Study on the method for determining the position of landslide slip surface based on “D” type inclinometer curve
-
摘要:
在实际的深孔位移监测中,测斜曲线的突变特征是滑动面辨识的关键依据,前人通过大量的研究总结将滑动面迹象显著的测斜曲线类型分为了“B”型、“D”型、“r”型等几种。其中,对于“D”型测斜曲线通常是将曲线的鼓包凸起点作为滑动面的位置,但这种方法容易受到测点布置间隔和横纵坐标观测尺度的影响,存在滑面位置定义不清晰、数值不确定的问题。为了能够有效地克服这些缺点,提升测斜曲线滑动面辨识的准确度,基于“D”型测斜曲线变化特征,将滑坡抽象为由“滑动体”“滑动区间”以及“不动体”三者组成的概化模型,根据三者抗弯刚度的差异建立外界荷载作用下的杆件力学模型,深入分析滑坡运动过程中不同深度处土体的变形特点。研究表明,由于“D”型曲线滑动面并未完全贯通,使得土体沿深度方向变形连续无突变,力学模型中杆件正负弯矩的分界点是变形曲线水平位移最大处,能够真实地反映滑坡变形特点以及滑动面的位置。将土体累计位移转化为相对位移,则“D”型深孔测斜曲线变为了“S”型相对位移-深度曲线,且“S”型曲线的拐点与滑动面的位置相近;通过提取监测期内不同深度处土体的平均相对位移,运用三次样条插值法计算“S”型区段内拐点的深度值,能够更加精准地确定滑动面位置,更好地提升深孔位移监测的可靠度和准确度,具有较大的实用价值。
Abstract:In borehole monitoring for deep displacement, the abrupt characteristics of inclinometer curves are the key basis for identifying the sliding surface. Previous studies have summarized several types of inclinometer curve patterns that exhibit significant sliding surface signals, including “B” “D”and “r” types. For “D” type inclinometer curves, the convex point of the curve is typically used as the position of the sliding surface. However, this method is susceptible to the influence of observation points spacing and coordinate observation scales, which can result in an unclear definition of the sliding surface position and uncertain numerical values. To overcome these drawbacks and improve the accuracy of sliding surface identification in inclinometer curves, a generalized model of landslides composed of “sliding body” “sliding interval” and “immovable body” was developed based on the variation characteristics of the “D” type inclinometer curve. A mechanical strut model subjected to external loads was established based on the different flexural rigidity of the three members, and the deformation characteristics of soil at different depths during landslide movement were analyzed in depth. The study found that the sliding surface of “D” curve does not entirely penetrate, leading to continuous soil deformation along the depth direction without abrupt change. The demarcation point of the positive and negative bending moments in the mechanical model is a location where the horizontal displacement of deformation curve is the largest, which can reflect the real deformation characteristics of the landslide and the position of the sliding surface. By converted the accumulated soil displacement into relative displacement, the “D” type inclinometer curve is transformed into “S” type relative displacement-depth curve, and the inflection point of the “S” type curve is close to the position of the sliding surface. By extracting the average relative displacement of soil at different depths during the monitoring period and calculating the depth value of the inflection point in the “S” type segment by using the cubic spline interpolation method, the position of the sliding surface can be determined more accurately, which can greatly improve the reliability and accuracy of deep displacement monitoring and has significant practical value.
-
0. 引言
膨胀土边坡的稳定性一直是岩土界广泛关注的问题。目前,边坡稳定性分析的常用方法主要包括了极限平衡法、极限分析法等,都建立在极限平衡理论基础之上,并不适用于膨胀土边坡的稳定性分析[1]。另一种常用的方法是有限元强度折减法,早在1975年该方法就被Zienkiewice等[2]用来求解边坡稳定问题,随着计算机硬件技术和有限元软件技术的飞速发展,运用有限元强度折减法分析边坡稳定已经成为新的趋势[3-10]。国内很多学者将强度折减法运用到膨胀土边坡稳定分析中,取得了一系列成果。
周健等[11]利用强度折减法研究膨胀土边坡的稳定性,发现干湿循环会导致膨胀土抗剪强度衰减,且随着干湿循环次数的增加,边坡稳定性降低,安全系数减小。刘明维等[12]研究了强度折减法在膨胀土斜坡地基路堤稳定性分析中的应用,发现强度折减法所得结果与实际情况相符。张硕等[3]基于有限元强度折减法研究了雨季土体增重、强度降低和膨胀作用对膨胀土边坡稳定性的影响,发现强度降低是导致边坡失稳的主要原因,膨胀作用次之,土体增重较小。程灿宇等[13]利用MIDAS/GTS、FLAC和ANSYS三种软件采用强度折减法分别对不同工况进行了稳定性分析,发现弱膨胀土边坡无论采用M-C屈服准则,还是D-P屈服准则所得结果差异不大。谭波等[14]采用强度折减法对不同条件下的膨胀土边坡的安全系数进行了计算,发现次生裂隙面发育是导致膨胀土边坡失稳的主要原因之一。杨才等[15]根据强度折减有限元法对不同条件失稳边坡稳定性分析结果,提出以最大塑性应变以及最小塑性应变的量级指标来判定塑性区贯通时刻。
然而,干湿循环、降雨入渗等因素会引起浅层膨胀土干密度降低、吸力衰减,从而使抗剪强度大幅度下降。目前,在采用强度折减法分析膨胀土边坡稳定性的同时系统考虑抗剪强度衰减影响的研究尚不多见。为此,本文采用试验与数值模拟相结合的方式,系统地考虑了抗剪强度衰减特性的膨胀土边坡稳定性分析。首先对广西宁明膨胀土开展了室内直剪试验,分析了含水量、干密度对膨胀土抗剪强度衰减的影响;再以此为依据,利用Midas有限元分析软件研究考虑抗剪强度衰减特性对膨胀土边坡稳定性安全系数的影响,获取了边坡安全系数随抗剪强度折减的动态变化规律,以期为工程实践提供参考。
1. 抗剪强度衰减特性试验设计
1.1 试验用土
土样取自广西崇左-夏石镇某高速公路膨胀土边坡路段,其天然含水量、最优含水量和天然干密度分别为32.5%,24%和1.40 g/cm3,其他土性指标,比重(Gs),液限(WL),塑限(WP),塑性指数(IP),自由膨胀率(σf)见表1。自由膨胀率为42.8%,按照《膨胀土地区建筑技术规范》[16]的分类,该膨胀土为弱膨胀性膨胀土。
表 1 宁明膨胀土基本土体参数Table 1. Basic soil parameters of Ningming expansive soil参数 Gs/(g.cm−3) wL/% wP/% IP σf/% 取值 2.80 59.11 24.68 34.43 42.8 1.2 试样制备及试验方法
1.2.1 试样制备
首先,将现场取回的扰动土试样碾散过2 mm筛,过筛后放入105℃的烘箱中烘24h,使试样具有相同的初始结构,并将烘干土用收纳箱密封保存备用。接着,按目标含水量(控制干密度为1.6 g/cm3)和目标干密度(控制含水量18%)要求配制成湿土,并装入保鲜袋,经闷料24 h后测得土样的最终含水量与目标含水量之间误差不超过1%;最后,为保证环刀试样均匀一致,采用自制的模具(图1)进行制样,并利用液压千斤顶脱模推出,控制试样的直径为61.8 mm,高度为15 mm,目的是使试样在竖直方向上能够充分膨胀,每组平行土样密度差不超过±0.02 g/cm3,否则废弃重做。试样配制过程如图2,最终制成的每个环刀试样表面均平整无破损,且长度误差不超过0.2 mm,则为满足要求的试样。
1.2.2 试验方法
以初始干密度为1.6 g/cm3,含水量分别为9%、12%、15%、18%、21%、24%和27%制取环刀试样7组,每组4个;并以初始含水量为18%,干密度分别为1.4、1.5、1.6和1.7 g/cm3制取环刀试样4组,每组4个,然后进行常规直剪试验(图3),试验施加的竖向压力分别为100 kPa、200 kPa、300 kPa、400 kPa,剪切速率为0.02 mm/min,初始剪切位移均保持在3.850 mm左右,剪切位移量程13.000 mm。
2. 抗剪强度衰减特性试验结果与分析
2.1 含水量对抗剪强度衰减的影响分析
为研究广西宁明膨胀土的抗剪强度随含水量变化的规律,对不同含水量的土样进行直剪试验,试验结果如表2所示。
表 2 宁明膨胀土抗剪强度试验结果表Table 2. Results of shear strength of Ningming expensive soils试验参数 w/% φ/(°) c/kPa 试验结果 8.80 27.3 100.36 11.7 24.56 93.28 14.6 21.80 67.34 17.5 19.82 54.64 20.8 17.92 41.22 23.3 15.20 30.86 26.1 12.38 9.90 根据表2可绘制出宁明膨胀土黏聚力和内摩擦角与含水量的关系如图4和图5所示,拟合后可得到黏聚力和内摩擦角与含水量的关系式:
$$ c = { - 5.192}w + 147.9 $$ (1) $$ \varphi = - 0.827w + 34.36 $$ (2) 由式(1)和(2)可知,c和φ与w都存在近似线性的关系,这与文献[17-18]结果一致,含水量每增大5%,其黏聚力约减小26 kPa,内摩擦角减小4.2°左右;为更好的表示c随w的衰减规律,参考吕海波等[19]的研究,可计算出c的衰减率为:
$$ \eta = \frac{{\left| {{c_0} - {c_1}} \right|}}{{{c_0}}} \times 100\% $$ (3) 式中:η——黏聚力衰减率;
c0——初始黏聚力;
c1——随含水量变化后的黏聚力。
根据表3可知,随着宁明膨胀土含水量的逐渐增大黏聚力不断衰减,在最低目标含水量9%以3%递增至目标含水量27%的过程中,黏聚力的衰减率变化趋势为增大-减小-增大,说明膨胀土在低含水量和接近饱和含水量时,黏聚力对含水量的变化显得十分敏感。
表 3 宁明膨胀土黏聚力衰减率计算结果表Table 3. Results of cohesion decay rate of Ningming expansive soil试验参数 w/% c/kPa η/% 试验结果 8.8 100.36 − 11.7 93.28 7.05 14.6 67.34 27.81 17.5 54.64 18.86 20.8 41.22 24.56 23.3 30.86 25.13 26.1 9.9 67.92 在试样ρd保持一致的情况下(1.6 g/cm3),可从图6及图7中看出在相同垂直应力作用下,抗剪强度随着w的增大呈现减小的趋势。
上述试验结果表明,宁明膨胀土的抗剪强度随着含水量的改变发生显著变化;主要表现为在含水量增大时黏聚力和内摩擦角发生衰减,其中黏聚力的衰减较内摩擦角更为明显。
2.2 干密度对抗剪强度衰减的影响分析
根据表4数据可拟合出试样黏聚力和内摩擦角随干密度的变化规律,如图8、图9所示。
表 4 不同干密度下试样试验结果记录表Table 4. Record table of test results under different dry densities试验参数 ρd/(g·cm−3) c/(kPa) φ/(°) 试验结果 1.7 97.26 26.5 1.6 54.64 19.82 1.5 40.34 17.82 1.4 37.57 16.87 由图8和图9可观察出宁明膨胀土的黏聚力和内摩擦角随干密度的变化曲线符合乘幂函数的拟合结果,其中:
$$ c = 0.126{{\rm{e}}^{3.884{\rho _{\rm{d}}}}} $$ (4) $$ \varphi = 1.631{{\rm{e}}^{1.614{\rho _{\rm{d}}}}} $$ (5) 分析式(4)可知试样c随着ρd的减小而减小,且随着ρd的减小,c的衰减速率由快到慢,并最终趋于稳定;而在接近最大干密度(1.78 g/cm3)时变化较为显著,在干密度由1.4 g/cm3增大至1.6 g/cm3时,c增加了17.07 kPa;在干密度由1.6 g/cm3增大至1.7 g/cm3时,c增加了42.62 kPa。而由式(5)能看出φ亦随着ρd的减小而减小,但其整体的变化幅度并不大,干密度1.4 g/cm3与1.7 g/cm3的试样φ相差约9.6°;图10中各级载荷下的抗剪强度都随着试样ρd的减小而降低,且其变化幅度在高垂直应力条件下更为显著。
干密度对宁明膨胀土抗剪强度的影响主要体现在黏聚力上,试样干密度越小,单位体积土体的土颗粒越少,土粒间水膜越薄,其抗剪强度越小;此外,膨胀土干密度越小,其吸力越大,试样的抗剪强度越低;而干密度对于内摩擦角的整体影响并不显著,其变化在10°以内。
3. 考虑抗剪强度衰减特性的边坡稳定性分析
3.1 几何模型
根据广西崇左-夏石镇某高速公路膨胀土边坡为研究对象,并参考该公路的地质勘察报告,该边坡土质主要由填土(①1和①2)、黏土②、强风化泥岩③和中风化泥岩④组成。同时根据地质调查及钻探、探槽揭示,该边坡滑动带基本位于黏土层,且下部强风化泥岩等土体不透水,大气影响深度为7 m,刚好大致为填土厚度和黏土厚度之和,影响急剧层深度为2.5 m。相关土层天然状态下基本参数指标见表5。
表 5 土层相关参数Table 5. Soil layer related parameters地层岩性 厚度
/m重度
/(kN·m−3)内摩擦角
/(°)黏聚力
/kPa其它 填土①1 0.2~1 18.0 5 24 成分黏土 填土①2 2.5~3.3 18.8 30 7 上层砾砂,
下层碎石黏土② 0.3~4 18.4 8.4 35.6 中等膨胀土 强风化泥岩③ 0.6~1 19.3 25 45 质量等级Ⅴ级 中风化泥岩④ 未钻穿 19.6 35 65 质量等级Ⅴ级 结合上述实际工程地质勘察报告,将膨胀土边坡考虑为非匀质边坡,同时为提高模型求解时间,取黏土弹性模量12000 kPa,容重18.4 N/m3,泊松比0.3,边坡高20 m,坡比1∶1.5。为避免尺寸效应带来的误差和便于模型求解收敛,坡顶取15 m,坡底取25 m,网格按线性梯度(长度)划分,起始长度1.2 m,结束长度0.5 m。由于填土土层由于土体较松散,易膨胀开裂,在降雨作用下容易引发降雨入渗,易软化下部土体,因此实际工程中对该部分填土进行了挖除。填土挖除后,为充分合理考虑到大气影响层对膨胀土边坡中黏土的影响,同时又不会影响到下部不透水泥岩,取大气影响层为距离坡面4 m范围的土体,正好为黏土厚度,急剧层为距离坡面1.5 m范围的土体(图11)。
3.2 含水量对稳定性的影响
根据室内直剪试验结果,同时考虑到膨胀土具有浅层性,将测得的7个含水量下(干密度均为1.6 g/cm3)的膨胀土抗剪强度参数指标c和φ赋予给受大气影响的风化层土体,即距离坡面4 m范围内的黏土。强、中风化泥岩层土体参数指标取地质勘察报告的值,具体数值见表5。计算得到不同含水量w下膨胀土边坡整体位移和潜在滑移面,如图12、图13所示。
分析图12和图13可知,随着含水量w的增大,边坡的整体位移整体呈增大趋势,非饱和膨胀土边坡的浅层破坏由受大气影响层膨胀土强度衰减导致。随着含水量的增加,土体的c不断减小,边坡位移不断增大,滑移面逐渐变浅;破坏形式为浅层滑塌式的破坏。边坡失稳的滑移面位置位于大气影响层和不透水泥岩的交界处,且与黏土的底部相切。
基于相同干密度,不同含水量下膨胀土的剪切试验和地质勘察报告,利用有限元分析软件对边坡进行稳定性分析,可得到随着膨胀土含水量的变化对边坡稳定性安全系数的影响规律,如图14所示的曲线,表达式为:
$$ y = - {\text{0}}{\text{.008}}{x^2} + {\text{0}}{\text{.1884}}x + {\text{2}}{\text{.025}} $$ (6) 随着w的增大,膨胀土的强度参数指标不断衰减,含水量较高比低含水量情况下的衰减速度更大。同时,膨胀土边坡在天然状况下处于稳定状态,但当w增大至27%时,其Fs为0.850,稳定性转变为失稳状态,发生滑坡、坍塌等工程现象;在此基础上,若继续增大含水量,膨胀土边坡将可能由浅层失稳进入完全失稳状态,这与实际工程中,在长时间降雨后,曾出现的多次滑坡现象类似。
3.3 干密度对稳定性的影响
根据试验结果,将测得的四个干密度下(含水量均为18%)的膨胀土抗剪强度参数指标c和φ赋予给距离坡面4 m范围的黏土。强、中风化泥岩层土体抗剪强度参数指标取地质勘察报告值,具体数值见表5。计算得到不同ρd下膨胀土边坡整体位移和潜在滑移面,如图15、图16所示。
从图15和图16中可以看出试样的ρd越小,边坡位移越大,潜在滑移面变浅;这是因为土体的c随着ρd的减小而减小,使得其抗剪强度降低;此时,边坡的破坏形式由整体滑动变为浅层滑塌。基于相同含水量,不同干密度下膨胀土的剪切试验和地质勘察报告,利用有限元分析软件对边坡进行稳定性分析,可得到随着膨胀土干密度的变化对边坡稳定性安全系数的影响规律,如图17所示的曲线,其表达式为:
$$ y = {\text{8}}{\text{.375}}{x^2} - {\text{23}}{\text{.24}}x + {\text{18}}{\text{.41}} $$ (7) 试样ρd越小,其抗剪强度越低;且在ρd越大时其Fs增大趋势越为显著;1.5 g/cm3干密度下的Fs为2.409,比1.4 g/cm3的高出0.124,而1.7 g/cm3干密度下的Fs与1.6 g/cm3条件下的差值为0.459。
4. 结 论
(1)含水量的增大、干密度的减小都会引起膨胀土的峰值抗剪强度、黏聚力以及内摩擦角发生不同程度的衰减,其中,黏聚力的衰减幅度相较于内摩擦角更大。
(2)通过多次膨胀土强度折减的方法可以很好地模拟降雨过程中由抗剪强度衰减引起的边坡稳定性的动态变化:风化层土体强度接近未风化层土体强度时,边坡处于稳定状态,潜在滑动面穿过分层界面;随着含水量增大、干密度变小,风化层抗剪强度会不断衰减,引起潜在滑动面逐渐外移,边坡稳定性降低。
(3)数值模拟结果表明:与干密度减小相比,含水量的增大对边坡稳定更为不利,含水量增加到27%以后,膨胀土边坡由稳定状态变为欠稳定状态,因此在分析膨胀土边坡稳定性时,应着重考虑含水量变化的影响。
-
表 1 深孔测斜曲线典型类型
Table 1 Typical types of deep-hole inclinometer curve
曲线类型 坡体破坏类型 曲线特征 滑坡变形破坏情况 滑动面发展程度 钟摆型 倾倒变形 累计位移在整个深度范围内于初测值附近摆动,
摆动幅度一般小于10 mm滑坡岩土体的深部位移很小,
边坡处于稳定状态未贯通 “V”型 顺层溃屈 上部位移较大而底部位移很小,曲线总体呈线性特征 滑坡内部没有形成明显的滑动面,
处于蠕动变形阶段未贯通 “r”型 切层滑移、顺层滑移、崩塌 累计位移在一个较浅的位置产生较为明显的突变,
而其下部的位置则相对较小滑坡岩土体在浅部形成明显的滑动面 贯通 “D”型 切层滑移、顺层溃屈 累计位移在某一个较深的位置产生突变,
而其上部产生近似整体的移动滑坡深部产生了一个明显的滑动面 接近贯通 “B”型 顺层滑移 累计位移在多个位置产生较为明显的突变,
曲线呈现类似“阶梯”或“波浪”状滑坡岩土体内部形成了多个滑动面 接近贯通 -
[1] 徐邦栋. 滑坡分析与防治[M]. 北京: 中国铁道出版社, 2001 XU Bangdong. Landslide analysis and prevention[M]. Beijing: China Railway Publishing House, 2001. (in Chinese)
[2] 陈开圣,彭小平. 测斜仪在滑坡变形监测中的应用[J]. 岩土工程技术,2006,20(1):39 − 41. [CHEN Kaisheng,PENG Xiaoping. Applications of inclinometer in monitoring deformations of landslide[J]. Geotechnical Engineering Technique,2006,20(1):39 − 41. (in Chinese with English abstract) CHEN Kaisheng, PENG Xiaoping. Applications of inclinometer in monitoring deformations of landslide[J]. Geotechnical Engineering Technique, 2006, 20(1): 39-41. (in Chinese with English abstract)
[3] ZHAO Xin,LI Guo,ZHAO Zhifang,et al. Identifying the spatiotemporal characteristics of individual red bed landslides:A case study in western Yunnan,China[J]. Journal of Mountain Science,2022,19(6):1748 − 1766. DOI: 10.1007/s11629-022-7339-0
[4] JIN Xiaoguang, HONG Wei, ZHU Ling, et al. Study on time-space motivation and operation mechanic of landslide: A case of Zhenzilin landslide in Sichuan-Tibet highway[J]. Advanced Materials Research, 2011, 243/244/245/246/247/248/249: 2811-2818.
[5] HAI Dongjiang. Study on statistical characteristics of deep displacement of monitoring data for soil slope[J]. Environmental and Earth Sciences Research Journal,2015,2(4):11 − 16.
[6] 靳晓光,王兰生,李晓红. 滑坡滑动面位置的确定及超前预测[J]. 中国地质灾害与防治学报,2001,12(1):10 − 12. [JIN Xiaoguang,WANG Lansheng,LI Xiaohong. Determination and advanced forcasting on slide plane position for landslide[J]. The Chinese Journal of Geological Hazard and Control,2001,12(1):10 − 12. (in Chinese with English abstract) JIN Xiaoguang, WANG Lansheng, LI Xiaohong. Determination and advanced forcasting on slide plane position for landslide[J]. The Chinese Journal of Geological Hazard and Control, 2001, 12(1): 10-12. (in Chinese with English abstract)
[7] FEARNHEAD N,MANISCALCO K,STANDING J R,et al. Deep excavations:Monitoring mechanisms of ground displacement[J]. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering,2014,167(2):117 − 129. DOI: 10.1680/geng.13.00047
[8] 陈贺, 汤华, 葛修润, 等. 基于深部位移的蠕滑型滑坡预警指标及预警预报研究[J]. 岩石力学与工程学报, 2019, 38(增刊1): 3015 − 3024 CHEN He, TANG Hua, GE Xiurun, et al. Research on early warning of creep landslide by early-warning indictors based on deep displacements[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(Sup 1): 3015 − 3024. (in Chinese with English abstract)
[9] 李聪,朱杰兵,汪斌,等. 滑坡不同变形阶段演化规律与变形速率预警判据研究[J]. 岩石力学与工程学报,2016,35(7):1407 − 1414. [LI Cong,ZHU Jiebing,WANG Bin,et al. Critical deformation velocity of landslides in different deformation phases[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(7):1407 − 1414. (in Chinese with English abstract) LI Cong, ZHU Jiebing, WANG Bin, et al. Critical deformation velocity of landslides in different deformation phases[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7): 1407-1414. (in Chinese with English abstract)
[10] 许强,曾裕平,钱江澎,等. 一种改进的切线角及对应的滑坡预警判据[J]. 地质通报,2009,28(4):501 − 505. [XU Qiang,ZENG Yuping,QIAN Jiangpeng,et al. Study on a improved tangential angle and the corresponding landslide pre-warning criteria[J]. Geological Bulletin of China,2009,28(4):501 − 505. (in Chinese with English abstract) XU Qiang, ZENG Yuping, QIAN Jiangpeng, et al. Study on a improved tangential angle and the corresponding landslide pre-warning criteria[J]. Geological Bulletin of China, 2009, 28(4): 501-505. (in Chinese with English abstract)
[11] 吴香根,夏阳,邢志会. 深孔位移监测技术在滑坡勘察中的应用[J]. 路基工程,2010(5):195 − 198. [WU Xianggen,XIA Yang,XING Zhihui. Application of deep hole displacement monitoring technique in landslide survey[J]. Subgrade Engineering,2010(5):195 − 198. (in Chinese with English abstract) WU Xianggen, XIA Yang, XING Zhihui. Application of deep hole displacement monitoring technique in landslide survey[J]. Subgrade Engineering, 2010(5): 195-198. (in Chinese with English abstract)
[12] 陈云生,刘光彬,张一铭,等. 阳鹿高速公路K52新滑坡变形特征与成因机理分析[J]. 中国地质灾害与防治学报,2022,33(1):83 − 91. [CHEN Yunsheng, LIU Guangbin, ZHANG Yiming, et al. Deformation characteristics and genetic mechanism of a new landslide at K52 of Luyang freeway[J]. The Chinese Journal of Geological Hazard and Control,2022,33(1):83 − 91. (in Chinese with English abstract) CHEN Yunsheng, LIU Guangbin, ZHANG Yiming, et al. Deformation characteristics and genetic mechanism of a new landslide at K52 of Luyang freeway[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 83-91.(in Chinese with English abstract)
[13] 张位华,刘勇,彭小平. 钻孔测斜成果曲线在贵州省晴隆滑坡稳定性判识中的应用[J]. 中国地质灾害与防治学报,2009,20(1):108 − 112. [ZHANG Weihua,LIU Yong,PENG Xiaoping. Application of borehole deep displacement measuring production curve in stability discrimination of Qinglong landslide[J]. The Chinese Journal of Geological Hazard and Control,2009,20(1):108 − 112. (in Chinese with English abstract) ZHANG Weihua, LIU Yong, PENG Xiaoping. Application of borehole deep displacement measuring production curve in stability discrimination of Qinglong landslide[J]. The Chinese Journal of Geological Hazard and Control, 2009, 20(1): 108-112. (in Chinese with English abstract)
[14] 靳晓光,李晓红,王兰生,等. 滑坡深部位移曲线特征及稳定性判识[J]. 山地学报,2000,18(5):440 − 444. [JIN Xiaoguang,LI Xiaohong,WANG Lansheng,et al. Characteristics of landslide deep displacement curve and stability discriminant[J]. Journal of Mountain Science,2000,18(5):440 − 444. (in Chinese with English abstract) Jin Xiaoguang, Li Xiaohong, Wang Lansheng, et al. Characteristics of landslide deep displacement curve and stability discriminant[J]. Journal of Mountain Science, 2000, 18(5): /span>440-444spanstyle=color: rgb(51. (in Chinese with English abstract)
[15] 胡瑞林,王珊珊. 滑坡滑面(带)的辩识[J]. 工程地质学报,2010,18(1):35 − 40. [HU Ruilin,WANG Shanshan. Main features and identification method of sliding-surfaces in soil and rock slopes[J]. Journal of Engineering Geology,2010,18(1):35 − 40. (in Chinese with English abstract) HU Ruilin, WANG Shanshan. Main features and identification method of sliding-surfaces in soil and rock slopes[J]. Journal of Engineering Geology, 2010, 18(1): 35-40. (in Chinese with English abstract)
[16] 潘惠芳. 基于深部位移曲线形态的边坡变形特征分析[J]. 福建建筑,2019(5):54 − 61. [PAN Huifang. Analysis of slope deformation characteristics based on deep displacement curves[J]. Fujian Architecture & Construction,2019(5):54 − 61. (in Chinese with English abstract) PAN Huifang. Analysis of slope deformation characteristics based on deep displacement curves[J]. Fujian Architecture & Construction, 2019(5): 54-61. (in Chinese with English abstract)
[17] 朱泽奇,胡琪堂,龚擎玉,等. 基于深部位移曲线特征的公路边坡稳定性评价方法研究[J]. 公路,2019,64(1):13 − 19. [ZHU Zeqi,HU Qitang,GONG Qingyu,et al. Evaluation method of highway slope stability based on deep displacement curve characteristics[J]. Highway,2019,64(1):13 − 19. (in Chinese with English abstract) ZHU Zeqi, HU Qitang, GONG Qingyu, et al. Evaluation method of highway slope stability based on deep displacement curve characteristics[J]. Highway, 2019, 64(1): 13-19. (in Chinese with English abstract)
[18] 中国铁道科学研究院集团有限公司, 红层地区典型地质灾害失稳机理与新型防治方法技术研究[R]. 2019 China Academy of Railway Sciences, Study on instability mechanism and new prevention methods and technologies of typical geological disasters in red bed area[R]. 2019. (in Chinese))
[19] 孙志彬,杨小礼. 基于深部位移的边坡滑动特征分析[J]. 长沙理工大学学报(自然科学版),2010,7(2):43 − 47. [SUN Zhibin,YANG Xiaoli. Sliding characteristics analysis of land slide based on the deep displacement[J]. Journal of Changsha University of Science & Technology (Natural Science),2010,7(2):43 − 47. (in Chinese with English abstract) SUN Zhibin, YANG Xiaoli. Sliding characteristics analysis of land slide based on the deep displacement[J]. Journal of Changsha University of Science & Technology (Natural Science), 2010, 7(2): 43-47. (in Chinese with English abstract)
[20] 靳晓光. 山区公路建设中的岩土工程监测与信息化控制[D]. 成都: 成都理工大学, 2000 JIN Xiaoguang. Geotechnical engineering monitoring and information controlling in intermontane highway construction[D]. Chengdu: Chengdu University of Technology, 2000. (in Chinese with English abstract)
[21] 朱琪. 高次插值的龙格现象的测试[J]. 湖南科技学院学报,2005,26(11):206 − 208. [ZHU Qi. The runger phenomenal test of the high order interpolation[J]. Journal of Hunan University of Science and Engineering,2005,26(11):206 − 208. (in Chinese with English abstract) ZHU Qi. The Runger phenomenal test of the high order interpolation[J]. Journal of Hunan University of Science and Engineering, 2005, 26(11): 206-208. (in Chinese with English abstract)
[22] 陈辉. 插值法在测斜数据处理中的应用[J]. 福建建设科技,2020(2):19 − 20. [CHEN Hui. Application of interpolation method in inclinometer data processing[J]. Fujian Construction Science & Technology,2020(2):19 − 20. (in Chinese with English abstract) CHEN Hui. Application of interpolation method in inclinometer data processing[J]. Fujian Construction Science & Technology, 2020(2): 19-20. (in Chinese with English abstract)
[23] 李守定,李晓,吴疆,等. 大型基岩顺层滑坡滑带形成演化过程与模式[J]. 岩石力学与工程学报,2007,26(12):2473 − 2480. [LI Shouding,LI Xiao,WU Jiang,et al. Evolution process and pattern of sliding zone in large consequent bedding rock landslide[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(12):2473 − 2480. (in Chinese with English abstract) LI Shouding, LI Xiao, WU Jiang, et al. Evolution process and pattern of sliding zone in large consequent bedding rock landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(12): 2473-2480. (in Chinese with English abstract)
[24] 许强. 滑坡的变形破坏行为与内在机理[J]. 工程地质学报,2012,20(2):145 − 151. [XU Qiang. Theoretical studies on prediction of landslides using slope deformation process data[J]. Journal of Engineering Geology,2012,20(2):145 − 151. (in Chinese with English abstract) XU Qiang. Theoretical studies on prediction of landslides using slope deformation process data[J]. Journal of Engineering Geology, 2012, 20(2): 145-151. (in Chinese with English abstract)
[25] 叶咸,高瑜,李果,等. 滑坡深部位移监测孔合位移计算与分析[J]. 公路,2020,65(10):5 − 10. [YE Xian,GAO Yu,LI Guo,et al. Calculation and analysis of combined displacement of deep displacement monitoring holes in landslide[J]. Highway,2020,65(10):5 − 10. (in Chinese with English abstract) YE Xian, GAO Yu, LI Guo, et al. Calculation and analysis of combined displacement of deep displacement monitoring holes in landslide[J]. Highway, 2020, 65(10): 5-10. (in Chinese with English abstract)
[26] 陈贺, 李亚军, 房锐, 等. 滑坡深部位移监测新技术及预警预报研究[J]. 岩石力学与工程学报, 2015, 34(增刊2): 4063 − 4070 CHEN He, LI Yajun, FANG Rui, et al. A novel technique for monitoring deep displacement and early-warning of landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Sup 2): 4063 − 4070. (in Chinese with English abstract)
[27] 董秀军,许强,唐川,等. 滑坡位移-时间曲线特征的物理模拟试验研究[J]. 工程地质学报,2015,23(3):401 − 407. [DONG Xiujun,XU Qiang,TANG Chuan,et al. Characteristics of landslide displacement-time curve by physical simulation experiment[J]. Journal of Engineering Geology,2015,23(3):401 − 407. (in Chinese with English abstract) DONG Xiujun, XU Qiang, TANG Chuan, et al. Characteristics of landslide displacement-time curve by physical simulation experiment[J]. Journal of Engineering Geology, 2015, 23(3): 401-407. (in Chinese with English abstract)
[28] 熊超,孙红月. 基于多因素-多尺度分析的阶跃型滑坡位移预测[J]. 吉林大学学报(地球科学版),2023,53(4):1175 − 1184. [XIONG Chao, SUN Hongyue. Step-like landslide displacement prediction based on multi-factor and multi-scale analysis[J]. Journal of Jilin University (Earth Science Edition),2023,53(4):1175 − 1184. (in Chinese with English abstract) XIONG Chao, SUN Hongyue. Step-like landslide displacement prediction based on multi-factor and multi-scale analysis[J]. Journal of Jilin University (Earth Science Edition), 2023, 53(4): 1175-1184.(in Chinese with English abstract)
[29] 顾春生,杨磊,闵望,等. 江苏常州地面沉降监测与发展趋势分析[J]. 中国地质灾害与防治学报,2023,34(2):82 − 91. [GU Chunsheng, YANG Lei, MIN Wang, et al. Monitoring and analyzing the development trend of land subsidence in Changzhou City, Jiangsu Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(2):82 − 91. (in Chinese with English abstract) GU Chunsheng, YANG Lei, MIN Wang, et al. Monitoring and analyzing the development trend of land subsidence in Changzhou City, Jiangsu Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(2): 82-91.(in Chinese with English abstract)
[30] 赵振宇. 基于数值计算的测斜仪监测误差分析[J]. 水文地质工程地质,2021,48(3):157 − 161. [ZHAO Zhenyu. Error analysis of an inclinometer based on numerical analysis[J]. Hydrogeology & Engineering Geology,2021,48(3):157 − 161. (in Chinese with English abstract) ZHAO Zhenyu. Error analysis of an inclinometer based on numerical analysis[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 157-161.(in Chinese with English abstract)
[31] 杨志华,吴瑞安,郭长宝,等. 川西巴塘断裂带地质灾害效应与典型滑坡发育特征[J]. 中国地质,2022,49(2):355 − 368. [YANG Zhihua, WU Ruian, GUO Changbao, et al. Geo-hazard effects and typical landslide characteristics of the Batang fault zone in the western Sichuan[J]. Geology in China,2022,49(2):355 − 368. (in Chinese with English abstract) YANG Zhihua, WU Ruian, GUO Changbao, et al. Geo-hazard effects and typical landslide characteristics of the Batang fault zone in the western Sichuan[J]. Geology in China, 2022, 49(2): 355-368.(in Chinese with English abstract)
[32] HERRERA G,FERNÁNDEZ-MERODO J A,MULAS J,et al. A landslide forecasting model using ground based SAR data:The Portalet case study[J]. Engineering Geology,2009,105(3/4):220 − 230.
[33] N D ROSE,O HUNGR. Forecasting potential rock slope failure in open pit minesusing the inverse-velocity method[J]. International Journal of Rock Mechanics and Mining Sciences,2007,44:308 − 320. DOI: 10.1016/j.ijrmms.2006.07.014
[34] 朱赛楠,魏英娟,王平,等. 大型单斜层状基岩滑坡变形特征与失稳机制研究—以重庆石柱县龙井滑坡为例[J]. 岩石力学与工程学报,2021,40(4):739 − 750. [ZHU Sainan,WEI Yingjuan,WANG Ping,et al. Research on deformation characteristics and instability mechanisms of large monoclinal layered bedrock landslides:A case study of the Longjing landslide in Shizhu County,Chongqing[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(4):739 − 750. (in Chinese with English abstract) ZHU Sainan, WEI Yingjuan, WANG Ping, et al. Research on deformation characteristics and instability mechanisms of large monoclinal layered bedrock landslides: a case study of the Longjing landslide in Shizhu County, Chongqing[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 739-750. (in Chinese with English abstract)
[35] 黄秋香, 汪家林, 邓建辉. 基于多点位移计监测成果的坡体变形特征分析[J]. 岩石力学与工程学报, 2009, 28(增刊1): 2667 − 2673 HUANG Qiuxiang, WANG Jialin, DENG Jianhui. Slope deformation character analysis based on monitoring results of multiple multi-point borehole extensometer[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(Sup 1): 2667 − 2673. (in Chinese with English abstract)
[36] CROSTA G B,AGLIARDI F. How to obtain alert velocity thresholds for large rockslides[J]. Physics and Chemistry of the Earth,Parts A/B/C,2002,27(36):1557 − 1565. DOI: 10.1016/S1474-7065(02)00177-8
[37] 焦龙进,李磊,姜德民. 滑坡勘查中滑动面判定方法分析[J]. 建筑技术开发,2019,46(11):134 − 135. [JIAO Longjin,LI Lei,JIANG Demin. Simple analysis of sliding surface determination method in landslide exploration[J]. Building Technology Development,2019,46(11):134 − 135. (in Chinese with English abstract) JIAO Longjin, LI Lei, JIANG Demin. Simple analysis of sliding surface determination method in landslide exploration[J]. Building Technology Development, 2019, 46(11): 134-135. (in Chinese with English abstract)
[38] VAN ASCH T W J,VAN BEEK L P H,BOGAARD T A. Problems in predicting the mobility of slow-moving landslides[J]. Engineering Geology,2007,91(1):46 − 55. DOI: 10.1016/j.enggeo.2006.12.012
[39] HE Chuncan,HU Xinli,TANNANT D D,et al. Response of a landslide to reservoir impoundment in model tests[J]. Engineering Geology,2018,247:84 − 93. DOI: 10.1016/j.enggeo.2018.10.021
[40] SONG Jian,FAN Qingqing,FENG Tugen,et al. A multi-block sliding approach to calculate the permanent seismic displacement of slopes[J]. Engineering Geology,2019,255:48 − 58. DOI: 10.1016/j.enggeo.2019.04.012
[41] STEAD D,WOLTER A. A critical review of rock slope failure mechanisms:the importance of structural geology[J]. Journal of Structural Geology,2015,74:1 − 23. DOI: 10.1016/j.jsg.2015.02.002
[42] HUNGR O,LEROUEIL S,PICARELLI L. The Varnes classification of landslide types,an update[J]. Landslides,2014,11(2):167 − 194. DOI: 10.1007/s10346-013-0436-y
[43] ZHANG Shilin,ZHU Zhaohui,QI Shunchao,et al. Deformation process and mechanism analyses for a planar sliding in the Mayanpo massive bedding rock slope at the Xiangjiaba Hydropower Station[J]. Landslides,2018,15(10):2061 − 2073. DOI: 10.1007/s10346-018-1041-x
[44] ZHAN Liangtong,GUO Xiaogang,SUN Qianqian,et al. The 2015 Shenzhen catastrophic landslide in a construction waste dump:analyses of undrained strength and slope stability[J]. Acta Geotechnica,2021,16(4):1247 − 1263. DOI: 10.1007/s11440-020-01083-8
-
期刊类型引用(5)
1. 贺伟明,石胜伟,蔡强,梁炯. 基于上下限解的膨胀土边坡首次滑动区域分析. 水文地质工程地质. 2025(01): 104-112 . 百度学术
2. 孙银磊,余川,廖磊,李志妃. 钢渣粉固化改良膨胀性黏土机理研究进展. 水文地质工程地质. 2025(01): 113-129 . 百度学术
3. 张锐,周豫,兰天,郑健龙,刘昭京,李彬. 高速铁路土工格栅加筋膨胀土边坡作用机制. 铁道科学与工程学报. 2024(01): 1-12 . 百度学术
4. 纪佑军,熊军,蒋国斌,王泽根. 考虑应变软化的鸡场镇降雨型滑坡数值分析. 水文地质工程地质. 2024(04): 178-188 . 百度学术
5. 张再江. 基于改进极限平衡原理的膨胀土边坡稳定性计算分析. 水利科技与经济. 2024(07): 48-51 . 百度学术
其他类型引用(8)