Determination of regional landslide rainfall warning threshold based on susceptibility zoning: A case study in Longling County of Yunnan Province
-
摘要: 滑坡所处不同易发等级的区域,降雨预警阈值差别较大。为提高滑坡降雨预警的针对性和准确率,文章以野外地质调查和滑坡易发条件分析为基础,结合信息量模型和层次分析法开展滑坡易发性评价,再通过滑坡发生概率与前期累计降雨量的相关性分析,分区进行滑坡降雨预警阈值模型研究。结果表明:坡度、高程、距断层距离、工程地质岩组、水系是龙陵县滑坡的主要孕灾地质条件;龙陵县滑坡非易发区面积为14.33 km2,低易发区面积为1053.87 km2,中易发区面积为1471.65 km2,高易发区面积为254.73 km2;确定单日和前3日为降雨预警时间,分区分时细化了降雨预警阈值模型;对比降雨预警阈值模型应用于龙陵县滑坡监测预警中的前后,预警信息减少了70条,预警准确率提高了14.4%,并实现了镇安镇户帕村施家寨组滑坡的有效预警。文章为区域滑坡降雨预警阈值确定提供了一种较好的参考方法。Abstract: Areas with different levels of susceptibility to landslides, rainfall warning thresholds vary widely, to improve the pertinence and accuracy of landslide monitoring and early warning. Based on field geological survey and landslide susceptibility condition analysis, this paper combines information quantity model and analytic hierarchy method to carry out susceptibility evaluation, and then analyzes the correlation between landslide occurrence probability and cumulative rainfall, and conducts landslide rainfall early warning threshold model research by zoning. The results showed that: Slope, elevation, geological structure, engineering rock group and water system are the main geological conditions of landslides in Longling County; The area of non-prone areas in Longling County was 14.33 km2, the area of low prone area was 1053.87 km2, the area of medium prone area was 1471.65 km2, and the area of high prone area was 254.73 km2; The rainfall warning time was determined for a single day and the previous 3 days, and the rainfall warning threshold was refined by district; Compared with the rainfall warning threshold model applied to the landslide monitoring and early warning in Longling County, the number of early warning information decreased by 70, the accuracy of early warning was increased by 14.4%, and the effective early warning of landslide in Shijiazhai Formation of Huba Village, Zhen’an Town was realized. This paper provides a good reference method for determining the regional landslide rainfall warning threshold.
-
0. 引言
河南某金矿属全国16个重点成矿带中的豫西成矿带。已探明矿种钼、钨、铅、金、铁等40多种,矿产种类多,开采价值大,矿业活动带来巨大经济价值,也引发矿渣型泥石流等地质灾害问题[1-7],2010年7月24日当地普降暴雨,境内共发生矿渣型泥石流29次,死亡68人,失踪21人,经济损失19.8亿,教训非常惨重。
目前对矿渣型泥石流的研究主要体现在成灾模式、启动机理、危险评价等方面,邓龙胜等[8]通过计算洪峰流量,评价了矿渣型泥石流的泥沙携带力、冲击力以及揭底深度;李荣等[9]、陈媛儿[10]、谢鉴衡[11]、秦荣昱[12]、彭润译等[13]从沙粒启动的水动力条件入手得出非均匀沙的起动流速公式,与实际情况吻合;林玫玲等[14]采用PFC2D仿真软件,揭示矿渣颗粒转化为泥石流时的内部力学特征与降雨强度的大小关系;李建林等[15]通过研究矿渣泥石流的沟谷形态得出沟道比降、汇水面积和沟道长度三个因素中汇水面积对其发育和行成的影响最为显著;唐亚明等[16]模拟了特定雨力下,泥石流的冲击范围,并引入泥石流危险因子做了危险程度的分区评价,提出了在渣堆处修建挡墙等工程治理措施;杨敏等[17]、徐友宁等[18]对潼关金矿区矿渣堆数目、体积、稳定性进行实地调研,并提出对废渣堆进行资源化利用等防治措施。前人研究成果均提到了矿渣泥石流是由废弃渣堆引起,并提出治理渣堆的必要性,但并没有对渣堆危险性高低进行分类评价,也没有提出精准合理的防治措施。
文中在以豫西某金矿区大南沟、后木寺沟16个渣堆为研究对象进行分析阐述,和前人相同之处是借鉴了启动流速(Uc)[9-13]以及《桥涵水文》第五版[19]中洪峰流量(Q)的计算公式,不同之处在于①考虑渣堆阻塞行洪通道等因素,进一步计算出渣堆断面处的泄洪流速(Us),并结合启动流速(Uc)计算稳定性大小即Fs=Uc/Us;②考虑渣堆之间的相互影响,分析不同重现期雨力条件下,单个计算渣堆失稳转化成泥石流时的危险系数;③将渣堆的危险高低进行精细计算,科学归类。以期达到精准分类,科学防治、经济节约等目的。
1. 研究区概况
豫西某金矿地处秦岭山脉东段,熊耳山西南部,伏牛山西段北部(图1),气候属暖温带半湿润大陆性季风气候,降雨量大且集中。海拨最高1671.4 m,最低1000 m,坡度较陡,区内地形切割强烈,沟谷呈“V”字型;植被覆盖度高,草木茂盛,基岩裸露较差。
该区域出露岩性主要为安山岩、流纹斑岩、片麻岩、冲洪积物。马超营断裂发育演化,共经历6期次地质活动,7次构造事件[19],其间热液侵入成矿,该金矿床位于马超营区域性断裂带与北东向上宫—星星印断裂带的交汇部位,从1979年建矿开采至今已有40余年历史。开采规模25×104 t/a,地下开采,开采规模大,废石渣、矿渣多且堆放不合理,严重阻塞沟道,在降雨条件下极易失稳形成泥石流。
2. 豫西某金矿区泥石流形成条件分析
2.1 地形条件
因马超营断裂(图1)6期次的构造活动(嵩阳发展—中远古形成—后期改造)[19],在强烈复杂的构造活动过程中形成有利于沟谷型泥石流发育的“哑铃状”特殊地形(图2):即两头(形成区、堆积区)呈“喇叭状”,中间(流通区)狭窄,该区域西高东低,相对高差670 m,沟谷总长度14 km,物源区平均纵坡降170‰,最大纵坡降377‰。
2.2 物源条件
2.2.1 泥石流物源的来源
豫西某金矿矿区岩石力学性质分别为安山岩、流纹斑岩抗压强度64~97 MPa,片麻岩抗压强度659 MPa,为坚硬块状岩体,不易风化,岩层层面、贯通的断裂结构面倾向与坡面反向,不具备发生大规模崩塌滑坡的可能性,且在现场调查过程中山坡的风化层较薄,仅在山麓、沟谷中下游可见坡积物、冲洪积物,未见大范围的崩积物,因此自然条件下发生泥石流的可能性较小。现场测量图2中的1-1′剖面,得出剖面图如图3所示。
豫西某金矿常期以民采为主,大量的围岩因不具加工价值而沿坡面、沟道随意堆弃,这些堆积物自身稳定性差,在降雨等条件下容易失稳。据现场调查统计了渣堆16处,总计体积12.05×104 m3,均有可能失稳致灾。各渣堆的分布位置及其他参数如图2—4、表1所示。
表 1 豫西某金矿渣堆体积及压占沟谷比例统计表Table 1. Statistical table of volume and proportion of the slag in a gold slag pile in western Henan矿渣 ZD1 ZD2 ZD3 ZD4 ZD5 ZD6 ZD7 ZD8 体积/(104 m3) 1.2 0.09 0.12 0.07 0.14 0.5 0.05 1.4 压占沟谷比例/% 50 43 83 69 72 71 74 48 矿渣 ZD9 ZD10 ZD11 ZD12 ZD13 ZD14 ZD15 ZD16 体积/(104 m3) 2 2.5 1.2 0.29 0.4 0.3 0.25 1.54 压占沟谷比例/% 74 55 77 71 60 67 49 88 2.2.2 矿渣堆放位置与形态分析
豫西某金矿区渣堆厚度一般在2~7 m,平均厚度4.3 m,少数可达12 m,渣堆均不同程度堵塞沟道,有的在沿山坡呈阶梯状堆积,部分位于沟谷左侧,部分位于沟谷右侧,密实度差,渣堆顶部颗粒较细,底部颗粒较粗,分选差,棱角明显。渣堆不同程度堵塞沟道,有的在沿山坡呈阶梯状堆积,在沟谷底部部分占压行洪通道(图5),有的沿沟谷底部堆积,几乎全部占压行洪通道(图6);现场量测各渣堆体积以及压占沟谷比例结果见表1。
2.3 水源条件
豫西某金矿区降雨多集中在7—9月,年降水量最高1386.6 mm,最少403.3 mm,月最大降水量423.4 mm,24 h最大降水量159.2 mm。根据当地气象局实际观测近10a最大降水量49 mm/h,查阅资料《桥涵水文》[19]可知当地100 a一遇降雨量90 mm/h、50 a一遇降雨量为80 mm/h,25 a一遇降雨量为60 mm/h,充沛的降雨为泥石流的启动提供了水动力条件,历年7—9月实测降雨量变化曲线见图7。
3. 豫西某金矿区泥石流启动条件分析
文中先不考虑渣堆之间的相互影响,计算分析16处渣堆的稳定性大小,然后在根据计算出的稳定性大小分析其相互影响关系,对渣堆稳定性进行修正,最终计算出考虑相互影响后的稳定性大小。
3.1 不考虑渣堆相互影响的稳定性计算方法
3.1.1 洪峰流量(Q)计算
豫西某金矿的主要诱发条件为短时强降雨、所以降雨引发洪峰流量可按下式计算[20]
$$ Q = 0.278\left(\frac{{{S _{\rm{P}}}}}{{{\tau ^n}}} - \mu \right)F $$ (1) $$ \tau = {{{K}}_{\text{3}}}{\left(\frac{L}{{\sqrt I }}\right)^{\alpha _1^{}}} $$ (2) $$ \mu ={K}_{\text{1}}({S} _{{\rm{P}}})^{{\beta }_{1}} $$ (3) 式中:
$ Q $ ——洪峰流量/(m3·s−1);Sp——雨力/(mm·h−1);
τ——汇流时间/s;
n——暴雨递减指数,取0.45;
µ——损失参数,取15.85 mm/h;
F——汇流面积/km2;
K3——地区参数,取0.63;
L——主河道长度/km;
I——主河道平均比降/‰;
α1——汇流参数,取0.15;
$ {K}_{1} $ ——地区参数,取1;β1——指数,取−1。
3.1.2 泄洪流速计算
根据现场测量结果行洪宽度以及水深,因为沟谷呈“V”字形,所以设计平均宽度取测量渣堆顶端处长度的一半,则泄洪流速(
$U_{\rm{s}} $ )计算公式如下:$$ U_{\rm{s}} = \frac{Q}{{h b}} \text{;} $$ (4) 式中:
$ U_{\rm{s}}$ ——泄洪流速/(m·s−1);Q——洪峰流量/(m3·s−1);
h——设计水深/m;
b——设计行洪宽度/m,其余参数同前文一致。
3.1.3 启动流速(Uc)计算
$$ {U_{\rm{c}}} = 3.91{d^{\tfrac{1}{3}}}{h^{\tfrac{1}{6}}}\sqrt {\sqrt {\frac{{{m^2} + m_0^2{{\cos }^2}\theta }}{{1 + {m^2}}}} - \frac{{{m_0}\sin \theta }}{{\sqrt {1 + {m^2}} }}} \text{;} $$ (5) 式中:
${U_{\rm{c}}} $ ——启动流速/(m·s−1);d——粒径/m;
h——设计水深/m;
α——斜坡倾角/(°),m=cotα;
φ——渣堆摩擦角/(°),m0=tanφ;
θ—流向与沙粒所在坡脚水平线的交角/(°)。取 θ=90°。
3.1.4 渣堆的稳定性(Fs)计算
文中将某个渣堆断面处的泄洪流速及启动流速理论计算值作为计算稳定性的依据,计算公式如下:
$$ F_{\rm{s}} = \frac{{U_{\rm{c}}}}{{U_{\rm{s}}}} \text{;} $$ (6) 式中:
$U_{\rm{c}}$ 、$U_{\rm{s}}$ ——与前文意义一致。3.1.5 渣堆的稳定性判定标准
因为目前对于渣堆在洪水冲击下的稳定性判定没有权威的标准,所以文中引入《建筑边坡工程规范》的判定标准,即假设稳定性系数
$F_{\rm{s}} $ <1为高危险(失稳),1≤$F_{\rm{s}} $ ≤1.15为中危险(临界),$F_{\rm{s}} $ >1.15为低危险(稳定)。3.2 各种雨力条件(Sp)下稳定性计算及分析结果
通过实地调查测量每个渣堆所对应的对应的汇水面积(F)、沟谷长度(L),纵坡降(I),设计水深(h),行洪宽度(b)等参数作为计算Us的依据,参数值如表2所示。
表 2 渣堆泄洪流速Us计算参数测量结果表Table 2. The measurement result of calculation parameters of flood discharge velocity of the slag pile渣堆编号 ZD1 ZD2 ZD3 ZD4 ZD5 ZD6 ZD7 ZD8 F/km2 0.176 0.176 0.27 0.27 0.469 0.469 0.616 0.176 L/km 0.47 0.47 0.61 0.61 0.72 0.79 0.79 1.01 I/‰ 462 462 418 418 387 373 373 314 h/m 2 2 2.5 2.5 2.5 2 2 2 b/m 1.5 3.5 2.5 3.35 3.05 11 11.5 1.5 渣堆编号 ZD9 ZD10 ZD11 ZD12 ZD13 ZD14 ZD15 ZD16 F/km2 0.85 1.68 1.82 1.82 0.232 0.283 0.431 0.511 L/km 1.52 1.52 1.66 0.52 0.66 0.84 0.97 1.13 I/‰ 283 283 269 514 456 400 374 332 h/m 2.5 2 2 2 2.5 2.5 2 2 b/m 2.7 9.5 26.5 18.5 4.35 2 4.5 4 现场调查各渣堆的摩擦角(
$\varphi $ )、其底部沟谷的坡度($\alpha $ ),并通过筛分试验,得到渣堆的平均粒径(d50=0.0123 m)等参数作为计算$U_{\rm{c}} $ 的依据,坡度($\alpha $ )及摩擦角($\varphi$ )测量值如表3所示。表 3 渣堆启动流速(Uc)计算参数测量结果表Table 3. The measurement result of calculation parameters of startup flow rate of the slag pile渣堆编号 ZD1 ZD2 ZD3 ZD4 ZD5 ZD6 ZD7 ZD8 α/(°) 14 14 9 10.84 14.16 10.45 6.76 6 φ/(°) 34 32 20 22 41 23 18 33 渣堆编号 ZD9 ZD10 ZD11 ZD12 ZD13 ZD14 ZD15 ZD16 α/(°) 7 4 4 12.84 12.95 8.38 11.14 6 φ/(°) 30 34 29 30 33 24 17 29 分别带入Sp=49 mm/h,Sp=60 mm/h,Sp=80 mm/h,Sp=90 mm/h,计算4种雨力条件下的稳定性系数其计算过程如图8所示,结果如表4所示。
通过计算可知Us由Sp、F、L、I、h、b决定,F、L、I均由渣堆所处沟谷的地形地貌决定,对于堆积形态、堆积位置已定的渣堆,其值是定值,对于确定的渣堆断面,h及b也是定值,只有Sp是变量,因此Us也只与Sp有关。因此只要给定Sp就可计算出Us。
表 4 不同雨力工况下渣堆稳定性计算结果表Table 4. The calculation result of slag pile stability under different rain conditions近10 a最大值计算
结果(49 mm/h)渣堆编号 ZD1 ZD2 ZD3 ZD4 ZD5 ZD6 ZD7 ZD8 Fs 0.90 2.11 1.40 1.85 0.90 2.76 2.26 0.51 渣堆编号 ZD9 ZD10 ZD11 ZD12 ZD13 ZD14 ZD15 ZD16 Fs 0.72 1.88 1.33 2.64 1.01 1.25 0.95 0.68 25 a一遇计算
结果(60 mm/h)渣堆编号 ZD1 ZD2 ZD3 ZD4 ZD5 ZD6 ZD7 ZD8 Fs 0.72 1.70 1.12 1.49 0.72 2.22 1.81 0.41 渣堆编号 ZD9 ZD10 ZD11 ZD12 ZD13 ZD14 ZD15 ZD16 Fs 0.58 1.51 1.07 2.12 0.81 1.00 0.76 0.54 50 a一遇计算
结果(80 mm/h)渣堆编号 ZD1 ZD2 ZD3 ZD4 ZD5 ZD6 ZD7 ZD8 Fs 0.53 1.25 0.83 1.09 0.53 1.63 1.33 0.30 渣堆编号 ZD9 ZD10 ZD11 ZD12 ZD13 ZD14 ZD15 ZD16 Fs 0.42 1.11 0.79 1.56 0.60 0.74 0.56 0.40 100 a一遇计算
结果(90 mm/h)渣堆编号 ZD1 ZD2 ZD3 ZD4 ZD5 ZD6 ZD7 ZD8 Fs 0.47 1.10 0.73 0.96 0.47 1.44 1.18 0.26 渣堆编号 ZD9 ZD10 ZD11 ZD12 ZD13 ZD14 ZD15 ZD16 Fs 0.37 0.98 0.69 1.38 0.53 0.65 0.49 0.35 通过计算可知Uc由渣堆堆积形态以及渣堆的粒径级配所决定,与Sp大小无关。对于堆积形态确定的渣堆,其Uc是定值,不随Sp的变化而改变。经过计算得到以上4种雨力条件下的稳定性系数后,采用3.1.5的判定标准,对其稳定性高低进行判断,结果如表4所示。
通过分析表5可知高危渣堆在雨力Sp=49 mm/h、Sp=60 mm/h、Sp=80 mm/h、Sp=90 mm/h条件下占比分别为38%、44%、63%、75%,中低危渣堆分别为6%、19%、12%、6%,低危渣堆占比56%、38%、25%、19%,随着雨力不断增大,高危渣堆占比不断增大,低危渣堆不断减少;不考虑渣堆相互影响的情况下,各种雨力大小工况下,各渣堆危险高低排序不变。不考虑渣堆相互影响的各雨力条件下渣堆的危险程度分布如图9所示。
表 5 不同雨力下渣堆危险性以及稳定性系数Table 5. Ranking table of slag pile stability under different rain conditions渣堆
编号ZD
8ZD
16ZD
9ZD
1ZD
5ZD
15ZD
13ZD
14ZD
11ZD
3ZD
4ZD
10ZD
2ZD
7ZD
12ZD
649 mm/h Fs 0.51 0.68 0.72 0.90 0.90 0.95 1.01 1.25 1.33 1.40 1.85 1.88 2.11 2.26 2.64 2.76 60 mm/h Fs 0.41 0.54 0.58 0.72 0.72 0.76 0.81 1.00 1.07 1.12 1.49 1.51 1.70 1.81 2.12 2.22 80 mm/h Fs 0.30 0.40 0.42 0.53 0.53 0.56 0.60 0.74 0.79 0.83 1.09 1.11 1.25 1.33 1.56 1.63 90 mm/h Fs 0.26 0.35 0.37 0.47 0.47 0.49 0.53 0.65 0.69 0.73 0.96 0.98 1.10 1.18 1.38 1.44 结合表5及图9可以看出这4种雨力计算过程中均存在同一条沟上游渣堆失稳后会对下游渣堆稳定性造成影响,例如图9(a)中ZD1在Sp=49 mm/h时首先失稳汇入主沟,会对ZD2以及下游渣堆产生影响,因此要在不考虑渣堆相互影响的计算基础上对渣堆的稳定性系数做出修正。
3.3 考虑渣堆相互影响的稳定性修正计算
3.3.1 渣堆稳定性修正方法
为了分析渣堆之间的相互影响,考虑到同一条沟上游渣堆失稳后主要是增加洪水重度,增大洪峰流量,进而增加下游泄洪流速,降低了下游的渣堆的稳定性,因此采用《中国泥石流》[21]中式(7)以及《工程地质手册》[22]式(8)进行修正。
$$ {\gamma _{\rm{c}}} = \tan J + {k_0} \cdot {k_r} \cdot {k_1} \cdot {A^{0.11}} \text{;} $$ (7) 式中:γc——泥石流容重/(kN·m−3);
J——物源区平均坡度;
k0——补给系数;
kr——岩性系数;
k1——稀释系数;
A——物源区储备体积与汇水面积比。
(按照文献[21]k0取1,kr取1,k1取0.9)。
$$ {Q_{\rm{c}}} = Q\left(1 + \frac{{{\gamma _{\rm{c}}} - 1}}{{{\gamma _{\rm{s}}} - {\gamma _{\rm{c}}}}}\right) $$ (8) 式中:Qc——修正后洪峰流量/(m3·s−1);
γs——沙粒的密度/(kg·m−3),取2.72 kg·m−3;其余参数同前文一致。
3.3.2 渣堆稳定性修正过程
考虑渣堆相互影响后的修正过程如图10所示。
3.3.3 各种雨力条件下渣堆修正后的稳定性系数
用3.3.2的过程,将4种雨力的稳定性系数进行修正后,其计算结果见表6。
表 6 不同雨力工况下渣堆稳定性修正计算结果表Table 6. The calculation result of slag pile stability correction under different rain conditions近10年最大观测雨强
修正结果(49 mm/h)渣堆编号 ZD1 ZD2 ZD3 ZD4 ZD5 ZD6 ZD7 ZD8 Fs 0.90 1.41 1.01 1.33 0.70 2.26 1.80 0.43 渣堆编号 ZD9 ZD10 ZD11 ZD12 ZD13 ZD14 ZD15 ZD16 Fs 0.62 1.48 1.12 2.64 1.01 1.25 0.95 0.62 25年一遇雨强修正
结果(60 mm/h)渣堆编号 ZD1 ZD2 ZD3 ZD4 ZD5 ZD6 ZD7 ZD8 Fs 0.72 1.13 0.81 1.06 0.56 1.70 1.44 0.34 渣堆编号 ZD9 ZD10 ZD11 ZD12 ZD13 ZD14 ZD15 ZD16 Fs 0.47 1.22 0.87 2.12 0.81 0.84 0.63 0.45 50年一遇雨强修正
结果(80 mm/h)渣堆编号 ZD1 ZD2 ZD3 ZD4 ZD5 ZD6 ZD7 ZD8 Fs 0.53 0.83 0.59 0.78 0.41 1.24 1.05 0.25 渣堆编号 ZD9 ZD10 ZD11 ZD12 ZD13 ZD14 ZD15 ZD16 Fs 0.35 0.88 0.62 1.56 0.60 0.62 0.46 0.33 100年一遇雨强修正
结果(90 mm/h)渣堆编号 ZD1 ZD2 ZD3 ZD4 ZD5 ZD6 ZD7 ZD8 Fs 0.47 0.73 0.52 0.68 0.36 1.10 0.93 0.22 渣堆编号 ZD9 ZD10 ZD11 ZD12 ZD13 ZD14 ZD15 ZD16 Fs 0.31 0.78 0.55 1.38 0.53 0.54 0.41 0.29 3.3.4 各种雨力条件下修正后的稳定性分析
采用3.1.5条的判定方法,即假设稳定性系数Fs<1为高危险(失稳),1≤Fs≤1.15为中危险(临界),Fs>1.15为低危险(稳定)。
通过表7计算结果可知高危渣堆在雨力Sp=49 mm/h、Sp=60 mm/h、Sp=80 mm/h、Sp=90 mm/h条件下占比分别为38%、63%、81%、88%,中危渣堆分别为19%、12%、6%、6%,低危渣堆占比44%、25%、13%、6%,对比表5计算结果,可知考虑渣堆相互影响后,相同雨力条件下,高位渣堆在增加,低危渣堆在减少,这是由于上游渣堆失稳后增大了下有渣堆的致灾风险,不同雨力条件下,各渣堆危险高低排序不同。这是考虑了相似沟道渣堆相互影响的结果,说明考虑渣堆相互影响更符合实际。考虑渣堆相互影响后各雨力条件下的渣堆危险性分布如图11所示。
表 7 修正后不同雨力下渣堆危险性以及稳定性系数Table 7. Ranking table of slag pile stability under different rain conditions after correction49 mm/h 渣堆编号 ZD
8ZD
9ZD
16ZD
5ZD
1ZD
15ZD
3ZD
13ZD
11ZD
14ZD
4ZD
2ZD
10ZD
7ZD
6ZD
12Fs 0.43 0.62 0.62 0.70 0.90 0.95 1.01 1.01 1.12 1.25 1.33 1.41 1.48 1.80 2.26 2.64 60 mm/h 渣堆编号 ZD
8ZD
16ZD
9ZD
5ZD
15ZD
1ZD
3ZD
13ZD
14ZD
11ZD
4ZD
2ZD
10ZD
7ZD
6ZD
12Fs 0.34 0.45 0.47 0.56 0.63 0.72 0.81 0.81 0.84 0.87 1.06 1.13 1.22 1.44 1.70 2.12 80 mm/h 渣堆编号 ZD
8ZD
16ZD
9ZD
5ZD
15ZD
1ZD
3ZD
13ZD
11ZD
14ZD
4ZD
2ZD
10ZD
7ZD
6ZD
12Fs 0.25 0.33 0.35 0.41 0.46 0.53 0.59 0.60 0.62 0.62 0.78 0.83 0.88 1.05 1.24 1.56 90 mm/h 渣堆编号 ZD
8ZD
16ZD
9ZD
5ZD
15ZD
1ZD
3ZD
13ZD
14ZD
11ZD
4ZD
2ZD
10ZD
7ZD
6ZD
12Fs 0.22 0.29 0.31 0.36 0.41 0.47 0.52 0.53 0.54 0.55 0.68 0.73 0.78 0.93 1.10 1.38 4. 结论及防治建议
4.1 结论
(1)该区泥石流隐患是人为原因,虽然马超营断裂演化形成有利于泥石流发生的地形条件,但废弃矿渣压占行洪通道才是主因。
(2)渣堆泄洪流速(Us)计算需Sp、F、L、I、h、b等6个参数,启动流速(Uc)需α、φ、d等3个参数;同一雨力条件下,渣堆失稳转化为泥石流的风险大小不同,取决于Us和Uc的比值;不同雨力条件下,对于特定堆弃场地、特定堆积形态,Us仅随Sp赋值而改变,而Uc是定值,稳定性系数(Fs)与Sp赋值有关。
(3)渣堆的稳定性可通过不考虑相互影响算出初步结果,在分析相互影响关系进行修正等两个步骤进行;随着雨力增强,失稳渣堆增多,泥石流危害程度增大。
4.2 防治建议
结合金矿区降水及矿渣堆放现状,防灾的关键在于防渣,结合文中分析提出建议如下:
(1)废渣堆放场地要提前规划,做好选址,避免因挤压行洪通道而增加泄洪流速,增大致灾风险。
(2)渣堆防治要根据雨力大小,危险性高低做到分类防治、科学精准、经济节约。
致谢:该项研究得到长安大学曹琰波副教授,中国地质调查局西安地质调查中心徐友宁研究员、朱立峰高工的悉心指导和栾川县自然资源局、栾川县金兴矿业有限责任公司的大力支持,在此一并表示感谢。
-
表 1 不同孕灾地质环境条件的信息量
Table 1 Information of different disaster-induced geological environmental conditions
孕灾地质条件 分类区间 信息量 坡度/(°) [0, 8) −0.11678 [8, 16) 0.09139 [16, 21) 0.24305 [24, 32) 0.22223 [32, 90] −0.17598 高程/m [540, 1000) −1.87118 [1000, 1500) −0.01276 [1500, 2000) 0.36376 [2000, 2500) −0.35401 [2500, 3001] −0.92529 距断层距离/m [0,500) 0.55638 [500, 1000) 0.33742 [1000, 1500) −0.08659 [1500, 2000) −0.00810 [2000, 25805] −0.11811 工程地质岩组 松散岩土 −0.40000 较硬-硬层状碎屑岩 0.24766 硬质层状碳酸盐岩 −0.30988 岩浆岩 −0.16451 变质岩 0.17583 距水系距离/m [0,200) 0.03817 [200, 400) 0.23206 [400, 600) −0.16629 [600,800) −0.01517 [800, 6134] −0.05321 表 2 龙陵县滑坡灾害地质环境条件权重统计表
Table 2 Statistics of weights of geological and environmental conditions of landslide disaster in Longling County
地质环境条件 坡度 高程 距断层距离 工程地质岩组 距水系距离 权重 0.186 0.142 0.315 0.259 0.098 表 3 不同等级的易发区划与实际滑坡分布对比
Table 3 Comparison of the prone zoning of different grades with the actual landslide distribution
易发分区 灾点数量/个 灾点比例/% 面积/km2 面积比例/% 灾点密度/km2 滑坡面积/km2 占总滑坡面积比例/% 非易发区 0 0 14.33 0.51 0 0 0 低易发区 16 12.12 1053.87 37.46 0.02 0.13 6.11 中易发区 70 53.03 1471.65 52.96 0.05 0.98 46.71 高易发区 46 34.84 254.73 9.10 0.18 0.99 47.18 表 4 累计降雨量和滑坡相关性分析
Table 4 Correlation analysis of different times and landslides in the previous period
累计降雨量 相关系数 累计降雨量 相关系数 前1 d 0.819 前5 d 0.524 前2 d 0.785 前6 d 0.412 前3 d 0.808 前7 d 0.316 前4 d 0.615 前8 d 0.213 表 5 相关系数与相关强度对照表[16]
Table 5 Comparison of correlation coefficient and correlation intensity
相关系数的值 直线相关程度 |r|=0 完全不相关 |r|≤0.3 微弱相关 0.3<|r|≤0.5 低度相关 0.5<|r|≤0.8 显著相关 0.8<|r|<1 高度相关 |r|=1 完全相关 表 6 龙陵县滑坡四色预警降雨阈值
Table 6 Landslide four-color warning rainfall threshold of Longling County
易发分区 降雨时段 不同等级预警阈值/mm 蓝色 黄色 橙色 红色 低易发区 单日 47.2 71.3 89.7 108.6 前3 d 38.9 57.3 66.9 79.3 中易发区 单日 41.9 63.8 77.1 95.3 前3 d 35.1 48.5 55.6 66.9 高易发区 单日 36.7 54.2 67.3 87.6 前3 d 27.1 44.1 51.1 61.9 -
[1] 李媛,杨旭东. 降雨诱发区域性滑坡预报预警方法研究[J]. 水文地质工程地质,2006,33(2):101 − 103. [LI Yuan,YANG Xudong. Research on the forecasting and early warning of the regional precipitation-induced landslide[J]. Hydrogeology & Engineering Geology,2006,33(2):101 − 103. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3665.2006.02.024 LI Yuan, YANG Xudong. Research on the forecasting and early warning of the regional precipitation-induced landslide[J]. Hydrogeology & Engineering Geology, 2006, 33(2): 101-103. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3665.2006.02.024
[2] 温铭生,王连俊,李铁锋,等. 云南省新平县滑坡预警区划研究[J]. 水文地质工程地质,2010,37(4):103 − 106. [WEN Mingsheng,WANG Lianjun,LI Tiefeng,et al. Early-warning zoning studying of landslides in Xinping[J]. Hydrogeology & Engineering Geology,2010,37(4):103 − 106. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3665.2010.04.021 WEN Mingsheng, WANG Lianjun, LI Tiefeng, et al. Early-warning zoning studying of landslides in Xinping[J]. Hydrogeology & Engineering Geology, 2010, 37(4): 103-106. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3665.2010.04.021
[3] 温智熊,蓝俊康,梁一敏. 广西龙胜县崩塌和滑坡地质灾害的气象预警预报[J]. 桂林理工大学学报,2018,38(3):464 − 468. [WEN Zhixiong,LAN Junkang,LIANG Yimin. Meteorological forecasting and alarming system against geological disasters in Longsheng of Guangxi[J]. Journal of Guilin University of Technology,2018,38(3):464 − 468. (in Chinese with English abstract) DOI: 10.3969/j.issn.1674-9057.2018.03.013 WEN Zhixiong, LAN Junkang, LIANG Yimin. Meteorological forecasting and alarming system against geological disasters in Longsheng of Guangxi[J]. Journal of Guilin University of Technology, 2018, 38(3): 464-468. (in Chinese with English abstract) DOI: 10.3969/j.issn.1674-9057.2018.03.013
[4] 朱文慧,晏鄂川,邹浩,等. 湖北省黄冈市降雨型滑坡气象预警判据[J]. 地质科技通报,2022,41(6):45 − 53. [ZHU Wenhui,YAN Echuan,ZOU Hao,et al. Meteorological early warning criterion of rainfall landslide in Huanggang City,Hubei Province[J]. Bulletin of Geological Science and Technology,2022,41(6):45 − 53. (in Chinese with English abstract) ZHU Wenhui, YAN Echuan, ZOU Hao, et al. Meteorological early warning criterion of rainfall landslide in Huanggang City, Hubei Province[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 45-53. (in Chinese with English abstract)
[5] 曹中山. 基于易发性和临界降雨阈值的滑坡危险性预警建模研究[D]. 南昌: 南昌大学, 2020 CAO Zhongshan. Study on landslide risk early warning modeling based on susceptibility and critical rainfall threshold[D]. Nanchang: Nanchang University, 2020. (in Chinese with English abstract)
[6] 孙德亮. 基于机器学习的滑坡易发性区划与降雨诱发滑坡预报预警研究[D]. 上海: 华东师范大学, 2019 SUN Deliang. Study on landslide susceptibility zoning and rainfall-induced landslide prediction and early warning based on machine learning[D]. Shanghai: East China Normal University, 2019. (in Chinese with English abstract)
[7] ROSI A,SEGONI S,CATANI F,et al. Statistical and environmental analyses for the definition of a regional rainfall threshold system for landslide triggering in Tuscany (Italy)[J]. Journal of Geographical Sciences,2012,22(4):617 − 629. DOI: 10.1007/s11442-012-0951-0
[8] 朱昳橙,李益敏,魏苏杭. 怒江州滑坡地质灾害气象预警模型研究[J]. 云南大学学报(自然科学版),2016,38(4):610 − 619. [ZHU Yicheng,LI Yimin,WEI Suhang. A prediction model study on landslide in Nujiang State[J]. Journal of Yunnan University (Natural Sciences Edition),2016,38(4):610 − 619. (in Chinese with English abstract) ZHU Yicheng, LI Yimin, WEI Suhang. A prediction model study on landslide in Nujiang State[J]. Journal of Yunnan University (Natural Sciences Edition), 2016, 38(4): 610-619. (in Chinese with English abstract)
[9] 夏辉,殷坤龙,梁鑫,等. 基于SVM-ANN模型的滑坡易发性评价—以三峡库区巫山县为例[J]. 中国地质灾害与防治学报,2018,29(5):13 − 19. [XIA Hui,YIN Kunlong,LIANG Xin,et al. Landslide susceptibility assessment based on SVM-ANN Models:A case stualy for Wushan County in the Three Gorges Reservoir[J]. The Chinese Journal of Geological Hazard and Control,2018,29(5):13 − 19. (in Chinese with English abstract) XIA Hui, YIN Kunlong, LIANG Xin, et al. Landslide susceptibility assessment based on SVM-ANN Models: a case stualy for Wushan County in the Three Gorges Reservoir[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(5): 13-19. (in Chinese with English abstract)
[10] 刘福臻,王灵,肖东升. 机器学习模型在滑坡易发性评价中的应用[J]. 中国地质灾害与防治学报,2021,32(6):98 − 106. [LIU Fuzhen,WANG Ling,XIAO Dongsheng. Application of machine learning model in landslide susceptibility evaluation[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):98 − 106. (in Chinese with English abstract) LIU Fuzhen, WANG Ling, XIAO Dongsheng. Application of machine learning model in landslide susceptibility evaluation[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 98-106. (in Chinese with English abstract)
[11] 张玘恺,凌斯祥,李晓宁,等. 九寨沟县滑坡灾害易发性快速评估模型对比研究[J]. 岩石力学与工程学报,2020,39(8):1595 − 1610. [ZHANG Qikai,LING Sixiang,LI Xiaoning,et al. Comparison of landslide susceptibility mapping rapid assessment models in Jiuzhaigou County,Sichuan Province,China[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(8):1595 − 1610. (in Chinese with English abstract) DOI: 10.13722/j.cnki.jrme.2020.0029 ZHANG Qikai, LING Sixiang, LI Xiaoning, et al. Comparison of landslide susceptibility mapping rapid assessment models in Jiuzhaigou County, Sichuan Province, China[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(8): 1595-1610. (in Chinese with English abstract) DOI: 10.13722/j.cnki.jrme.2020.0029
[12] 郭子正,殷坤龙,黄发明,等. 基于滑坡分类和加权频率比模型的滑坡易发性评价[J]. 岩石力学与工程学报,2019,38(2):287 − 300. [GUO Zizheng,YIN Kunlong,HUANG Faming,et al. Evaluation of landslide susceptibility based on landslide classification and weighted frequency ratio model[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(2):287 − 300. (in Chinese with English abstract) GUO Zizheng, YIN Kunlong, HUANG Faming, et al. Evaluation of landslide susceptibility based on landslide classification and weighted frequency ratio model[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(2): 287-300. (in Chinese with English abstract)
[13] 张勇,温智,程英建. 四川巴中市滑坡灾害与降雨雨型关系探讨[J]. 水文地质工程地质,2020,47(2):178 − 182. [ZHANG Yong,WEN Zhi,CHENG Yingjian. A discussion of the relationship between landslide disaster and rainfall types in Bazhong of Sichuan[J]. Hydrogeology & Engineering Geology,2020,47(2):178 − 182. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.201906036 ZHANG Yong, WEN Zhi, CHENG Yingjian. A discussion of the relationship between landslide disaster and rainfall types in Bazhong of Sichuan[J]. Hydrogeology & Engineering Geology, 2020, 47(2): 178-182. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.201906036
[14] 栗倩倩,史绪山,柴波,等. 台风-非台风降雨型滑坡的多时段临界雨量值预测模型[J]. 地质科技通报,2022,41(2):267 − 273. [LI Qianqian,SHI Xushan,CHAI Bo,et al. Multiduration critical rainfall prediction model for typhoons and non-typhoon rainfall landslides[J]. Bulletin of Geological Science and Technology,2022,41(2):267 − 273. (in Chinese with English abstract) LI Qianqian, SHI Xushan, CHAI Bo, et al. Multiduration critical rainfall prediction model for typhoons and non-typhoon rainfall landslides[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 267-273. (in Chinese with English abstract)
[15] 夏梦想,李远耀,吴吉民,等. 基于I-D统计模型的张家界市滑坡灾害降雨预警阀值研究[J]. 自然灾害学报,2021,30(4):203 − 212. [XIA Mengxiang,LI Yuanyao,WU Jimin,et al. Research on rainfall early warning threshold of landslide disaster in Zhangjiajie City based on I-D statistical model[J]. Journal of Natural Disasters,2021,30(4):203 − 212. (in Chinese with English abstract) XIA Mengxiang, LI Yuanyao, WU Jimin, et al. Research on rainfall early warning threshold of landslide disaster in Zhangjiajie City based on I-D statistical model[J]. Journal of Natural Disasters, 2021, 30(4): 203-212. (in Chinese with English abstract)
[16] 卢纹岱. SPSS统计分析(第4版)[M]. 电子工业出版社, 2012 LU Wendai. SPSS Statistical Analysis (4th Edition) [M]. Publishing House of Electronics Industry, 2012. (in Chinese with English abstract)
[17] 林巍,李远耀,徐勇,等. 湖南慈利县滑坡灾害的临界降雨量阈值研究[J]. 长江科学院院报,2020,37(2):48 − 54. [LIN Wei,LI Yuanyao,XU Yong,et al. Rainfall thresholds of rainfall-triggered landslides in Cili County,Hunan Province[J]. Journal of Yangtze River Scientific Research Institute,2020,37(2):48 − 54. (in Chinese with English abstract) DOI: 10.11988/ckyyb.20181125 LIN Wei, LI Yuanyao, XU Yong, et al. Rainfall thresholds of rainfall-triggered landslides in Cili County, Hunan Province[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(2): 48-54. (in Chinese with English abstract) DOI: 10.11988/ckyyb.20181125
[18] 刘谢攀, 殷坤龙, 肖常贵, 等. 基于 I-D-R 阈值模型的滑坡气象预警[J/OL]. 地球科学, 2022(2022-09-05)[2022-07-11]. https://kns.cnki.net/kcms/detail/42.1874.P.20220708.1511.002.html. LIU Xiepan, YIN Kunlong, XIAO Changgui, et al. Meteorological early warning of landslide based on I-D-R threshold model[J]. Earth Science, 1 − 15. [2023-05-24](in Chinese with English abstract)
[19] 黄发明,曹中山,姚池,等. 基于决策树和有效降雨强度的滑坡危险性预警[J]. 浙江大学学报(工学版),2021,55(3):472 − 482. [HUANG Faming,CAO Zhongshan,YAO Chi,et al. Landslides hazard warning based on decision tree and effective rainfall intensity[J]. Journal of Zhejiang University (Engineering Science),2021,55(3):472 − 482. (in Chinese with English abstract) HUANG Faming, CAO Zhongshan, YAO Chi, et al. Landslides hazard warning based on decision tree and effective rainfall intensity[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(3): 472-482. (in Chinese with English abstract)
[20] 中国气象局. 暴雨诱发的地质灾害气象风险预警等级: QX/T 487—2019[S]. 北京: 气象出版社, 2019 China Meteorological Bureau of the People's Republic of China. Meteorological risk early warning levels of geological disaster induced by torrential rain: QX/T 487—2019[S]. Beijing: China Meteorological Press, 2019. (in Chinese)
[21] 赵衡,宋二祥. 诱发区域性滑坡的降雨阈值[J]. 吉林大学学报(地球科学版),2011,41(5):1481 − 1487. [ZHAO Heng,SONG Erxiang. Rainfall thresholds for regional landslides[J]. Journal of Jilin University (Earth Science Edition),2011,41(5):1481 − 1487. (in Chinese with English abstract) ZHAO Heng, SONG Erxiang. Rainfall thresholds for regional landslides[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(5): 1481-1487. (in Chinese with English abstract)
[22] 戴丛蕊,黄玮,李蒙,等. 云南降雨型滑坡县级预警雨量阈值分析[J]. 气象科技,2015,43(4):675 − 680. [DAI Congrui,HUANG Wei,LI Meng,et al. County-level rainfall warning thresholds for rainfall-induced landslides in Yunnan[J]. Meteorological Science and Technology,2015,43(4):675 − 680. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-6345.2015.04.019 DAI Congrui, HUANG Wei, LI Meng, et al. County-level rainfall warning thresholds for rainfall-induced landslides in Yunnan[J]. Meteorological Science and Technology, 2015, 43(4): 675-680. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-6345.2015.04.019
-
期刊类型引用(1)
1. 刘星宇,朱立峰,孙建伟,贾煦,刘向东,黄虹霖,程贤达,孙亚柯,胡超进,张晓龙. 沟谷型泥石流特征参数的等代面积递归精细求解. 西北地质. 2024(03): 272-284 . 百度学术
其他类型引用(0)