Analysis of soil cushion buffering characteristic for rockfall impact force through discrete element numerical simulation
-
摘要:
棚洞是我国西部山区防治崩塌落石灾害的主要工程措施之一。棚洞顶板以上通常铺设由砂或碎石组成的土垫层。土垫层的作用是避免落石直接冲击棚洞,缓冲落石的冲击力。长期以来,关于土垫层厚度对缓冲效果影响的研究较少,因此,还未形成统一的理论用于指导土垫层厚度的设计。文章运用离散单元方法建立落石冲击土垫层的数值模型,探究垫层厚度和落石下落高度对土垫层缓冲落石冲击力特性的影响。研究结果表明:落石冲击力峰值与落石下落高度呈幂函数关系,顶板中心力峰值与下落高度呈线性正相关关系;随着垫层厚度的增加,落石冲击力峰值减小,当垫层厚度增加到落石直径的1.0倍之后,落石冲击力峰值与垫层厚度无关;随垫层厚度的增大,顶板中心力峰值与落石冲击力峰值的比值减小,垫层缓冲效果增大,当垫层厚度增加到落石直径1.5倍之后,垫层缓冲效果增加不明显;垫层厚度建议取值为落石直径的1.5倍。
Abstract:Rock sheds is one of the main engineering solutions for mitigating rockfall disaster in the mountainous regions of western China. Typically, the roof of a rock shed is covered with a soil cushion composed of sand or gravel. The function of soil cushion is to avoid the direct impact of rockfall on the shed and absorb the impact force of the falling rocks. For a long time, there has been limited studies on the influence of soil cushion thickness on its buffering effect, leading to a lack of a unified theory guiding the design of soil cushion thickness. In this study, the discrete element method was employed to establish a numerical model of rockfall impacting onto soil cushion, and the influence of cushion thickness and rockfall falling height on the buffering characteristics of soil cushion for the rockfall impact force was investigated. The results show that there is a power function relationship between the peak of rockfall impact force and the rockfall falling height, along with a linear positive correlation between the peak of roof center force and the rockfall falling height. The peak of rockfall impact force decreases with increasing cushion thickness. Once the cushion thickness reaches 1.0 times of the diameter of rockfall, the peak of rockfall impact force becomes independent of cushion thickness as cushion thickness increases, the ratio of the peak bottom center force to the peak rockfall impact force decreases, indicating an enhancement in the soil cushion's buffering effect. However, when the cushion thickness reaches 1.5 times of the rockfall diameter, the enhancement in buffering effect becomes less significant. Therefore, the recommended cushion thickness is 1.5 times the rockfall diameter.
-
Keywords:
- rockfall /
- soil cushion /
- buffering /
- discrete element method /
- impact force
-
0. 引 言
崩塌落石灾害是我国西部地区三大地质灾害之一[1 − 3]。由于落石具有多发性、突发性、随机性、难预测、能量大等特点[4 − 6],常常会对山区公路、铁路等设施造成巨大的威胁[7 − 11]。棚洞是防护公路、铁路等免受落石冲击破坏最有效的措施之一[12]。典型的棚洞主要由混凝土梁柱、混凝土板以及覆盖在混凝土板上的土垫层构成。土垫层的主要作用是避免落石直接冲击混凝土板,缓冲落石的冲击能,减小冲击力,并将落石冲击力扩散到更大的范围(图1)。虽然现在已经有较多的棚洞设计规范,但是依然存在落石冲击穿透土垫层,导致棚洞主体结构破坏的现象[13 − 14]。因此,开展落石冲击土垫层动力响应研究,有利于优化土垫层的设计,提升棚洞防护措施的有效性,增强崩塌落石灾害的防灾减灾能力。
落石冲击土垫层是一个非常复杂的过程,以快速加卸载、大变形、快速的能量转换和应力波传播为特征。国内外学者一直都在探索描述落石冲击力的理论计算方法。现在已形成的理论包括:赫兹弹性接触理论[15]、赫兹弹塑性接触理论[16 − 19]、能量守恒原理[20 − 21]、冲量定理[22]、地基承载力理论[23]、BIMPAM流变学理论[24]和基于Logistic函数的落石碰撞分析方法[25]。
除理论研究外,国内外学者一直以来都在开展落石冲击土垫层的试验研究,包括小尺度、中等尺度试验和少量的原型试验。罗杰等[26]采用试验研究了四种土壤(砂土、黏土、壤土和黄棕壤)的缓冲性能。研究表明,砂土的缓冲性能最佳。王林峰等[27]基于小型的落石棚洞模型,研究了落石重量、下落高度和棚洞顶板倾角对落石冲击力的影响,研究表明落石重量是影响落石冲击力的首要因素,其次是下落高度,最后为棚洞顶板倾角。Calvetti等[28]采用大尺度的试验研究了落石冲击土垫层的现象,研究表明垫层表层土的密度是影响落石冲击力的重要因素,而土垫层的倾斜角度影响不大。Kawahara和Muro[29]研究了土垫层密度和厚度对落石冲击力的影响,研究表明落石的冲击力随垫层密度的增大而增大,土垫层与棚洞顶板的作用力随垫层厚度的增大而减小。
数值模拟是研究落石冲击土垫层的一种有效方法。数值模拟的优势在于:费用低,可重复性强,可以分析得到试验中无法获取的信息,可以节省大量的人力物力,避免仪器设备等被损坏。因为土垫层自身具有离散特性,因此离散单元法被广泛用于落石冲击土垫层的数值研究。王林峰等[30]采用离散元软件(PFC2D)研究了落石半径和密度对冲击力的影响。江巍等[31]运用离散元软件研究了素填土、粉质黏土和砂质粉土的缓冲能力。Calvetti等[28]应用离散元方法研究了落石冲击能量对落石冲击力的影响。Zhang等[32]采用三维离散元法研究了落石冲击土垫层的反弹现象,分析了落石反弹与落石尺寸和垫层厚度的关系。上述研究表明,离散元法是研究落石冲击土垫层的一种有效方法。
综上所述,目前已经有较多关于落石冲击土垫层的成果,大多数的研究结果表明,土垫层厚度越大,落石冲击力越小,土垫层缓冲效果越好。但是,缓冲效果是否会一直增加,以及垫层厚度如何选择,现有研究还未回答。因此,本项研究拟采用离散元法探讨垫层厚度和下落高度对土垫层缓冲落石冲击力特性的影响,以期为土垫层的设计提供理论指导。
1. 落石冲击土垫层离散元数值模型
1.1 离散元理论简介
本项研究数值模拟采用开源离散元软件:ESyS-Particle[33]。基于分子动力学的思想,离散单元法将土模拟为球形颗粒的集合体。在荷载作用下,颗粒可以发生平动和转动。在计算过程中,颗粒间被赋予一定的接触模型,两个相互接触的颗粒通过接触模型产生接触力。通过计算每个颗粒所受的合力(
$ {{\boldsymbol{F}}_i} $ )和合力矩($ {T_i} $ ),并根据牛顿第二定律,采用显示积分的方法更新颗粒的速度和位置,如式(1)和式(2)所示。$$ {{\boldsymbol{F}}_i} = {m_i}\frac{{{{\text{d}}^2}}}{{{\text{d}}{t^2}}}{{\boldsymbol{r}}_i} $$ (1) $$ {{\boldsymbol{T}}_i} = {I_i}\frac{{{\text{d}}{{\boldsymbol{\omega }}_i}}}{{{\text{d}}t}} $$ (2) 式中:
$ {m_i} $ 、$ {{\boldsymbol{r}}_i} $ ——第i个颗粒的质量和位置;$ {I_i} $ 、$ {{\boldsymbol{\omega }}_i} $ ——第i个颗粒的转动惯量和转动速度。本项研究中,颗粒间的接触模型采用无黏结摩擦模型,如图2所示。无黏结摩擦模型包括颗粒间的法向线性接触模型,见图2(a),切向接触模型,见图2(b),和抗转动接触模型,见图2(c)。为了模拟真实土颗粒间的非弹性碰撞,在法向接触模型中引入阻尼,如图2(a)所示。同时为了考虑真实土颗粒形状的影响,引入抗转动接触模型。
根据图2所示的接触模型,两个颗粒间的接触力包括:法向接触力(
$ {F_{\rm{cn}}} $ )、法向阻尼力($ {F_{\rm{cd}}} $ )、切向接触力($ {F_{\rm{cs}}} $ )和滚动力矩($ {M_{\rm{cr}}} $ )。法向接触力由式(3)计算。$$ {F_{\rm{cn}}} = {k_{\rm{cn}}}{u_{\rm{cn}}} + {F_{\rm{cd}}} $$ (3) 式中:
$ {k_{\rm{cn}}} $ ——法向接触刚度;$ {u_{\rm{cn}}} $ ——两个颗粒接触处的重叠距离。法向接触刚度由式(4)计算。
$$ {k_{\rm{cn}}} = {{\text π}}{E_{\rm{p}}}\left( {{R_{\rm{A}}} + {R_{\rm{B}}}} \right)/4 $$ (4) 式中:
$ {E_{\rm{p}}} $ ——颗粒的杨氏模量;$ {R_{\rm{A}}} $ 、$ {R_{\rm{B}}} $ ——两个接触颗粒的半径。接触处的法向阻尼力由下式计算:
$$ {F_{\rm{cd}}} = - 2\beta \sqrt {0.5\left( {{m_{\rm{A}}} + {m_{\rm{B}}}} \right){k_{\rm{cn}}}} {v_{\rm{cn}}} $$ (5) 式中:
$ \beta $ ——阻尼系数;$ {m_{\rm{A}}} $ 、$ {m_{\rm{B}}} $ ——两个接触颗粒的质量;$ {v_{\rm{cn}}} $ ——两个接触颗粒的法向相对速度。接触处的切向接触力(
$ {F_{\rm{cs}}} $ )采用理想弹塑性模型,其线性阶段按增量的形式来计算:$$ F_{\rm{cs}}^t = F_{\rm{cs}}^{t - \Delta t} + {k_{\rm{cs}}}{u_{\rm{cs}}} $$ (6) 式中:
$ F_{\rm{cs}}^t $ 、$ F_{\rm{cs}}^{t - \Delta t} $ ——当前和前一个计算时步的切向力;$ {k_{\rm{cs}}} $ ——切向接触刚度;$ {u_{\rm{cs}}} $ ——两个颗粒在接触处的切向相对位移。切向接触刚度由式7计算。
$$ {k_{\rm{cs}}} = {{\text π}}{E_{\rm{p}}}\left( {{R_{\rm{A}}} + {R_{\rm{B}}}} \right)/\left[ {8\left( {1{\text{ + }}{\upsilon _{\rm{p}}}} \right)} \right] $$ (7) 式中:
$ {\upsilon _{\rm{p}}} $ ——颗粒的泊松比。切向接触力的最大值由摩尔库仑定律控制,如式(8)。
$$ \left| {F_{\rm{cs}}^t} \right| \leqslant {\mu _{\rm{p}}}\left| {{F_{\rm{cn}}}} \right| $$ (8) 式中:
$ {\mu _{\rm{p}}} $ ——颗粒的摩擦系数。滚动力矩用于考虑颗粒形状的影响,采用理想弹塑性模型,其计算方法为式(9)。
$$ M_{\rm{cr}}^t = M_{\rm{cr}}^{t - \Delta t} + {k_{\rm{cr}}}\Delta {\theta _{{\mathrm{r}}}} $$ (9) 式中:
$ M_{\rm{cr}}^t $ 、$ M_{\rm{cr}}^{t - \Delta t} $ ——当前时步和前一个时步的滚动力矩;$ {k_{\rm{cr}}} $ ——抗滚动刚度,$ {k_{\rm{cr}}} = {k_{\rm{cs}}}({R_{\rm{A}}} + {R_{\rm{B}}})/2 $ ;$ \Delta {\theta _{{\mathrm{r}}}} $ ——在一个计算时步内,两个接触颗粒的相对转 动角度。最大的滚动力矩(
$ M_{\rm{cr}}^{\max } $ )定义为:$$ M_{\rm{cr}}^{\max } = {\eta _{\rm{p}}}\left| {{F_{\rm{cn}}}} \right|\left( {{R_{\rm{A}}} + {R_{\rm{B}}}} \right)/2 $$ (10) 式中:
$ {\eta _{\rm{p}}} $ ——颗粒塑性力矩系数。1.2 数值计算模型
落石冲击土垫层的离散元数值模型如图3所示。该模型与文献[34]中的室内物理模型一致。数值模型由落石、土垫层和混凝土底座三部分构成。落石模拟为一个直径(D)为20 cm,质量为11.5 kg的球形颗粒。土垫层模拟为长1.0 m,宽1.0 m,厚度为H的立方形颗粒集合体。土垫层颗粒的直径均匀分布在1.0到2.0 cm之间。混凝土底座模拟为一层直径为1.0 cm的固定颗粒,该层颗粒不会发生平动和转动,但是可以与土垫层颗粒接触产生接触力。土垫层的生成过程包括两个步骤:首先在四个刚性墙和底座围城的矩形盒子内,随机生成规定半径范围内的颗粒;然后通过重力沉积作用形成指定厚度的颗粒层。颗粒之间的接触模型均为无黏结摩擦模型。数值模型的输入参数如表1所示。
表 1 数值模型输入参数Table 1. Input parameters of the numerical model变量 数值 土垫层颗粒直径/cm [1.0, 2.0] 土颗粒密度/(kg·m−3) 2698.2 颗粒杨氏模量/MPa 1×102 颗粒泊松比 0.25 颗粒阻尼系数 0.01 颗粒摩擦系数 0.6 颗粒塑性力矩系数 0.15 计算时步/s 10−6 重力加速/(m·s−2) 9.81 数值模拟过程中,落石被置于土垫层的正上方,并根据落石下落高度(hf)设定初始速度(v0)。初始速度和下落高度的关系如式(11)所示。
$$ {v_0} = \sqrt {2g{h_{\rm{f}}}} $$ (11) 本项研究中,落石下落高度有5种,包括3.0,5.0,10.0,20.0,30.0 m。土垫层的厚度有4种,包括10.0,20.0,30.0,40.0 cm。因此,总共进行20组数值试验。为了评估土垫层的缓冲特性,提取了落石的冲击力峰值(
$ F_{{\rm{block}}}^{\max } $ ),以及土垫层与底座接触面中心位置的峰值力($ F_{\text{c}}^{\max } $ )。土垫层与底座中心位置的接触力可以看作是土垫层与棚洞顶板中心位置的接触力。因此,$ F_{\text{c}}^{\max } $ 与$ F_{{\rm{block}}}^{\max } $ 的比值越小,表明土垫层的缓冲效果越好。2. 计算结果分析
2.1 数值模型验证
通过与文献[34]报道的试验结果对比,本项研究首先验证了上述数值模型的有效性。图4给出了落石以3 m下落高度冲击30 cm厚土垫层情况下,落石冲击力和顶板中心力随时间演化曲线。由图中可以看出,从定性的角度,数值模拟结果能基本再现落石冲击力和顶板中心随时间的演化趋势;从定量的角度,数值模拟结果能再现落石冲击力峰值和顶板中心力峰值。因此,上述数值模型以及所选参数是有效的。
2.2 下落高度的影响
图5给出了落石冲击不同厚度土垫层情况下,落石冲击力峰值(
$ F_{{\rm{block}}}^{\max } $ )与下落高度($ {h_{\rm{f}}} $ )的关系。从图中可以看出,落石峰值冲击力随下落高度的增大而增大。垫层厚度小于落石直径时的峰值冲击力明显大于其它垫层厚度情况,而且随着下落高度的增加,越来越明显。从图中还能看出,无论垫层厚度为多少,落石峰值冲击力与下落高度都可以用统一的式(12)来表示。$$ F_{{{{\rm{block}}}}}^{\max } = {F_0}{\left( {{{{h_{{\mathrm{f}}}}} / {{h_0}}}} \right)^{0.6}} $$ (12) 式中:
$ {F_0} $ 和$ {h_0} $ ——拟合参数。研究表明,
$ {h_0} $ 取30.0 m,$ {F_0} $ 取下落高度为30.0 m的峰值冲击力时,可以达到较好的拟合效果。图6给出了落石以不同下落高度冲击不同厚度土垫层情况下,顶板中心力峰值(
$ F_{\text{c}}^{\max } $ )与下落高度($ {h_{\rm{f}}} $ )的关系。从图中可以看出,顶板中心力峰值与下落高度呈线性关系。当垫层厚度小于落石直径时(H/D = 0.5),$ F_{\text{c}}^{\max } $ 随$ {h_{\rm{f}}} $ 的增长率(拟合直线的斜率)明显高于其它情况。随着垫层厚度的增加,$ F_{\text{c}}^{\max } $ 随$ {h_{\rm{f}}} $ 的增长率减小。当垫层厚度由0.5倍落石直径增加到1.0倍落石直径时,$ F_{\text{c}}^{\max } $ 随$ {h_{\rm{f}}} $ 的增长率由504.7 N/m减小到372.1 N/m。当垫层厚度增加到1.5倍落石直径和2.0倍落石直径时,$ F_{\text{c}}^{\max } $ 随$ {h_{\rm{f}}} $ 的增长率分别变化为87.0 N/m和为48.2 N/m。这表明,随着垫层厚度的增加,下落高度对顶板中心力峰值的影响逐渐减小。2.3 土垫层厚度的影响
图7给出了落石冲击力峰值(
$ F_{{\rm{block}}}^{\max } $ )与垫层厚度和落石直径比值(H/D)之间的关系。从图中可以看出,随着垫层厚度的增加,落石的峰值冲击力减小。当H/D从0.5增加到1.0时,即垫层厚度从落石直径的0.5倍增加到1倍时,落石的冲击力峰值减小将近50%。当土垫层的厚度继续增加时(H/D > 1.0),落石峰值冲击力变化不大。并且,从图中可以看出,无论落石的下落高度为多少,即无论落石的冲击速度为多少,落石的峰值冲击力与土垫层厚度的关系均出现上述现象,即在土垫层厚度增加到1倍直径后,土垫层厚度对冲击力影响较小。图8给出了落石以不同下落高度冲击不同厚度土垫层情况下,顶板中心力峰值(
$ F_{\text{c}}^{\max } $ )与垫层厚度和落石直径比值(H/D)的关系。从图中可以看出,无论落石下落高度(冲击速度)为多少,随着垫层厚度的增加,顶板中心力峰值不断减小,$ F_{\text{c}}^{\max } $ 与H/D呈负指数幂函数关系,表明$ F_{\text{c}}^{\max } $ 随H/D减小的速度不断变小。相比于0.5D的情况,当垫层厚度增加到一倍落石直径时(H = 1.0D),顶板中心力峰值减小64%;当垫层厚度增加到1.5D时,顶板中心力峰值减小86%;当垫层厚度增加到2.0D时,顶板中心力峰值减小92%。因此,垫层厚度从1.5D增加到2.0D仅仅使顶板中心力峰值减小6%。由此可见,在垫层厚度增加到1.5D后,继续增加垫层的厚度,土垫层缓冲效果(顶板中心力的减小量)增加不明显。结合土垫层厚度对落石冲击力峰值的影响,可以得出垫层厚度取落石直径的1.5倍较为合适。图9给出了落石以不同下落高度冲击不同厚度的土垫层情况下,顶板中心力峰值与落石冲击力峰值的比值(
$ {{F_{\mathrm{c}}^{\max }}/{F_{{\rm{block}}}^{\max }}} $ )与下落高度的关系。从图中可以看出,在垫层厚度为0.5倍落石直径情况下,$ {{F_{\mathrm{c}}^{\max }} / {F_{{\rm{block}}}^{\max }}} $ 随着下落高度的增大而减小。对比图4和图5,可以发现,这是由于在垫层厚度小于落石直径的情况下,落石下落高度对冲击力峰值的影响高于对顶板中心力的影响。当土垫层的厚度增大到落石的直径的1.5倍时(H/D = 1.5),对于同一厚度垫层,$ {{F_{\mathrm{c}}^{\max }} /{F_{{\rm{block}}}^{\max }}} $ 基本上不随下落高度变化,表明此时,垫层的缓冲效果不受落石下落高度的影响。此外,对于H/D = 1.0、1.5和2.0情况下的$ {{F_{\mathrm{c}}^{\max }} / {F_{{\rm{block}}}^{\max }}} $ 平均值分别为0.097、0.034和0.02。顶板中心力峰值与落石冲击力峰值的比值随垫层厚度的增大而减小,表明垫层缓冲作用随垫层厚度的增大而增大。当H/D从1.0增加到1.5时,$ {{F_{\mathrm{c}}^{\max }}/{F_{{\rm{block}}}^{\max }}} $ 减小0.063;当H/D从1.5增加到2.0时,$ {{F_{\mathrm{c}}^{\max }}/ {F_{{\rm{block}}}^{\max }}} $ 仅减小0.014。表明,在土垫层厚度增加到1.5倍落石直径后,继续增加垫层的厚度,垫层的缓冲效果增加不明显。3. 结论
基于离散单元法,建立落石冲击土垫层的数值模型,研究不同厚度土垫层缓冲落石冲击力的特性,得到以下结论:
(1) 在土垫层厚度一定的情况下,落石冲击力峰值与落石下落高度呈幂函数关系;顶板中心力峰值与下落高度呈线性正相关关系。
(2) 在下落高度一定的情况下,顶板中心力峰值与垫层厚度呈负指数幂函数关系;随着垫层厚度的增加,落石冲击力峰值减小,当垫层厚度增加到落石直径的1.0倍之后,落石冲击力峰值与垫层厚度无关。
(3) 随垫层厚度的增大,顶板中心力峰值与落石冲击力峰值的比值减小,垫层缓冲效果增大;当垫层厚度增加到落石直径1.5倍之后,垫层缓冲效果增加不明显。垫层厚度建议取值为落石直径的1.5倍。
-
表 1 数值模型输入参数
Table 1 Input parameters of the numerical model
变量 数值 土垫层颗粒直径/cm [1.0, 2.0] 土颗粒密度/(kg·m−3) 2698.2 颗粒杨氏模量/MPa 1×102 颗粒泊松比 0.25 颗粒阻尼系数 0.01 颗粒摩擦系数 0.6 颗粒塑性力矩系数 0.15 计算时步/s 10−6 重力加速/(m·s−2) 9.81 -
[1] 何思明,王东坡,吴永,等. 崩塌滚石灾害的力学机理与防治技术[J]. 自然杂志, 2014, 36(5):336 − 345. [HE Siming, WANG Dongpo, WU Yong, et al. Formation mechanism and key prevention technology of rockfalls[J]. Chinese Journal of Nature, 2014, 36(5):336 − 345. (in Chinese with English abstract)] HE Siming, WANG Dongpo, WU Yong, et al. Formation mechanism and key prevention technology of rockfalls[J]. Chinese Journal of Nature, 2014, 36(5): 336 − 345. (in Chinese with English abstract)
[2] 王明辉,曹熙平,谯立家. 危岩体精细调查与崩塌过程三维场景模拟——以西南某水电站高边坡为例[J]. 中国地质灾害与防治学报,2023,34(6):86 − 96. [WANG Minghui,CAO Xiping,QIAO Lijia. Comprehensive analysis of hazardous rock mass and simulation of potential rockfall processes using 3D terrain model: a case study of the high cut slope near damsite of a hydropower station in Southern China[J]. The Chinese Journal of Geological Hazard and Control,2023,34(6):86 − 96. (in Chinese with English abstract)] WANG Minghui, CAO Xiping, QIAO Lijia. Comprehensive analysis of hazardous rock mass and simulation of potential rockfall processes using 3D terrain model: a case study of the high cut slope near damsite of a hydropower station in Southern China[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(6): 86 − 96. (in Chinese with English abstract)
[3] 曾启强,王立朝,刘伟,等. 广州地区岩质边坡崩塌影响范围计算方法初探[J]. 水文地质工程地质,2023,50(5):159 − 168. [ZENG Qiqiang,WANG Lichao,LIU Wei,et al. Calculation methods of the collapse influence range of a simple rock slope in the Guangzhou Area[J]. Hydrogeology & Engineering Geology,2023,50(5):159 − 168. (in Chinese with English abstract)] ZENG Qiqiang, WANG Lichao, LIU Wei, et al. Calculation methods of the collapse influence range of a simple rock slope in the Guangzhou Area[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 159 − 168. (in Chinese with English abstract)
[4] 张路青,杨志法,许兵. 滚石与滚石灾害[J]. 工程地质学报,2004,12(3):225 − 231. [ZHANG Luqing,YANG Zhifa,XU Bing. Rock falls and rock fall hazards[J]. Journal of Engineering Geology,2004,12(3):225 − 231. (in Chinese with English abstract)] ZHANG Luqing, YANG Zhifa, XU Bing. Rock falls and rock fall hazards[J]. Journal of Engineering Geology, 2004, 12(3): 225 − 231. (in Chinese with English abstract)
[5] 庞鑫,袁明,卢渊,等. 基于无人机LiDAR仿地飞行技术的高陡边坡危岩体快速识别方法[J]. 地质科技通报,2023,42(6):21 − 30. [PANG Xin,YUAN Ming,LU Yuan,et al. Rapid identification method for the dangerous rock mass of a high-steep slope based on UAV LiDAR and ground imitation flight[J]. Bulletin of Geological Science and Technology,2023,42(6):21 − 30. (in Chinese with English abstract)] PANG Xin, YUAN Ming, LU Yuan, et al. Rapid identification method for the dangerous rock mass of a high-steep slope based on UAV LiDAR and ground imitation flight[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 21 − 30. (in Chinese with English abstract)
[6] 石润,李嘉雨,陈明浩,等. 基于AHP-3DEC的危岩落石危险性分区与评价[J]. 中国地质灾害与防治学报,2023,34(3):127 − 135. [SHI Run,LI Jiayu,CHEN Minghao,et al. Hazard zoning and assessment of rockfalls based on AHP-3DEC[J]. The Chinese Journal of Geological Hazard and Control,2023,34(3):127 − 135. (in Chinese with English abstract)] SHI Run, LI Jiayu, CHEN Minghao, et al. Hazard zoning and assessment of rockfalls based on AHP-3DEC[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(3): 127 − 135. (in Chinese with English abstract)
[7] 姚昌银. 落石冲击力的扩散机制[D]. 重庆:重庆交通大学,2018. [YAO Changyin. Diffusion mechanism of rockfall impact force[D]. Chongqing:Chongqing Jiaotong University,2018. (in Chinese with English abstract)] YAO Changyin. Diffusion mechanism of rockfall impact force[D]. Chongqing: Chongqing Jiaotong University, 2018. (in Chinese with English abstract)
[8] 刘洋. 滚石冲击棚洞防护结构动力响应及作用机理研究[D]. 成都:成都理工大学, 2017. [LIU Yang. Study on dynamic response and action mechanism of protective structure of shed tunnel impacted by rolling stone[D]. Chengdu:Chengdu University of Technology, 2017. (in Chinese with English abstract)] LIU Yang. Study on dynamic response and action mechanism of protective structure of shed tunnel impacted by rolling stone[D]. Chengdu: Chengdu University of Technology, 2017. (in Chinese with English abstract)
[9] 王玉锁. 落石冲击下拱形明洞结构概率可靠度分析[M]. 成都:西南交通大学出版社,2017. [WANG Yusuo. Probabilistic reliability analysis of arch open-cut tunnel structure under rockfall impact[M]. Chengdu:Southwest Jiaotong University Press,2017. (in Chinese)] WANG Yusuo. Probabilistic reliability analysis of arch open-cut tunnel structure under rockfall impact[M]. Chengdu: Southwest Jiaotong University Press, 2017. (in Chinese)
[10] 黄维, 艾东, 胡胜华, 等. 鄂西山区崩塌落石运动特征及危险性分析——以远安县瓦坡崩塌区为例[J]. 中国地质灾害与防治学报,2022,33(6):37 − 43. [HUANG Wei, AI Dong, HU Shenghua, et al. Characteristics of rockfall trajectory and hazard assessment in western Hubei Province:A case study of the Wapo collapse area in Yuan’an County[J]. The Chinese Journal of Geological Hazard and Control,2022,33(6):37 − 43. (in Chinese with English abstract)] HUANG Wei, AI Dong, HU Shenghua, et al. Characteristics of rockfall trajectory and hazard assessment in western Hubei Province: A case study of the Wapo collapse area in Yuan’an County[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 37 − 43. (in Chinese with English abstract)
[11] 杨涛,邓荣贵,刘小丽. 四川地区地震崩塌滑坡的基本特征及危险性分区[J]. 山地学报,2002,20(4):456 − 460. [YANG Tao,DENG Ronggui,LIU Xiaoli. The distributing and subarea character of the seismic landslides in Sichuan[J]. Journal of Mountain Research,2002,20(4):456 − 460. (in Chinese with English abstract)] YANG Tao, DENG Ronggui, LIU Xiaoli. The distributing and subarea character of the seismic landslides in Sichuan[J]. Journal of Mountain Research, 2002, 20(4): 456 − 460. (in Chinese with English abstract)
[12] 何思明,王东坡,吴永. 崩塌滚石灾害形成演化机理与减灾关键技术[M]. 北京:科学出版社,2015. [HE Siming,WANG Dongpo,WU Yong. Formation and evolution mechanism of rockfall disaster and key technology of disaster reduction[M]. Beijing:Science Press,2015. (in Chinese)] HE Siming, WANG Dongpo, WU Yong. Formation and evolution mechanism of rockfall disaster and key technology of disaster reduction[M]. Beijing: Science Press, 2015. (in Chinese)
[13] YAN Peng,ZHANG Jinhua,FANG Qin,et al. Numerical simulation of the effects of falling rock’s shape and impact pose on impact force and response of RC slabs[J]. Construction and Building Materials,2018,160:497 − 504. DOI: 10.1016/j.conbuildmat.2017.11.087
[14] 袁博,祝介旺. 滚石冲击下棚洞破坏动力响应分析及改进对策——以川藏公路(安久拉山南麓)门式棚洞为例[J]. 水文地质工程地质,2019,46(6):57 − 66. [YUAN Bo,ZHU Jiewang. Dynamic response analyses and improvement countermeasures of shed-tunnel destruction under rolling stone impact:A case study of the shed-tunnel in the southern foot of the Anjiula Mountain on the Sichuan-Tibet Highway[J]. Hydrogeology & Engineering Geology,2019,46(6):57 − 66. (in Chinese with English abstract)] YUAN Bo, ZHU Jiewang. Dynamic response analyses and improvement countermeasures of shed-tunnel destruction under rolling stone impact: A case study of the shed-tunnel in the southern foot of the Anjiula Mountain on the Sichuan-Tibet Highway[J]. Hydrogeology & Engineering Geology, 2019, 46(6): 57 − 66. (in Chinese with English abstract)
[15] 何思明,李新坡,吴永. 考虑弹塑性变形的泥石流大块石冲击力计算[J]. 岩石力学与工程学报,2007,26(8):1664 − 1669. [HE Siming,LI Xinpo,WU Yong. Calculation of impact force of outrunner blocks in debris flow considering elastoplastic deformation[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(8):1664 − 1669. (in Chinese with English abstract)] HE Siming, LI Xinpo, WU Yong. Calculation of impact force of outrunner blocks in debris flow considering elastoplastic deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(8): 1664 − 1669. (in Chinese with English abstract)
[16] 何思明,李新坡,吴永. 滚石冲击荷载作用下土体屈服特性研究[J]. 岩石力学与工程学报,2008,27(增刊1):2973 − 2977. [HE Siming,LI Xinpo,WU Yong. Research on yield property of soil under rock-fall impact[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(Sup):2973 − 2977. (in Chinese with English abstract)] HE Siming, LI Xinpo, WU Yong. Research on yield property of soil under rock-fall impact[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(Sup): 2973 − 2977. (in Chinese with English abstract)
[17] 何思明. 滚石对防护结构的冲击压力计算[J]. 工程力学,2010,27(9):175 − 180. [HE Siming. Calculation of compact pressure of rock-fall on shield structures[J]. Engineering Mechanics,2010,27(9):175 − 180. (in Chinese with English abstract)] HE Siming. Calculation of compact pressure of rock-fall on shield structures[J]. Engineering Mechanics, 2010, 27(9): 175 − 180. (in Chinese with English abstract)
[18] 何思明,沈均,罗渝,等. 滚石坡面法向冲击动力响应特性研究[J]. 工程力学,2011,28(6):118 − 124. [HE Siming,SHEN Jun,LUO Yu,et al. Study on the characteristics of normal impact of post-earthquake rock-fall on slope[J]. Engineering Mechanics,2011,28(6):118 − 124. (in Chinese with English abstract)] HE Siming, SHEN Jun, LUO Yu, et al. Study on the characteristics of normal impact of post-earthquake rock-fall on slope[J]. Engineering Mechanics, 2011, 28(6): 118 − 124. (in Chinese with English abstract)
[19] WANG Yusuo,XU Ming,YANG Chao,et al. Effects of elastoplastic strengthening of gravel soil on rockfall impact force and penetration depth[J]. International Journal of Impact Engineering,2020,136:103411. DOI: 10.1016/j.ijimpeng.2019.103411
[20] 何思明,吴永,沈均. 泥石流大块石冲击力的简化计算[J]. 自然灾害学报,2009,18(5):51 − 56. [HE Siming,WU Yong,SHEN Jun. Simplified calculation of impact force of massive stone in debris flow[J]. Journal of Natural Disasters,2009,18(5):51 − 56(in Chinese with English abstract)] HE Siming, WU Yong, SHEN Jun. Simplified calculation of impact force of massive stone in debris flow[J]. Journal of Natural Disasters, 2009, 18(5): 51 − 56(in Chinese with English abstract)
[21] WANG Xing,XIA Yongxu,ZHOU Tianyue. Theoretical analysis of rockfall impacts on the soil cushion layer of protective structures[J]. Advances in Civil Engineering,2018:1 − 18.
[22] 候天兴,杨兴国,黄成,等. 基于冲量定理的滚石对构筑物冲击力计算方法[J]. 岩石力学与工程学报,2015,34(增刊1):3116 − 3122. [HOU Tianxing,YANG Xingguo,HUANG Cheng,et al. A calculation method based on impulse theorem to determine impact force of rockfall on structure[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(Sup 1):3116 − 3122. (in Chinese with English abstract)] HOU Tianxing, YANG Xingguo, HUANG Cheng, et al. A calculation method based on impulse theorem to determine impact force of rockfall on structure[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Sup 1): 3116 − 3122. (in Chinese with English abstract)
[23] WANG Baolin,CAVERS D S. A simplified approach for rockfall ground penetration and impact stress calculations[J]. Landslides,2008,5(3):305 − 310. DOI: 10.1007/s10346-008-0123-6
[24] DI PRISCO C,VECCHIOTTI M. A rheological model for the description of boulder impacts on granular strata[J]. Géotechnique,2006,56(7):469 − 482.
[25] ZHANG Guangcheng,TANG Huiming,XIANG Xin,et al. Theoretical study of rockfall impacts based on logistic curves[J]. International Journal of Rock Mechanics and Mining Sciences,2015,78:133 − 143. DOI: 10.1016/j.ijrmms.2015.06.001
[26] 罗杰,肖建春,马克俭,等. 落石冲击下多种类型土壤缓冲性能研究[J]. 防灾减灾工程学报,2019,39(1):164 − 170. [LUO Jie,XIAO Jianchun,MA Kejian,et al. Study on buffering performance of various types of soils under rockfall impact[J]. Journal of Disaster Prevention and Mitigation Engineering,2019,39(1):164 − 170. (in Chinese with English abstract)] LUO Jie, XIAO Jianchun, MA Kejian, et al. Study on buffering performance of various types of soils under rockfall impact[J]. Journal of Disaster Prevention and Mitigation Engineering, 2019, 39(1): 164 − 170. (in Chinese with English abstract)
[27] 王林峰,刘丽,唐芬,等. 基于落石棚洞冲击试验的落石冲击力研究[J]. 防灾减灾工程学报,2018,38(6):973 − 979. [WANG Linfeng,LIU Li,TANG Fen,et al. Study on impact force of rockfall impact experiment on shed tunnel[J]. Journal of Disaster Prevention and Mitigation Engineering,2018,38(6):973 − 979. (in Chinese with English abstract)] WANG Linfeng, LIU Li, TANG Fen, et al. Study on impact force of rockfall impact experiment on shed tunnel[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(6): 973 − 979. (in Chinese with English abstract)
[28] CALVETTI F,PRISCO C,VECCHIOTTI M. Experimental and numerical study of rock-fall impacts on granular soils Rivista Italiana di Geotecnica[J]. Rivista Italiana di Geotecnica,2005,4:95 − 109.
[29] KAWAHARA S,MURO T. Effects of dry density and thickness of sandy soil on impact response due to rockfall[J]. Journal of Terramechanics,2006,43(3):329 − 340. DOI: 10.1016/j.jterra.2005.05.009
[30] 王林峰,姚昌银,邹政,等. 基于离散元方法的落石冲击力变化规律研究[J]. 铁道建筑,2017,57(6):101 − 105. [WANG Linfeng,YAO Changyin,ZOU Zheng,et al. Study on change law of rockfall impact force based on discrete element method[J]. Railway Engineering,2017,57(6):101 − 105. (in Chinese with English abstract)] WANG Linfeng, YAO Changyin, ZOU Zheng, et al. Study on change law of rockfall impact force based on discrete element method[J]. Railway Engineering, 2017, 57(6): 101 − 105. (in Chinese with English abstract)
[31] 江巍,宋鹏程,陈玮,等. 基于PFC2D的土体缓冲落石冲击能力研究[J]. 长江科学院院报,2019,36(4):49 − 54. [JIANG Wei,SONG Pengcheng,CHEN Wei,et al. Cushioning capacity of soils against rockfall’s impact force based on two-dimensional particle flow code[J]. Journal of Yangtze River Scientific Research Institute,2019,36(4):49 − 54. (in Chinese with English abstract)] JIANG Wei, SONG Pengcheng, CHEN Wei, et al. Cushioning capacity of soils against rockfall’s impact force based on two-dimensional particle flow code[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(4): 49 − 54. (in Chinese with English abstract)
[32] ZHANG Lingran,LAMBERT S,NICOT F. Discrete dynamic modelling of the mechanical behaviour of a granular soil[J]. International Journal of Impact Engineering,2017,103:76 − 89. DOI: 10.1016/j.ijimpeng.2017.01.009
[33] WANG Yucang,MORA P. The ESyS_Particle:A New 3-D Discrete Element Model with Single Particle Rotation[M]//Advances in Geocomputing. Berlin,Heidelberg:Springer,2009:183 − 228.
[34] SHEN Weigang,ZHAO Tao,DAI Feng. Influence of particle size on the buffering efficiency of soil cushion layer against rockfall impact[J]. Natural Hazards,2021,108(2):1469 − 1488. DOI: 10.1007/s11069-021-04741-6
-
期刊类型引用(8)
1. 程强,周兴泉,张肖. 四川新市—金阳公路唐家湾滑坡变形特征和形成机理分析. 中国地质灾害与防治学报. 2025(01): 46-56 . 本站查看
2. 杨腾飞,严志文. 无人机航测技术在露天矿山采空区勘探中的应用. 中国新技术新产品. 2024(02): 89-91 . 百度学术
3. 黄荣. 无人机倾斜摄影测量技术在地灾监测中的应用. 地下水. 2024(02): 179-181+267 . 百度学术
4. 蒋李亚. 基于“天地一体化”分析风电场边坡水土流失情况——以南方某风电场为例. 农业灾害研究. 2024(05): 317-319 . 百度学术
5. 孙文庆,张忠辉,高新妍,忽巍,王延伟. 附加模型补偿的多期GNSS网监测. 测绘标准化. 2024(03): 150-157 . 百度学术
6. 王瑞. 基于三维激光扫描技术的植物园林假山沉降监测方法. 激光杂志. 2024(11): 209-213 . 百度学术
7. 李文龙. 机载LiDAR技术在广州黄埔区地质灾害调查中的应用. 中国地质灾害与防治学报. 2024(06): 164-172 . 本站查看
8. 李大猛,孙东,余辉,李松,张正鹏. 绿色矿山建设与矿山生态修复关联探析. 世界有色金属. 2023(22): 162-165 . 百度学术
其他类型引用(0)