Analysis of high-position landslide characteristics based on multi-source remote sensing data:A case study of the Yanwo Village landslide in Rongshan Town, Lizhou District, Guangyuan City
-
摘要: 2021年10月6日13时许,四川省广元市利州区荣山镇岩窝村三组发生高位滑坡灾害。滑坡造成4处民房、3条电力线路被毁,掩埋170 m长的乡村公路,堵塞河道350 m。利用高位滑坡滑前多期卫星数据、滑坡滑后高精度无人机航空影像以及机载LiDAR数据等多源遥感信息源,采用三维立体+时间的四维分析方法,研究高位滑坡特征及其滑动模式。从高位滑坡发育背景入手,通过高位滑坡滑前变形特征以及高位滑动过程动态分析,总结高位滑坡变形破坏特征及滑动模式。根据滑坡已经发生过程推演及后部残留滑坡体稳定性分析结果,预测分析高位滑坡未来滑动的三种滑动模式:一是滑坡后缘继续错落和活动,挤压前部滑坡体直接剪出;二是滑坡后缘继续错落和活动,沿着已有滑坡通道发生推移式滑坡;三是前部滑坡体启动,引发中后部滑坡体发生牵引式滑坡。高位滑坡在西南山区屡见不鲜,在早期地质灾害隐患调查中应有效识别、加强防灾减灾措施。Abstract: On October 6, 2021, a high-position landslide disaster occurred in Yanwo Village, Rongshan Town, Lizhou District, Guangyuan City,Sichuan Province, around 13: 00. The landslide resulted in the destruction of 4 houses, 3 power lines, the burial of a 170-meter-long rural road, and the blockage of a 350-meter-long river channel. By utilizing a variety of remote sensing information sources, including multi-period satellite data before and after landslide, high-precision UAV aerial images, and airborne LiDAR data, the characteristics of high landslide and its sliding mode are studied by using a four-dimensional analysis approach combining three-dimensional space with time. Starting from the development background of high landslide, the deformation and failure characteristics and sliding mode of high landslide are summarized by analyzing the deformation characteristics before sliding and the dynamic procession of the high landslide. Based on the deduced landslide progression and the stability evaluation of the residual landslide at the rear, three sliding modes for future high-position landslide events are predicted and analyzed: Firstly, the back edge of landslide continues to be disjointed and move, causing a direct shear failure of the front part of the landslide by squeezing. Secondly, the trailing edge of the landslide continues to be disjointed and move, resulting in the sliding landslide occurs along the existing landslide channel. Thirdly, the initiation of the front part of the landslide trigger a tractional landslide in the middle and rear parts of the landslide. High-position landslides are common in the southwest mountainous areas, and during early geological hazard investigations, they should be effectively identified, and disaster prevention and mitigation measures should be strengthened.
-
0. 引言
地面形变作为一种缓变性地质灾害,主要具有缓变性、滞后性、区域性、差异性、长期性以及不可逆等特点,始终威胁着城市安全及经济社会的可持续发展[1]。
传统的形变监测方法成本高、效率低、受天气影响,且需建立监测网,无法快速开展大面积监测[2]。合成孔径雷达干涉测量技术( Interferometric synthetic aperture radar,InSAR)凭借其全天侯、强穿透性、高精度获取连续覆盖地面高程和信息的突出优势,已在地表形变监测、滑坡监测、矿区沉降监测、危岩体监测等相关领域得到广泛应用[3-9]。在此基础上发展起来的永久散射体合成孔径雷达干涉测量技术(Permanent scatterers interferometric synthetic aperture radar,PS-InSAR)[10-11],有效消除了时空失相干引起的相位噪声,解决了大气效应难以消除的问题,适用于持续性、区域性地表微小形变监测[12],已经广泛应用在城市地面形变监测。
本研究采用PS-InSAR技术对深圳市南山区后海的片区进行了大范围、长时间的地面和建(构)筑物沉降监测,获得巨厚风化深槽地区地面及采用桩基础施工工艺的建构筑物沉降特征和规律,为深圳后海巨厚深槽地质灾害的排查、防治工作提供基础。
1. 研究区域与数据
1.1 研究区域
深圳市位于华南褶皱系中的紫金—惠阳凹褶断束的西南部、五华—深圳大断裂带南西段,高要—惠来东西向构造带中段的南缘地带。北东向莲花山断裂带与北西向珠江口大断裂带两条断裂在深圳南山后海片区交汇,对深圳、香港的地层稳定性均有影响[13]。
南山区是全国百强区,后海片区是总部大厦基地。该片区原为滨海滩涂,被第四系覆盖,填海造陆区未进行过详细的地质调查。在工程建设中发现其下断层发育,基岩埋深70~130 m,形成了巨厚的风化深槽,上面建筑采用超长桩基础[14]。
图1为本次研究区范围,为南山区南部东侧沿海区域。北至白石路,南至望海路,西至后海大道,东边沿沙河西路—望海路,面积约为11.0 km2。
1.2 数据源
采用2018年2月—2020年12月52期COSMO-SkyMed重复轨道SAR影像,InSAR数据的基本参数见表1。
表 1 In-SAR数据基本参数Table 1. Basic Parameters of In-SAR Data参数 数值 监测日期 卫星类型 COSMO-SkyMed 2018-02-04 、2018-03-08 、2018-03-24 、2018-04-09 、2018-05-11 成像模式 StripMap (条带成像)模式 2018-06-12 、2018-07-11 、2018-09-13 、2018-10-02 、2018-10-18 数据波段 X波段(3.1cm) 2018-11-03 、2018-11-19 、2018-12-01 、2019-01-06 、2019-01-22 空间分辨率/m 3 2019-02-07 、2019-02-19 、2019-03-11 、2019-03-27 、2019-04-12 升/降轨模式 降轨 2019-04-28 、2019-05-10 、2019-06-10 、2019-06-26 、2019-07-12 极化方式 HH极化 2019-07-28 、2019-08-14 、2019-08-29 、2019-10-09 、2019-10-25 中心入射角/(°) 32.55 2019-11-01 、2019-12-03 、2020-01-13 、2020-02-05 、2020-02-21 影像数量 52景 2020-03-24 、2020-04-09 、2020-04-25 、2020-05-11 、2020-05-27 数据级别 SLC数据(单视复) 2020-06-12 、2020-06-28 、2020-07-14 、2020-07-30 、2020-08-15 监测日期 2018-02-04—2020-12-21 2020-09-16 、2020-10-11 、2020-10-18 、2020-11-03 、2020-11-19 处理方法 PS-InSAR 2020-12-05 、2020-12-21 2. 基于PS-InSAR的结果分析
2.1 整体形变分析
本研究利用PS-InSAR技术,对2018年2月—2020年12月的影像数据进行计算,获得148151个有效PS点。
区域累计形变量为−79.1~37.5 mm,累计形变量−8~8 mm的PS点占总数的86%,累计形变量统计见图2。区域平均形变速率为−26.9~11.6 mm/a,形变速率在−3~3 mm/a的PS点占总数的91%,超过9 mm/a的PS点共1106个,占0.8%。
2.2 重点监测点形变分析
在研究区域深槽上方选取21处(点1—点21)地面以及构(建)筑物作为重点形变监测特征点进行形变分析,监测特征点位置分布见图3,监测特征点形变特点及曲线见表2。
表 2 监测特征点形变特点及曲线Table 2. Deformation characteristics and curves of feature points监测特征点
分类监测特征点位置 沉降形变特点 典型形变—日期序列曲线 已有高层建筑 点2舜远金融大厦
点3大成基金总部大厦
点5海信南方大厦
点6深圳湾一号
点7卓越维港名苑形变曲线总体均呈略有
起伏的变化趋势,
整体形变稳定
见右侧点7卓越维港名苑形变—日期曲线图在建项目 点1红土创新广场
点4恒裕深圳湾监测期间受施工影响,形变曲线不规律,或呈略有起伏上升趋势,或呈略有起伏下降趋势
见右侧点1红土创新广场形变—日期曲线图桥梁 点8滨海海滨立交桥
点17桥梁
点21桥梁形变曲线总体呈略有起伏的变化趋势,整体形变稳定
见右侧点17桥梁形
变—日期曲线图道路 点9海德三道
点10创业路
点11望海路
点12望海路
点20东滨路形变曲线总体呈略有起伏的变化趋势,整体形变稳定
见右侧点12望海路形
变—日期曲线图公园草地 点14绿化草地
点13、点16、点18、点19深圳湾公园草地
点15大运会纪念碑广场除了点18深圳湾公园草地形变曲线为均匀缓慢沉降趋势(见右侧点18形变—日期曲线图)外,其余形变曲线均为总体呈略有起伏的下降趋势,整体形变稳定 注:PS为监测特征点的控制点,VEL为高程。 综上,研究区域处于比较稳定或整体缓慢形变,存在一处集中形变区域,位置在深圳湾公园周边。
3. InSAR技术精度验证
InSAR技术可快速、精确地获得区域垂向形变场,其在城区可获得毫米级地表形变[15]。InSAR形变监测结果能提供时间序列形变量,统计影像获取期内任意两期影像间的形变量,可以充分保障外业水准资料和 InSAR数据获取形变量比对的时空一致性。
将研究区域InSAR形变监测结果与同一地区的蛇口文体中心基坑支护工程变形监测结果对比,结果见表3。
表 3 相同位置不同技术手段成果对比Table 3. Comparison of results of different technical means in the same position项目 蛇口文体中心基坑
支护形变监测项目后海断裂带项目 技术手段 S05级水准仪(134次) InSAR(52期) 对应位置 点7附近
(深圳市育才舒曼艺术学校体育场)点7
(卓越维港名苑)监测时间 2019年2月—2020年4月 累计形变/mm −1.9 −1.6 根据《工程测量标准》(GB50026—2020)[16],对同一目标点采用两种不同的监测手段,相同的监测时段内二者的实际误差为±0.3 mm,小于观测中误差±0.71 mm和最大观测误差±1.41 mm,监测精度满足规范要求。
由此可见,InSAR技术可获取大面积、全天候、高精度和高分辨率的地表三维空间微小变化,在地表形变监测方面显示出传统监测不具备的优越性。
4. 形变原因分析
监测期间,深圳湾公园及周边区域累计形变量较大,因此在该区域选取了5个点(A1—A5)的勘察资料进行分析,位置分布见图4。
4.1 A2中建钢构大厦北侧
中建钢构大厦北侧草地累计形变量为-62.1 mm,平均形变速率为20.4 mm/a,形变—日期曲线见图5。
该大厦勘察资料表明,场地内人工填土(
${\rm{Q}}^{ml} $ )成分主要为翻填淤泥,多呈流—软塑状态,组分不均,堆填时间较短,属软弱土层;第四系全新统海相沉积层(${\rm{Qh}}^m$ )淤泥以及第四系上更新统沼泽相沉积层(${\rm{Qp}}^h$ )淤泥均呈流塑状态,含水量大,孔隙比大,具高压缩性、低强度等特征,属软弱土层,最厚达15 m。场地受断裂构造影响,场地内基岩大部分蚀变严重,局部碎裂岩化特征明显,绿泥石化现象显著。各风化基岩起伏变化较大,块状强风化蚀变粗粒花岗岩顶板标高−41.44~−18.49 m,变化幅度达22.95 m;中风化蚀变粗粒花岗岩顶板标高−48.14~−22.84 m,变化幅度达25.30 m。大厦桩基础采用了旋挖桩,平均桩长30.2m,最深50.6m,观测期间大厦整体形变稳定。而大厦北侧场地有均匀沉降趋势,沉降主要由填土及淤泥引起。
4.2 点A1、A3、A4、A5深圳湾公园内草地
该4点累计形变量为40.9~59.6 mm,平均形变速率为15.29~19.76 mm/a,总体呈均匀沉降趋势。以A5深圳湾人才公园为例,形变—日期曲线见图6。
根据A5深圳湾人才公园勘察资料,钻探深度范围内揭露的地层岩性特征自上而下见表4。
表 4 地层岩性特征Table 4. Formation lithologic characteristics地层岩性 地层岩性特征 第四系人工
填土层液性指数 压缩指数
/MPa−1压缩模量
/MPa0.45 0.5 4.0 主要为素填土,层厚1.2~26.9 m,呈松散~稍密状,物理力学性质不均匀,工程性质较差,承载力较低,在上部较大荷载长期作用下易产生沉降及不均匀沉降 第四系海积
冲积层液性指数 压缩指数
/MPa−1压缩模量
/MPa1.36 1.28 2.0 主要为淤泥软土层,层厚0.3~17.0 m,呈流塑状,含较多腐殖质、贝壳碎屑,承载力极低,灵敏度高 第四系残积层及燕山四期侵入花岗岩 残积的砾质黏性土和全风化花岗岩、强风化花岗岩,粉粒含量高,受水浸湿或浸泡后,易软化变形,强度、承载力骤减 该区域填土层及淤泥质软土层厚,工程性质差,承载力低,易产生不均匀沉降。该区域草地沉降主要由填土及软土沉降引起。
5. 结论
(1)本研究基于长时间序列雷达数据,采用PS-InSAR技术对深圳后海片区进行了高精度连续形变监测与分析。通过与传统监测技术对比,监测精度满足规范要求。PS-InSAR新技术能实现大范围、低成本、高精度、高效率的变形监测需求,体现出传统监测不具备的优越性。
(2)对监测结果进行统计分析,南山后海片区深槽上建(构)筑物的沉降相对稳定,沉降量较大的区域为深圳湾公园草地及其周边区域。研究表明,该区域沉降原因为软土沉降。目前在片区深厚深槽上已有的建筑物桩基础是安全的。
(3)深圳湾公园草地均处于缓慢持续沉降状态,后续需重点关注。
(4)该片区巨厚深槽上在建的红土广场、华润深圳湾住宅等建筑。工程桩超长,建筑物的后期沉降值得持续关注。
(5)深槽区域的浅埋地下燃气、排污管网等管线的变形,本次研究未作深入,此类隐患的影响较大,值得深入关注。
-
表 1 岩窝村滑坡多源遥感数据列表
Table 1 List of multi-source remote sensing data for the Yanwo Village landslide
序号 数据日期 数据类型 分辨率/m 数据来源 1 2013-02-12 光学卫星 0.5 Google地球 2 2013-03-05 光学卫星 0.5 Google地球 3 2013-04-01 光学卫星 0.5 Google地球 4 2014-10-05 光学卫星 0.5 Google地球 5 2014-11-30 光学卫星 0.5 Google地球 6 2015-05-29 光学卫星 0.5 Google地球 7 2016-06-07 光学卫星 0.5 Google地球 8 2018-01-17 光学卫星 0.5 Google地球 9 2019-06-03 光学卫星 0.5 Google地球 10 2019-09-22 光学卫星 0.5 Google地球 11 2020-03-17 光学卫星 0.8 高分二号卫星 12 2020-04-30 光学卫星 0.8 高分二号卫星 13 2020-05-05 光学卫星 0.8 高分二号卫星 14 2020-07-13 光学卫星 0.8 高分二号卫星 15 2021-01-21 光学卫星 0.8 高分二号卫星 16 2021-02-05 光学卫星 0.8 高分二号卫星 17 2021-02-20 光学卫星 0.8 高分二号卫星 18 2021-03-01 光学卫星 0.8 高分七号卫星 19 2021-09-19 光学卫星 0.8 高分七号卫星 20 2021-09-20 光学卫星 0.8 高分二号卫星 21 2021-10-17 无人机航空影像 0.2 深圳飞马机器人
科技有限公司22 2021-10-26 激光雷达数据 0.05 深圳飞马机器人
科技有限公司23 2021-10-26 无人机航空影像 0.2 深圳飞马机器人
科技有限公司24 2021-11-28 无人机航空影像 0.2 深圳飞马机器人
科技有限公司表 2 岩土体主要物理力学性质指标
Table 2 Key physical and mechanical properties of rock and soil mass
岩土名称 天然重度
/(kN·m−3)饱和重度
/(kN·m−3)天然抗剪强度指标 黏聚力/kPa 内摩擦角/(°) 滑体 17.0 17.6 16.0 15.0 粉质黏土(硬塑) 18.0 18.2 18.0 23.0 基岩 20.0 20.4 30.0 15.0 -
[1] WEIDINGER J T. Landslide damsinthe high mountains of India,Nepaland China-stability and life spanoftheirdammed lakes[J]. Italian Journal of Engineering Geology and Environment,2006,(1):67 − 80.
[2] YIN Yueping,WANG Wenpei,ZHANG Nan,et al. The June 2017 Maoxian landslide:Geological disaster in an earthquake area after the Wenchuan Ms 8.0 earthquake[J]. Science China Technological Sciences,2017,60(11):1762 − 1766. DOI: 10.1007/s11431-017-9148-2
[3] 刘传正,郭强,陈红旗. 贵州省纳雍县岩脚寨危岩崩塌灾害成因初步分析[J]. 中国地质灾害与防治学报,2004,15(4):120 − 121. [LIU Chuanzheng,GUO Qiang,CHEN Hongqi. Preliminary analysis on the causes of dangerous rock collapse in Yanjiaozhai,Nayong County,Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control,2004,15(4):120 − 121. (in Chinese with English abstract) LIU Chuanzheng, GUO Qiang, CHEN Hongqi . Preliminary analysis on the causes of dangerous rock collapse in Yanjiaozhai, Nayong County, Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control,2004 ,15 (4 ):120 −121 . (in Chinese with English abstract)[4] 许强,黄润秋,殷跃平,等. 2009年6·5重庆武隆鸡尾山崩滑灾害基本特征与成因机理初步研究[J]. 工程地质学报,2009,17(4):433 − 444. [XU Qiang,HUANG Runqiu,YIN Yueping,et al. The jiweishan landslide of June 5,2009 in Wulong,Chongqing:Characteristics and failure mechanism[J]. Journal of Engineering Geology,2009,17(4):433 − 444. (in Chinese with English abstract) XU Qiang, HUANG Runqiu, YIN Yueping, et al . The jiweishan landslide of June 5, 2009 in Wulong, Chongqing: Characteristics and failure mechanism[J]. Journal of Engineering Geology,2009 ,17 (4 ):433 −444 . (in Chinese with English abstract)[5] 殷跃平. 斜倾厚层山体滑坡视向滑动机制研究——以重庆武隆鸡尾山滑坡为例[J]. 岩石力学与工程学报,2010,29(2):217 − 226. [YIN Yueping. Mechanism of apparent dip slide of inclined bedding rockslide:A case study of Jiweishan rockslide in Wulong,Chongqing[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(2):217 − 226. (in Chinese with English abstract) YIN Yueping . Mechanism of apparent dip slide of inclined bedding rockslide: A case study of Jiweishan rockslide in Wulong, Chongqing[J]. Chinese Journal of Rock Mechanics and Engineering,2010 ,29 (2 ):217 −226 . (in Chinese with English abstract)[6] 梁京涛,成余粮,王军,等. 2013年7月10日四川省都江堰三溪村五里坡特大滑坡灾害遥感调查及成因机制浅析[J]. 工程地质学报,2014,22(6):1194 − 1203. [LIANG Jingtao,CHENG Yuliang,WANG Jun,et al. Remote sensing investigation and formation mechanism on Wulipo landslide of July 10,2013 in Sanxi Village,Dujiangyan,Sichuan Province[J]. Journal of Engineering Geology,2014,22(6):1194 − 1203. (in Chinese with English abstract) LIANG Jingtao, CHENG Yuliang, WANG Jun, et al . Remote sensing investigation and formation mechanism on Wulipo landslide of July 10, 2013 in Sanxi Village, Dujiangyan, Sichuan Province[J]. Journal of Engineering Geology,2014 ,22 (6 ):1194 −1203 . (in Chinese with English abstract)[7] 张涛,杨志华,张永双,等. 四川茂县新磨村高位滑坡铲刮作用分析[J]. 水文地质工程地质,2019,46(3):138 − 145. [ZHANG Tao,YANG Zhihua,ZHANG Yongshuang,et al. An analysis of the entrainment of the Xinmo high-position landslide in Maoxian County,Sichuan[J]. Hydrogeology & Engineering Geology,2019,46(3):138 − 145. (in Chinese with English abstract) ZHANG Tao, YANG Zhihua, ZHANG Yongshuang, et al . An analysis of the entrainment of the Xinmo high-position landslide in Maoxian County, Sichuan[J]. Hydrogeology & Engineering Geology,2019 ,46 (3 ):138 −145 . (in Chinese with English abstract)[8] 温铭生,方志伟,王阳谷. 都江堰市五里坡特大滑坡灾害特征与致灾成因[J]. 现代地质,2015,29(2):448 − 453. [WEN Mingsheng,FANG Zhiwei,WANG Yanggu. Characteristics and disaster causes of Wulipo landslide in Dujiangyan City[J]. Geoscience,2015,29(2):448 − 453. (in Chinese with English abstract) WEN Mingsheng, FANG Zhiwei, WANG Yanggu . Characteristics and disaster causes of Wulipo landslide in Dujiangyan City[J]. Geoscience,2015 ,29 (2 ):448 −453 . (in Chinese with English abstract)[9] 王佳运,张茂省,贾俊,等. 都江堰中兴镇高位滑坡泥石流灾害致灾成因与发展趋势[J]. 西北地质,2014,47(3):157 − 164. [WANG Jiayun,ZHANG Maosheng,JIA Jun,et al. The cause and development tendency of the high-locality landslide and debris flow disaster of Zhongxing Town,Dujiangyan City[J]. Northwestern Geology,2014,47(3):157 − 164. (in Chinese with English abstract) WANG Jiayun, ZHANG Maosheng, JIA Jun, et al . The cause and development tendency of the high-locality landslide and debris flow disaster of Zhongxing Town, Dujiangyan City[J]. Northwestern Geology,2014 ,47 (3 ):157 −164 . (in Chinese with English abstract)[10] 王佳运,石小亚,武立,等. “8·12”山阳滑坡视向滑动成因机理[J]. 西北地质,2018,51(3):232 − 239. [WANG Jiayun,SHI Xiaoya,WU Li,et al. Formation mechanism of apparent dip slide in the Shanyang “ 8·12” landslide[J]. Northwestern Geology,2018,51(3):232 − 239. (in Chinese with English abstract) WANG Jiayun, SHI Xiaoya, WU Li, et al . Formation mechanism of apparent dip slide in the Shanyang “ 8·12” landslide[J]. Northwestern Geology,2018 ,51 (3 ):232 −239 . (in Chinese with English abstract)[11] 崔芳鹏,李滨,杨忠平,等. 贵州纳雍普洒滑坡动力触发机制离散元模拟分析[J]. 中国岩溶,2020,39(4):524 − 534. [CUI Fangpeng,LI Bin,YANG Zhongping,et al. Discrete element modelling on dynamic triggering mechanism of the Pusa landslide in Nayong County,Guizhou Province[J]. Carsologica Sinica,2020,39(4):524 − 534. (in Chinese with English abstract) CUI Fangpeng, LI Bin, YANG Zhongping, et al . Discrete element modelling on dynamic triggering mechanism of the Pusa landslide in Nayong County, Guizhou Province[J]. Carsologica Sinica,2020 ,39 (4 ):524 −534 . (in Chinese with English abstract)[12] 肖锐铧,陈红旗,冷洋洋,等. 贵州纳雍“8·28”崩塌破坏过程与变形破坏机理初探[J]. 中国地质灾害与防治学报,2018,29(1):3 − 9. [XIAO Ruihua,CHEN Hongqi,LENG Yangyang,et al. Preliminary analysis on the failure process and mechanism of the August 28 collapse in Nayong County,Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control,2018,29(1):3 − 9. (in Chinese with English abstract) XIAO Ruihua, CHEN Hongqi, LENG Yangyang, et al . Preliminary analysis on the failure process and mechanism of the August 28 collapse in Nayong County, Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control,2018 ,29 (1 ):3 −9 . (in Chinese with English abstract)[13] 王立朝,温铭生,冯振,等. 中国西藏金沙江白格滑坡灾害研究[J]. 中国地质灾害与防治学报,2019,30(1):1 − 9. [WANG Lichao,WEN Mingsheng,FENG Zhen,et al. Researches on the baige landslide at Jinshajiang River,Tibet,China[J]. The Chinese Journal of Geological Hazard and Control,2019,30(1):1 − 9. (in Chinese with English abstract) WANG Lichao, WEN Mingsheng, FENG Zhen, et al . Researches on the baige landslide at Jinshajiang River, Tibet, China[J]. The Chinese Journal of Geological Hazard and Control,2019 ,30 (1 ):1 −9 . (in Chinese with English abstract)[14] 高杨,贺凯,李壮,等. 西南岩溶山区特大滑坡成灾类型及动力学分析[J]. 水文地质工程地质,2020,47(4):14 − 23. [GAO Yang,HE Kai,LI Zhuang,et al. An analysis of disaster types and dynamics of landslides in the southwest Karst Mountain areas[J]. Hydrogeology & Engineering Geology,2020,47(4):14 − 23. (in Chinese with English abstract) GAO Yang, HE Kai, LI Zhuang, et al . An analysis of disaster types and dynamics of landslides in the southwest Karst Mountain areas[J]. Hydrogeology & Engineering Geology,2020 ,47 (4 ):14 −23 . (in Chinese with English abstract)[15] 王得双,梁收运,赵红亮. 高位滑坡特征与防治[J]. 地质灾害与环境保护,2018,29(3):5 − 11. [WANG Deshuang,LIANG Shouyun,ZHAO Hongliang. Characteristic of high-locality landslide and prevention[J]. Journal of Geological Hazards and Environment Preservation,2018,29(3):5 − 11. (in Chinese with English abstract) WANG Deshuang, LIANG Shouyun, ZHAO Hongliang . Characteristic of high-locality landslide and prevention[J]. Journal of Geological Hazards and Environment Preservation,2018 ,29 (3 ):5 −11 . (in Chinese with English abstract)[16] 上官力. 高位陡倾崩塌堆积体滑坡形成机理研究[D]. 北京:中国铁道科学研究院,2015. [SHANGGUAN Li. Research on genetic mechanism of the high dipping landslide composed of collapse deposit[D]. Beijing:China Academy of Railway Sciences,2015. (in Chinese with English abstract) SHANGGUAN Li. Research on genetic mechanism of the high dipping landslide composed of collapse deposit[D]. Beijing: China Academy of Railway Sciences, 2015. (in Chinese with English abstract)
[17] 刘雄. 新滩大滑坡机制探讨[J]. 岩土力学,1986,7(2):53 − 60. [LIU Xiong. Discussion of the mechanism for Xintan beach landslide[J]. Rock and Soil Mechanics,1986,7(2):53 − 60. (in Chinese with English abstract) LIU Xiong . Discussion of the mechanism for Xintan beach landslide[J]. Rock and Soil Mechanics,1986 ,7 (2 ):53 −60 . (in Chinese with English abstract)[18] 瞿婧晶,陆燕,吴曙亮,等. 基于不同方法的江苏镇江地区下蜀土边坡稳定性分析与评价[J]. 中国地质灾害与防治学报,2021,32(1):35 − 42. [QU Jingjing,LU Yan,WU Shuliang,et al. Evaluation of Xiashu loess slope stability in Zhenjiang area using different methods[J]. The Chinese Journal of Geological Hazard and Control,2021,32(1):35 − 42. (in Chinese with English abstract) QU Jingjing, LU Yan, WU Shuliang, et al . Evaluation of Xiashu loess slope stability in Zhenjiang area using different methods[J]. The Chinese Journal of Geological Hazard and Control,2021 ,32 (1 ):35 −42 . (in Chinese with English abstract)[19] 杨学堂,王飞. 边坡稳定性评价方法及发展趋势[J]. 岩土工程技术,2004,18(2):103 − 106. [YANG Xuetang,WANG Fei. Evaluation method of slope stability and its developing trend[J]. Geotechnical Engineering Technique,2004,18(2):103 − 106. (in Chinese with English abstract) YANG Xuetang, WANG Fei . Evaluation method of slope stability and its developing trend[J]. Geotechnical Engineering Technique,2004 ,18 (2 ):103 −106 . (in Chinese with English abstract)[20] 周维垣,寇晓东. 无单元法及其在岩土工程中的应用[J]. 岩土工程学报,1998,20(1):5 − 9. [ZHOU Weiyuan,KOU Xiaodong. Element free method and its application in geotechnique engineering[J]. Chinese Journal of Geotechnical Engineering,1998,20(1):5 − 9. (in Chinese with English abstract) ZHOU Weiyuan, KOU Xiaodong . Element free method and its application in geotechnique engineering[J]. Chinese Journal of Geotechnical Engineering,1998 ,20 (1 ):5 −9 . (in Chinese with English abstract)[21] 王勖成. 有限单元法[M]. 北京:清华大学出版社,2003. [WANG Xucheng. Finite element method[M]. Beijing:Tsinghua University Press,2003. (in Chinese) WANG Xucheng. Finite element method[M]. Beijing: Tsinghua University Press, 2003. (in Chinese)
[22] GHABOUSSI J,BARBOSA R. Three-dimensional discrete element method for granular materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1990,14(7):451 − 472. DOI: 10.1002/nag.1610140702
[23] 李元松,高晖,陈峰,等. 乌尉高速公路边坡稳定性综合评价[J]. 水文地质工程地质,2018,45(4):150 − 156. [LI Yuansong,GAO Hui,CHEN Feng,et al. Comprehensive assessment of slope stability in Wu—Yu highway[J]. Hydrogeology & Engineering Geology,2018,45(4):150 − 156. (in Chinese with English abstract) LI Yuansong, GAO Hui, CHEN Feng, et al . Comprehensive assessment of slope stability in Wu—Yu highway[J]. Hydrogeology & Engineering Geology,2018 ,45 (4 ):150 −156 . (in Chinese with English abstract)[24] 殷跃平,张作辰,黎志恒,等. 兰州皋兰山黄土滑坡特征及灾度评估研究[J]. 第四纪研究,2004,24(3):302 − 310. [YIN Yueping,ZHANG Zuochen,LI Zhiheng,et al. Occurrence and hazard assessment on loess landslide of Gaolanshan in Lanzhou[J]. Quaternary Sciences,2004,24(3):302 − 310. (in Chinese with English abstract) YIN Yueping, ZHANG Zuochen, LI Zhiheng, et al . Occurrence and hazard assessment on loess landslide of Gaolanshan in Lanzhou[J]. Quaternary Sciences,2004 ,24 (3 ):302 −310 . (in Chinese with English abstract)[25] 王述红,朱承金,张紫杉,等. 基于动态强度折减DDA法的边坡多滑面稳定性分析[J]. 煤炭学报,2019,44(4):1084 − 1091. [WANG Shuhong,ZHU Chengjin,ZHANG Zishan,et al. Stability analysis of multi-slip surface of slope based on dynamic strength reduction DDA method[J]. Journal of China Coal Society,2019,44(4):1084 − 1091. (in Chinese with English abstract) WANG Shuhong, ZHU Chengjin, ZHANG Zishan, et al . Stability analysis of multi-slip surface of slope based on dynamic strength reduction DDA method[J]. Journal of China Coal Society,2019 ,44 (4 ):1084 −1091 . (in Chinese with English abstract)[26] MATSUI T,SAN K C. Finite element slope stability analysis by shear strength reduction technique[J]. Soils and Foundations,1992,32(1):59 − 70. DOI: 10.3208/sandf1972.32.59
-
期刊类型引用(3)
1. 耿昊,樊新杰,赵宇,王开华,祁凯宁,唐彦超. 基于SBAS技术的露天煤矿地表沉降监测与分析. 建井技术. 2024(02): 34-41 . 百度学术
2. 黄宝华,周利霞,孔祥侨. 基于PS-InSAR的建筑及道路动态沉降安全监测. 山东交通学院学报. 2024(02): 53-59 . 百度学术
3. 何清,魏路,肖永红. 基于SBAS-InSAR技术的安徽亳州市地面沉降时空分布特征与影响因素分析. 中国地质灾害与防治学报. 2023(05): 81-90 . 本站查看
其他类型引用(2)