014-11-30 光学卫星 0.5 Google地球
    6 2015-05-29 光学卫星 0.5 Google地球
    7 2016-06-07 光学卫星 0.5 Google地球
    8 2018-01-17 光学卫星 0.5 Google地球
    9 2019-06-03 光学卫星 0.5 Google地球
    10 2019-09-22 光学卫星 0.5 Google地球
    11 2020-03-17 光学卫星 0.8 高分二号卫星
    12 2020-04-30 光学卫星 0.8 高分二号卫星
    13 2020-05-05 光学卫星 0.8 高分二号卫星
    14 2020-07-13 光学卫星 0.8 高分二号卫星
    15 2021-01-21 光学卫星 0.8 高分二号卫星
    16 2021-02-05 光学卫星 0.8 高分二号卫星
    17 2021-02-20 光学卫星 0.8 高分二号卫星
    18 2021-03-01 光学卫星 0.8 高分七号卫星
    19 2021-09-19 光学卫星 0.8 高分七号卫星
    20 2021-09-20 光学卫星 0.8 高分二号卫星
    21 2021-10-17 无人机航空影像 0.2 深圳飞马机器人
    科技有限公司
    22 2021-10-26 激光雷达数据 0.05 深圳飞马机器人
    科技有限公司
    23 2021-10-26 无人机航空影像 0.2 深圳飞马机器人
    科技有限公司
    24 2021-11-28 无人机航空影像 0.2 深圳飞马机器人
    科技有限公司
    下载: 导出CSV

    表  2   岩土体主要物理力学性质指标

    Table  2   Key physical and mechanical properties of rock and soil mass

    岩土名称天然重度
    /(kN·m−3
    饱和重度
    /(kN·m−3
    天然抗剪强度指标
    黏聚力/kPa内摩擦角/(°)
    滑体17.017.616.015.0
    粉质黏土(硬塑)18.018.218.023.0
    基岩20.020.430.015.0
    下载: 导出CSV
  • [1]

    WEIDINGER J T. Landslide damsinthe high mountains of India,Nepaland China-stability and life spanoftheirdammed lakes[J]. Italian Journal of Engineering Geology and Environment,2006,(1):67 − 80.

    [2]

    YIN Yueping,WANG Wenpei,ZHANG Nan,et al. The June 2017 Maoxian landslide:Geological disaster in an earthquake area after the Wenchuan Ms 8.0 earthquake[J]. Science China Technological Sciences,2017,60(11):1762 − 1766. DOI: 10.1007/s11431-017-9148-2

    [3] 刘传正,郭强,陈红旗. 贵州省纳雍县岩脚寨危岩崩塌灾害成因初步分析[J]. 中国地质灾害与防治学报,2004,15(4):120 − 121. [LIU Chuanzheng,GUO Qiang,CHEN Hongqi. Preliminary analysis on the causes of dangerous rock collapse in Yanjiaozhai,Nayong County,Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control,2004,15(4):120 − 121. (in Chinese with English abstract)

    LIU Chuanzheng, GUO Qiang, CHEN Hongqi. Preliminary analysis on the causes of dangerous rock collapse in Yanjiaozhai, Nayong County, Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control, 2004, 154): 120121. (in Chinese with English abstract)

    [4] 许强,黄润秋,殷跃平,等. 2009年6·5重庆武隆鸡尾山崩滑灾害基本特征与成因机理初步研究[J]. 工程地质学报,2009,17(4):433 − 444. [XU Qiang,HUANG Runqiu,YIN Yueping,et al. The jiweishan landslide of June 5,2009 in Wulong,Chongqing:Characteristics and failure mechanism[J]. Journal of Engineering Geology,2009,17(4):433 − 444. (in Chinese with English abstract)

    XU Qiang, HUANG Runqiu, YIN Yueping, et al. The jiweishan landslide of June 5, 2009 in Wulong, Chongqing: Characteristics and failure mechanism[J]. Journal of Engineering Geology, 2009, 174): 433444. (in Chinese with English abstract)

    [5] 殷跃平. 斜倾厚层山体滑坡视向滑动机制研究——以重庆武隆鸡尾山滑坡为例[J]. 岩石力学与工程学报,2010,29(2):217 − 226. [YIN Yueping. Mechanism of apparent dip slide of inclined bedding rockslide:A case study of Jiweishan rockslide in Wulong,Chongqing[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(2):217 − 226. (in Chinese with English abstract)

    YIN Yueping. Mechanism of apparent dip slide of inclined bedding rockslide: A case study of Jiweishan rockslide in Wulong, Chongqing[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 292): 217226. (in Chinese with English abstract)

    [6] 梁京涛,成余粮,王军,等. 2013年7月10日四川省都江堰三溪村五里坡特大滑坡灾害遥感调查及成因机制浅析[J]. 工程地质学报,2014,22(6):1194 − 1203. [LIANG Jingtao,CHENG Yuliang,WANG Jun,et al. Remote sensing investigation and formation mechanism on Wulipo landslide of July 10,2013 in Sanxi Village,Dujiangyan,Sichuan Province[J]. Journal of Engineering Geology,2014,22(6):1194 − 1203. (in Chinese with English abstract)

    LIANG Jingtao, CHENG Yuliang, WANG Jun, et al. Remote sensing investigation and formation mechanism on Wulipo landslide of July 10, 2013 in Sanxi Village, Dujiangyan, Sichuan Province[J]. Journal of Engineering Geology, 2014, 226): 11941203. (in Chinese with English abstract)

    [7] 张涛,杨志华,张永双,等. 四川茂县新磨村高位滑坡铲刮作用分析[J]. 水文地质工程地质,2019,46(3):138 − 145. [ZHANG Tao,YANG Zhihua,ZHANG Yongshuang,et al. An analysis of the entrainment of the Xinmo high-position landslide in Maoxian County,Sichuan[J]. Hydrogeology & Engineering Geology,2019,46(3):138 − 145. (in Chinese with English abstract)

    ZHANG Tao, YANG Zhihua, ZHANG Yongshuang, et al. An analysis of the entrainment of the Xinmo high-position landslide in Maoxian County, Sichuan[J]. Hydrogeology & Engineering Geology, 2019, 463): 138145. (in Chinese with English abstract)

    [8] 温铭生,方志伟,王阳谷. 都江堰市五里坡特大滑坡灾害特征与致灾成因[J]. 现代地质,2015,29(2):448 − 453. [WEN Mingsheng,FANG Zhiwei,WANG Yanggu. Characteristics and disaster causes of Wulipo landslide in Dujiangyan City[J]. Geoscience,2015,29(2):448 − 453. (in Chinese with English abstract)

    WEN Mingsheng, FANG Zhiwei, WANG Yanggu. Characteristics and disaster causes of Wulipo landslide in Dujiangyan City[J]. Geoscience, 2015, 292): 448453. (in Chinese with English abstract)

    [9] 王佳运,张茂省,贾俊,等. 都江堰中兴镇高位滑坡泥石流灾害致灾成因与发展趋势[J]. 西北地质,2014,47(3):157 − 164. [WANG Jiayun,ZHANG Maosheng,JIA Jun,et al. The cause and development tendency of the high-locality landslide and debris flow disaster of Zhongxing Town,Dujiangyan City[J]. Northwestern Geology,2014,47(3):157 − 164. (in Chinese with English abstract)

    WANG Jiayun, ZHANG Maosheng, JIA Jun, et al. The cause and development tendency of the high-locality landslide and debris flow disaster of Zhongxing Town, Dujiangyan City[J]. Northwestern Geology, 2014, 473): 157164. (in Chinese with English abstract)

    [10] 王佳运,石小亚,武立,等. “8·12”山阳滑坡视向滑动成因机理[J]. 西北地质,2018,51(3):232 − 239. [WANG Jiayun,SHI Xiaoya,WU Li,et al. Formation mechanism of apparent dip slide in the Shanyang “ 8·12” landslide[J]. Northwestern Geology,2018,51(3):232 − 239. (in Chinese with English abstract)

    WANG Jiayun, SHI Xiaoya, WU Li, et al. Formation mechanism of apparent dip slide in the Shanyang “ 8·12” landslide[J]. Northwestern Geology, 2018, 513): 232239. (in Chinese with English abstract)

    [11] 崔芳鹏,李滨,杨忠平,等. 贵州纳雍普洒滑坡动力触发机制离散元模拟分析[J]. 中国岩溶,2020,39(4):524 − 534. [CUI Fangpeng,LI Bin,YANG Zhongping,et al. Discrete element modelling on dynamic triggering mechanism of the Pusa landslide in Nayong County,Guizhou Province[J]. Carsologica Sinica,2020,39(4):524 − 534. (in Chinese with English abstract)

    CUI Fangpeng, LI Bin, YANG Zhongping, et al. Discrete element modelling on dynamic triggering mechanism of the Pusa landslide in Nayong County, Guizhou Province[J]. Carsologica Sinica, 2020, 394): 524534. (in Chinese with English abstract)

    [12] 肖锐铧,陈红旗,冷洋洋,等. 贵州纳雍“8·28”崩塌破坏过程与变形破坏机理初探[J]. 中国地质灾害与防治学报,2018,29(1):3 − 9. [XIAO Ruihua,CHEN Hongqi,LENG Yangyang,et al. Preliminary analysis on the failure process and mechanism of the August 28 collapse in Nayong County,Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control,2018,29(1):3 − 9. (in Chinese with English abstract)

    XIAO Ruihua, CHEN Hongqi, LENG Yangyang, et al. Preliminary analysis on the failure process and mechanism of the August 28 collapse in Nayong County, Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control, 2018, 291): 39. (in Chinese with English abstract)

    [13] 王立朝,温铭生,冯振,等. 中国西藏金沙江白格滑坡灾害研究[J]. 中国地质灾害与防治学报,2019,30(1):1 − 9. [WANG Lichao,WEN Mingsheng,FENG Zhen,et al. Researches on the baige landslide at Jinshajiang River,Tibet,China[J]. The Chinese Journal of Geological Hazard and Control,2019,30(1):1 − 9. (in Chinese with English abstract)

    WANG Lichao, WEN Mingsheng, FENG Zhen, et al. Researches on the baige landslide at Jinshajiang River, Tibet, China[J]. The Chinese Journal of Geological Hazard and Control, 2019, 301): 19. (in Chinese with English abstract)

    [14] 高杨,贺凯,李壮,等. 西南岩溶山区特大滑坡成灾类型及动力学分析[J]. 水文地质工程地质,2020,47(4):14 − 23. [GAO Yang,HE Kai,LI Zhuang,et al. An analysis of disaster types and dynamics of landslides in the southwest Karst Mountain areas[J]. Hydrogeology & Engineering Geology,2020,47(4):14 − 23. (in Chinese with English abstract)

    GAO Yang, HE Kai, LI Zhuang, et al. An analysis of disaster types and dynamics of landslides in the southwest Karst Mountain areas[J]. Hydrogeology & Engineering Geology, 2020, 474): 1423. (in Chinese with English abstract)

    [15] 王得双,梁收运,赵红亮. 高位滑坡特征与防治[J]. 地质灾害与环境保护,2018,29(3):5 − 11. [WANG Deshuang,LIANG Shouyun,ZHAO Hongliang. Characteristic of high-locality landslide and prevention[J]. Journal of Geological Hazards and Environment Preservation,2018,29(3):5 − 11. (in Chinese with English abstract)

    WANG Deshuang, LIANG Shouyun, ZHAO Hongliang. Characteristic of high-locality landslide and prevention[J]. Journal of Geological Hazards and Environment Preservation, 2018, 293): 511. (in Chinese with English abstract)

    [16] 上官力. 高位陡倾崩塌堆积体滑坡形成机理研究[D]. 北京:中国铁道科学研究院,2015. [SHANGGUAN Li. Research on genetic mechanism of the high dipping landslide composed of collapse deposit[D]. Beijing:China Academy of Railway Sciences,2015. (in Chinese with English abstract)

    SHANGGUAN Li. Research on genetic mechanism of the high dipping landslide composed of collapse deposit[D]. Beijing: China Academy of Railway Sciences, 2015. (in Chinese with English abstract)

    [17] 刘雄. 新滩大滑坡机制探讨[J]. 岩土力学,1986,7(2):53 − 60. [LIU Xiong. Discussion of the mechanism for Xintan beach landslide[J]. Rock and Soil Mechanics,1986,7(2):53 − 60. (in Chinese with English abstract)

    LIU Xiong. Discussion of the mechanism for Xintan beach landslide[J]. Rock and Soil Mechanics, 1986, 72): 5360. (in Chinese with English abstract)

    [18] 瞿婧晶,陆燕,吴曙亮,等. 基于不同方法的江苏镇江地区下蜀土边坡稳定性分析与评价[J]. 中国地质灾害与防治学报,2021,32(1):35 − 42. [QU Jingjing,LU Yan,WU Shuliang,et al. Evaluation of Xiashu loess slope stability in Zhenjiang area using different methods[J]. The Chinese Journal of Geological Hazard and Control,2021,32(1):35 − 42. (in Chinese with English abstract)

    QU Jingjing, LU Yan, WU Shuliang, et al. Evaluation of Xiashu loess slope stability in Zhenjiang area using different methods[J]. The Chinese Journal of Geological Hazard and Control, 2021, 321): 3542. (in Chinese with English abstract)

    [19] 杨学堂,王飞. 边坡稳定性评价方法及发展趋势[J]. 岩土工程技术,2004,18(2):103 − 106. [YANG Xuetang,WANG Fei. Evaluation method of slope stability and its developing trend[J]. Geotechnical Engineering Technique,2004,18(2):103 − 106. (in Chinese with English abstract)

    YANG Xuetang, WANG Fei. Evaluation method of slope stability and its developing trend[J]. Geotechnical Engineering Technique, 2004, 182): 103106. (in Chinese with English abstract)

    [20] 周维垣,寇晓东. 无单元法及其在岩土工程中的应用[J]. 岩土工程学报,1998,20(1):5 − 9. [ZHOU Weiyuan,KOU Xiaodong. Element free method and its application in geotechnique engineering[J]. Chinese Journal of Geotechnical Engineering,1998,20(1):5 − 9. (in Chinese with English abstract)

    ZHOU Weiyuan, KOU Xiaodong. Element free method and its application in geotechnique engineering[J]. Chinese Journal of Geotechnical Engineering, 1998, 201): 59. (in Chinese with English abstract)

    [21] 王勖成. 有限单元法[M]. 北京:清华大学出版社,2003. [WANG Xucheng. Finite element method[M]. Beijing:Tsinghua University Press,2003. (in Chinese)

    WANG Xucheng. Finite element method[M]. Beijing: Tsinghua University Press, 2003. (in Chinese)

    [22]

    GHABOUSSI J,BARBOSA R. Three-dimensional discrete element method for granular materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1990,14(7):451 − 472. DOI: 10.1002/nag.1610140702

    [23] 李元松,高晖,陈峰,等. 乌尉高速公路边坡稳定性综合评价[J]. 水文地质工程地质,2018,45(4):150 − 156. [LI Yuansong,GAO Hui,CHEN Feng,et al. Comprehensive assessment of slope stability in Wu—Yu highway[J]. Hydrogeology & Engineering Geology,2018,45(4):150 − 156. (in Chinese with English abstract)

    LI Yuansong, GAO Hui, CHEN Feng, et al. Comprehensive assessment of slope stability in Wu—Yu highway[J]. Hydrogeology & Engineering Geology, 2018, 454): 150156. (in Chinese with English abstract)

    [24] 殷跃平,张作辰,黎志恒,等. 兰州皋兰山黄土滑坡特征及灾度评估研究[J]. 第四纪研究,2004,24(3):302 − 310. [YIN Yueping,ZHANG Zuochen,LI Zhiheng,et al. Occurrence and hazard assessment on loess landslide of Gaolanshan in Lanzhou[J]. Quaternary Sciences,2004,24(3):302 − 310. (in Chinese with English abstract)

    YIN Yueping, ZHANG Zuochen, LI Zhiheng, et al. Occurrence and hazard assessment on loess landslide of Gaolanshan in Lanzhou[J]. Quaternary Sciences, 2004, 243): 302310. (in Chinese with English abstract)

    [25] 王述红,朱承金,张紫杉,等. 基于动态强度折减DDA法的边坡多滑面稳定性分析[J]. 煤炭学报,2019,44(4):1084 − 1091. [WANG Shuhong,ZHU Chengjin,ZHANG Zishan,et al. Stability analysis of multi-slip surface of slope based on dynamic strength reduction DDA method[J]. Journal of China Coal Society,2019,44(4):1084 − 1091. (in Chinese with English abstract)

    WANG Shuhong, ZHU Chengjin, ZHANG Zishan, et al. Stability analysis of multi-slip surface of slope based on dynamic strength reduction DDA method[J]. Journal of China Coal Society, 2019, 444): 10841091. (in Chinese with English abstract)

    [26]

    MATSUI T,SAN K C. Finite element slope stability analysis by shear strength reduction technique[J]. Soils and Foundations,1992,32(1):59 − 70. DOI: 10.3208/sandf1972.32.59

  • 期刊类型引用(1)

    1. 刘星宇,朱立峰,孙建伟,贾煦,刘向东,黄虹霖,程贤达,孙亚柯,胡超进,张晓龙. 沟谷型泥石流特征参数的等代面积递归精细求解. 西北地质. 2024(03): 272-284 . 百度学术

    其他类型引用(0)

图(12)  /  表(2)
计量
  • 文章访问数:  4414
  • HTML全文浏览量:  1976
  • PDF下载量:  151
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-11-22
  • 修回日期:  2023-07-23
  • 录用日期:  2023-08-25
  • 网络出版日期:  2023-08-31
  • 刊出日期:  2023-12-24

目录

/

返回文章
返回