ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

藏东察雅县城地质灾害风险评价及源头管控对策建议

田尤, 陈龙, 黄海, 刘建康, 李元灵, 李洪梁

田尤,陈龙,黄海,等. 藏东察雅县城地质灾害风险评价及源头管控对策建议[J]. 中国地质灾害与防治学报,2024,35(2): 146-154. DOI: 10.16031/j.cnki.issn.1003-8035.202208033
引用本文: 田尤,陈龙,黄海,等. 藏东察雅县城地质灾害风险评价及源头管控对策建议[J]. 中国地质灾害与防治学报,2024,35(2): 146-154. DOI: 10.16031/j.cnki.issn.1003-8035.202208033
TIAN You,CHEN Long,HUANG Hai,et al. Geological hazard risk assessment and suggestions for risk control in Chaya County, eastern Xizang[J]. The Chinese Journal of Geological Hazard and Control,2024,35(2): 146-154. DOI: 10.16031/j.cnki.issn.1003-8035.202208033
Citation: TIAN You,CHEN Long,HUANG Hai,et al. Geological hazard risk assessment and suggestions for risk control in Chaya County, eastern Xizang[J]. The Chinese Journal of Geological Hazard and Control,2024,35(2): 146-154. DOI: 10.16031/j.cnki.issn.1003-8035.202208033

藏东察雅县城地质灾害风险评价及源头管控对策建议

基金项目: 中国地质调查局地质调查项目(DD20230449;DD20190644);第二次青藏高原综合科学考察研究项目(2019QZKK0902)
详细信息
    作者简介:

    田 尤(1991—),男,贵州岑巩人,硕士,工程师,主要从事地质灾害调查与评价工作。E-mail:tyou@mail.cgs.gov.cn

  • 中图分类号: P694

Geological hazard risk assessment and suggestions for risk control in Chaya County, eastern Xizang

  • 摘要:

    以藏东察雅县城为研究区,选取高程、坡度、坡形、坡向、斜坡结构、地层、距断层距离共7个评价指标,运用证据权重法,构建了地质灾害易发性评价模型。以4种降雨频率(10%、5%、2%、1%)下的年最大日降雨量作为动态诱发因子,建筑、人口和交通设施作为承灾体,评价地质灾害的动态风险性。结果表明,研究区斜坡以中、低风险为主,围绕县城场镇两侧的斜坡出现少量高风险和极高风险区。随着降雨频率的降低,区内高风险区、极高风险区面积最大增长5.34%和0.07%;低风险区、中风险区面积最大变化幅度分别为28.33%和23.32%。基于风险评价结果,提出考虑不同降雨频率的地质灾害风险源头管控方法,具体为:针对10%、5%、2%和1% 不同降雨频率下的极高风险区,建议分别采取工程治理、工程治理/专业监测、专业监测、专业监测/群专结合的管控手段;针对1%降雨频率下的高风险与中风险区,建议采取群专结合与群测群防。该风险管控体系考虑了不同降雨频率下斜坡的动态风险,可提高山区城镇地质灾害风险的管控精细化水平。

    Abstract:

    Chaya County in eastern Xizang was selected as the research area for the susceptibility assessment of geological disasters. Seven evaluation indexes, including elevation, slope grade, slope form, slope direction, slope structure, stratum, and distance from fault, were selected to construct an evaluation model of geological disaster susceptibility using the evidence weight method. Using the annual maximum daily rainfall under four rainfall frequencies (10%, 5%, 2%, 1%) as the dynamic inducing factor and building population and transportation facilities as the hazard bearing body, the dynamic risk of geological hazards in the town was evaluated. The results show that except for the small slopes on both sides of the county town, which were mainly high-risk and extremely high-risk areas, other areas in the research area were mainly medium and low-risk areas. As the frequency of rainfall decreased, the areas of high-risk and extremely high-risk areas increased by a maximum of 5.34% and 0.07%, respectively, while the areas of low-risk and medium-risk areas changed by a maximum of 28.33% and 23.32%, respectively. Based on the risk assessment results, a method for controlling the source of geological hazard risk considering different rainfall frequencies was proposed. Specifically, for the extremely high-risk areas under the four rainfall frequencies of 10%, 5%, 2% and 1%, it is recommended to adopt engineering management, engineering management/professional monitoring, professional monitoring, and professional monitoring/combination of mass monitoring and professional monitoring. For the high-risk and medium-risk areas under a 1% rainfall frequency, the recommended risk control measures were the combination of mass monitoring and professional monitoring, and the combination of mass supervision and mass prevention.The risk management and control system accounted for the dynamic risks of slopes under different rainfall frequencies, which would enhance the management and control of geological hazard risks in mountainous urban areas in a refined manner.

  • 崩塌落石灾害是我国西部地区三大地质灾害之一[13]。由于落石具有多发性、突发性、随机性、难预测、能量大等特点[46],常常会对山区公路、铁路等设施造成巨大的威胁[711]。棚洞是防护公路、铁路等免受落石冲击破坏最有效的措施之一[12]。典型的棚洞主要由混凝土梁柱、混凝土板以及覆盖在混凝土板上的土垫层构成。土垫层的主要作用是避免落石直接冲击混凝土板,缓冲落石的冲击能,减小冲击力,并将落石冲击力扩散到更大的范围(图1)。虽然现在已经有较多的棚洞设计规范,但是依然存在落石冲击穿透土垫层,导致棚洞主体结构破坏的现象[1314]。因此,开展落石冲击土垫层动力响应研究,有利于优化土垫层的设计,提升棚洞防护措施的有效性,增强崩塌落石灾害的防灾减灾能力。

    图  1  崩塌落石与棚洞示意图
    Figure  1.  Schematic diagram of rockfall and rock shed

    落石冲击土垫层是一个非常复杂的过程,以快速加卸载、大变形、快速的能量转换和应力波传播为特征。国内外学者一直都在探索描述落石冲击力的理论计算方法。现在已形成的理论包括:赫兹弹性接触理论[15]、赫兹弹塑性接触理论[1619]、能量守恒原理[2021]、冲量定理[22]、地基承载力理论[23]、BIMPAM流变学理论[24]和基于Logistic函数的落石碰撞分析方法[25]

    除理论研究外,国内外学者一直以来都在开展落石冲击土垫层的试验研究,包括小尺度、中等尺度试验和少量的原型试验。罗杰等[26]采用试验研究了四种土壤(砂土、黏土、壤土和黄棕壤)的缓冲性能。研究表明,砂土的缓冲性能最佳。王林峰等[27]基于小型的落石棚洞模型,研究了落石重量、下落高度和棚洞顶板倾角对落石冲击力的影响,研究表明落石重量是影响落石冲击力的首要因素,其次是下落高度,最后为棚洞顶板倾角。Calvetti等[28]采用大尺度的试验研究了落石冲击土垫层的现象,研究表明垫层表层土的密度是影响落石冲击力的重要因素,而土垫层的倾斜角度影响不大。Kawahara和Muro[29]研究了土垫层密度和厚度对落石冲击力的影响,研究表明落石的冲击力随垫层密度的增大而增大,土垫层与棚洞顶板的作用力随垫层厚度的增大而减小。

    数值模拟是研究落石冲击土垫层的一种有效方法。数值模拟的优势在于:费用低,可重复性强,可以分析得到试验中无法获取的信息,可以节省大量的人力物力,避免仪器设备等被损坏。因为土垫层自身具有离散特性,因此离散单元法被广泛用于落石冲击土垫层的数值研究。王林峰等[30]采用离散元软件(PFC2D)研究了落石半径和密度对冲击力的影响。江巍等[31]运用离散元软件研究了素填土、粉质黏土和砂质粉土的缓冲能力。Calvetti等[28]应用离散元方法研究了落石冲击能量对落石冲击力的影响。Zhang等[32]采用三维离散元法研究了落石冲击土垫层的反弹现象,分析了落石反弹与落石尺寸和垫层厚度的关系。上述研究表明,离散元法是研究落石冲击土垫层的一种有效方法。

    综上所述,目前已经有较多关于落石冲击土垫层的成果,大多数的研究结果表明,土垫层厚度越大,落石冲击力越小,土垫层缓冲效果越好。但是,缓冲效果是否会一直增加,以及垫层厚度如何选择,现有研究还未回答。因此,本项研究拟采用离散元法探讨垫层厚度和下落高度对土垫层缓冲落石冲击力特性的影响,以期为土垫层的设计提供理论指导。

    本项研究数值模拟采用开源离散元软件:ESyS-Particle[33]。基于分子动力学的思想,离散单元法将土模拟为球形颗粒的集合体。在荷载作用下,颗粒可以发生平动和转动。在计算过程中,颗粒间被赋予一定的接触模型,两个相互接触的颗粒通过接触模型产生接触力。通过计算每个颗粒所受的合力($ {{\boldsymbol{F}}_i} $)和合力矩($ {T_i} $),并根据牛顿第二定律,采用显示积分的方法更新颗粒的速度和位置,如式(1)和式(2)所示。

    $$ {{\boldsymbol{F}}_i} = {m_i}\frac{{{{\text{d}}^2}}}{{{\text{d}}{t^2}}}{{\boldsymbol{r}}_i} $$ (1)
    $$ {{\boldsymbol{T}}_i} = {I_i}\frac{{{\text{d}}{{\boldsymbol{\omega }}_i}}}{{{\text{d}}t}} $$ (2)

    式中:$ {m_i} $$ {{\boldsymbol{r}}_i} $——第i个颗粒的质量和位置;

    $ {I_i} $$ {{\boldsymbol{\omega }}_i} $——第i个颗粒的转动惯量和转动速度。

    本项研究中,颗粒间的接触模型采用无黏结摩擦模型,如图2所示。无黏结摩擦模型包括颗粒间的法向线性接触模型,见图2(a),切向接触模型,见图2(b),和抗转动接触模型,见图2(c)。为了模拟真实土颗粒间的非弹性碰撞,在法向接触模型中引入阻尼,如图2(a)所示。同时为了考虑真实土颗粒形状的影响,引入抗转动接触模型。

    图  2  无黏结摩擦模型
    Figure  2.  Cohesionless particle contacting model

    根据图2所示的接触模型,两个颗粒间的接触力包括:法向接触力($ {F_{\rm{cn}}} $)、法向阻尼力($ {F_{\rm{cd}}} $)、切向接触力($ {F_{\rm{cs}}} $)和滚动力矩($ {M_{\rm{cr}}} $)。法向接触力由式(3)计算。

    $$ {F_{\rm{cn}}} = {k_{\rm{cn}}}{u_{\rm{cn}}} + {F_{\rm{cd}}} $$ (3)

    式中:$ {k_{\rm{cn}}} $——法向接触刚度;

    $ {u_{\rm{cn}}} $——两个颗粒接触处的重叠距离。

    法向接触刚度由式(4)计算。

    $$ {k_{\rm{cn}}} = {{\text π}}{E_{\rm{p}}}\left( {{R_{\rm{A}}} + {R_{\rm{B}}}} \right)/4 $$ (4)

    式中:$ {E_{\rm{p}}} $——颗粒的杨氏模量;

    $ {R_{\rm{A}}} $$ {R_{\rm{B}}} $——两个接触颗粒的半径。

    接触处的法向阻尼力由下式计算:

    $$ {F_{\rm{cd}}} = - 2\beta \sqrt {0.5\left( {{m_{\rm{A}}} + {m_{\rm{B}}}} \right){k_{\rm{cn}}}} {v_{\rm{cn}}} $$ (5)

    式中:$ \beta $——阻尼系数;

    $ {m_{\rm{A}}} $$ {m_{\rm{B}}} $——两个接触颗粒的质量;

    $ {v_{\rm{cn}}} $——两个接触颗粒的法向相对速度。

    接触处的切向接触力($ {F_{\rm{cs}}} $)采用理想弹塑性模型,其线性阶段按增量的形式来计算:

    $$ F_{\rm{cs}}^t = F_{\rm{cs}}^{t - \Delta t} + {k_{\rm{cs}}}{u_{\rm{cs}}} $$ (6)

    式中:$ F_{\rm{cs}}^t $$ F_{\rm{cs}}^{t - \Delta t} $——当前和前一个计算时步的切向力;

    $ {k_{\rm{cs}}} $——切向接触刚度;

    $ {u_{\rm{cs}}} $——两个颗粒在接触处的切向相对位移。

    切向接触刚度由式7计算。

    $$ {k_{\rm{cs}}} = {{\text π}}{E_{\rm{p}}}\left( {{R_{\rm{A}}} + {R_{\rm{B}}}} \right)/\left[ {8\left( {1{\text{ + }}{\upsilon _{\rm{p}}}} \right)} \right] $$ (7)

    式中:$ {\upsilon _{\rm{p}}} $——颗粒的泊松比。

    切向接触力的最大值由摩尔库仑定律控制,如式(8)。

    $$ \left| {F_{\rm{cs}}^t} \right| \leqslant {\mu _{\rm{p}}}\left| {{F_{\rm{cn}}}} \right| $$ (8)

    式中:$ {\mu _{\rm{p}}} $——颗粒的摩擦系数。

    滚动力矩用于考虑颗粒形状的影响,采用理想弹塑性模型,其计算方法为式(9)。

    $$ M_{\rm{cr}}^t = M_{\rm{cr}}^{t - \Delta t} + {k_{\rm{cr}}}\Delta {\theta _{{\mathrm{r}}}} $$ (9)

    式中:$ M_{\rm{cr}}^t $$ M_{\rm{cr}}^{t - \Delta t} $——当前时步和前一个时步的滚动力矩;

    $ {k_{\rm{cr}}} $——抗滚动刚度,$ {k_{\rm{cr}}} = {k_{\rm{cs}}}({R_{\rm{A}}} + {R_{\rm{B}}})/2 $

    $ \Delta {\theta _{{\mathrm{r}}}} $——在一个计算时步内,两个接触颗粒的相对转 动角度。

    最大的滚动力矩($ M_{\rm{cr}}^{\max } $)定义为:

    $$ M_{\rm{cr}}^{\max } = {\eta _{\rm{p}}}\left| {{F_{\rm{cn}}}} \right|\left( {{R_{\rm{A}}} + {R_{\rm{B}}}} \right)/2 $$ (10)

    式中:$ {\eta _{\rm{p}}} $——颗粒塑性力矩系数。

    落石冲击土垫层的离散元数值模型如图3所示。该模型与文献[34]中的室内物理模型一致。数值模型由落石、土垫层和混凝土底座三部分构成。落石模拟为一个直径(D)为20 cm,质量为11.5 kg的球形颗粒。土垫层模拟为长1.0 m,宽1.0 m,厚度为H的立方形颗粒集合体。土垫层颗粒的直径均匀分布在1.0到2.0 cm之间。混凝土底座模拟为一层直径为1.0 cm的固定颗粒,该层颗粒不会发生平动和转动,但是可以与土垫层颗粒接触产生接触力。土垫层的生成过程包括两个步骤:首先在四个刚性墙和底座围城的矩形盒子内,随机生成规定半径范围内的颗粒;然后通过重力沉积作用形成指定厚度的颗粒层。颗粒之间的接触模型均为无黏结摩擦模型。数值模型的输入参数如表1所示。

    图  3  落石冲击土垫层离散元模型
    Figure  3.  Discrete element model of rockfall impacting the soil cushion layer
    表  1  数值模型输入参数
    Table  1.  Input parameters of the numerical model
    变量 数值
    土垫层颗粒直径/cm [1.0, 2.0]
    土颗粒密度/(kg·m−3 2698.2
    颗粒杨氏模量/MPa 1×102
    颗粒泊松比 0.25
    颗粒阻尼系数 0.01
    颗粒摩擦系数 0.6
    颗粒塑性力矩系数 0.15
    计算时步/s 10−6
    重力加速/(m·s−2 9.81
    下载: 导出CSV 
    | 显示表格

    数值模拟过程中,落石被置于土垫层的正上方,并根据落石下落高度(hf)设定初始速度(v0)。初始速度和下落高度的关系如式(11)所示。

    $$ {v_0} = \sqrt {2g{h_{\rm{f}}}} $$ (11)

    本项研究中,落石下落高度有5种,包括3.0,5.0,10.0,20.0,30.0 m。土垫层的厚度有4种,包括10.0,20.0,30.0,40.0 cm。因此,总共进行20组数值试验。为了评估土垫层的缓冲特性,提取了落石的冲击力峰值($ F_{{\rm{block}}}^{\max } $),以及土垫层与底座接触面中心位置的峰值力($ F_{\text{c}}^{\max } $)。土垫层与底座中心位置的接触力可以看作是土垫层与棚洞顶板中心位置的接触力。因此,$ F_{\text{c}}^{\max } $$ F_{{\rm{block}}}^{\max } $的比值越小,表明土垫层的缓冲效果越好。

    通过与文献[34]报道的试验结果对比,本项研究首先验证了上述数值模型的有效性。图4给出了落石以3 m下落高度冲击30 cm厚土垫层情况下,落石冲击力和顶板中心力随时间演化曲线。由图中可以看出,从定性的角度,数值模拟结果能基本再现落石冲击力和顶板中心随时间的演化趋势;从定量的角度,数值模拟结果能再现落石冲击力峰值和顶板中心力峰值。因此,上述数值模型以及所选参数是有效的。

    图  4  落石冲击力和顶板中心力随时间演化曲线(hf = 3.0 m,H = 30.0 cm)
    Figure  4.  Time evolution curves of the impact force and the roof center force (hf = 3.0 m, H = 30.0 cm)

    图5给出了落石冲击不同厚度土垫层情况下,落石冲击力峰值($ F_{{\rm{block}}}^{\max } $)与下落高度($ {h_{\rm{f}}} $)的关系。从图中可以看出,落石峰值冲击力随下落高度的增大而增大。垫层厚度小于落石直径时的峰值冲击力明显大于其它垫层厚度情况,而且随着下落高度的增加,越来越明显。从图中还能看出,无论垫层厚度为多少,落石峰值冲击力与下落高度都可以用统一的式(12)来表示。

    图  5  落石冲击力峰值与下落高度的关系
    Figure  5.  Dependence of the maximum rockfall impact force on the falling height
    $$ F_{{{{\rm{block}}}}}^{\max } = {F_0}{\left( {{{{h_{{\mathrm{f}}}}} / {{h_0}}}} \right)^{0.6}} $$ (12)

    式中:$ {F_0} $$ {h_0} $——拟合参数。

    研究表明,$ {h_0} $取30.0 m,$ {F_0} $取下落高度为30.0 m的峰值冲击力时,可以达到较好的拟合效果。

    图6给出了落石以不同下落高度冲击不同厚度土垫层情况下,顶板中心力峰值($ F_{\text{c}}^{\max } $)与下落高度($ {h_{\rm{f}}} $)的关系。从图中可以看出,顶板中心力峰值与下落高度呈线性关系。当垫层厚度小于落石直径时(H/D = 0.5),$ F_{\text{c}}^{\max } $$ {h_{\rm{f}}} $的增长率(拟合直线的斜率)明显高于其它情况。随着垫层厚度的增加,$ F_{\text{c}}^{\max } $$ {h_{\rm{f}}} $的增长率减小。当垫层厚度由0.5倍落石直径增加到1.0倍落石直径时,$ F_{\text{c}}^{\max } $$ {h_{\rm{f}}} $的增长率由504.7 N/m减小到372.1 N/m。当垫层厚度增加到1.5倍落石直径和2.0倍落石直径时,$ F_{\text{c}}^{\max } $$ {h_{\rm{f}}} $的增长率分别变化为87.0 N/m和为48.2 N/m。这表明,随着垫层厚度的增加,下落高度对顶板中心力峰值的影响逐渐减小。

    图  6  顶板中心力峰值与落石下落高度的关系
    Figure  6.  Dependence of the maximum roof center force on the falling height

    图7给出了落石冲击力峰值($ F_{{\rm{block}}}^{\max } $)与垫层厚度和落石直径比值(H/D)之间的关系。从图中可以看出,随着垫层厚度的增加,落石的峰值冲击力减小。当H/D从0.5增加到1.0时,即垫层厚度从落石直径的0.5倍增加到1倍时,落石的冲击力峰值减小将近50%。当土垫层的厚度继续增加时(H/D > 1.0),落石峰值冲击力变化不大。并且,从图中可以看出,无论落石的下落高度为多少,即无论落石的冲击速度为多少,落石的峰值冲击力与土垫层厚度的关系均出现上述现象,即在土垫层厚度增加到1倍直径后,土垫层厚度对冲击力影响较小。

    图  7  落石冲击力峰值与标准化垫层厚度的关系
    Figure  7.  Dependence of the maximum rockfall impact force on the normalized soil cushion thickness

    图8给出了落石以不同下落高度冲击不同厚度土垫层情况下,顶板中心力峰值($ F_{\text{c}}^{\max } $)与垫层厚度和落石直径比值(H/D)的关系。从图中可以看出,无论落石下落高度(冲击速度)为多少,随着垫层厚度的增加,顶板中心力峰值不断减小,$ F_{\text{c}}^{\max } $H/D呈负指数幂函数关系,表明$ F_{\text{c}}^{\max } $H/D减小的速度不断变小。相比于0.5D的情况,当垫层厚度增加到一倍落石直径时(H = 1.0D),顶板中心力峰值减小64%;当垫层厚度增加到1.5D时,顶板中心力峰值减小86%;当垫层厚度增加到2.0D时,顶板中心力峰值减小92%。因此,垫层厚度从1.5D增加到2.0D仅仅使顶板中心力峰值减小6%。由此可见,在垫层厚度增加到1.5D后,继续增加垫层的厚度,土垫层缓冲效果(顶板中心力的减小量)增加不明显。结合土垫层厚度对落石冲击力峰值的影响,可以得出垫层厚度取落石直径的1.5倍较为合适。

    图  8  顶板中心力峰值与标准化垫层厚度的关系
    Figure  8.  Dependence of the maximum roof center force on the normalized soil cushion thickness

    图9给出了落石以不同下落高度冲击不同厚度的土垫层情况下,顶板中心力峰值与落石冲击力峰值的比值($ {{F_{\mathrm{c}}^{\max }}/{F_{{\rm{block}}}^{\max }}} $)与下落高度的关系。从图中可以看出,在垫层厚度为0.5倍落石直径情况下,$ {{F_{\mathrm{c}}^{\max }} / {F_{{\rm{block}}}^{\max }}} $随着下落高度的增大而减小。对比图4图5,可以发现,这是由于在垫层厚度小于落石直径的情况下,落石下落高度对冲击力峰值的影响高于对顶板中心力的影响。当土垫层的厚度增大到落石的直径的1.5倍时(H/D = 1.5),对于同一厚度垫层,$ {{F_{\mathrm{c}}^{\max }} /{F_{{\rm{block}}}^{\max }}} $基本上不随下落高度变化,表明此时,垫层的缓冲效果不受落石下落高度的影响。此外,对于H/D = 1.0、1.5和2.0情况下的$ {{F_{\mathrm{c}}^{\max }} / {F_{{\rm{block}}}^{\max }}} $平均值分别为0.097、0.034和0.02。顶板中心力峰值与落石冲击力峰值的比值随垫层厚度的增大而减小,表明垫层缓冲作用随垫层厚度的增大而增大。当H/D从1.0增加到1.5时,$ {{F_{\mathrm{c}}^{\max }}/{F_{{\rm{block}}}^{\max }}} $减小0.063;当H/D从1.5增加到2.0时,$ {{F_{\mathrm{c}}^{\max }}/ {F_{{\rm{block}}}^{\max }}} $仅减小0.014。表明,在土垫层厚度增加到1.5倍落石直径后,继续增加垫层的厚度,垫层的缓冲效果增加不明显。

    图  9  顶板中心力峰值和落石冲击力峰值的比值与落石下落高度的关系
    Figure  9.  Dependence of the ration between the maximum roof center force and the maximum rockfall impact force on the falling height

    基于离散单元法,建立落石冲击土垫层的数值模型,研究不同厚度土垫层缓冲落石冲击力的特性,得到以下结论:

    (1) 在土垫层厚度一定的情况下,落石冲击力峰值与落石下落高度呈幂函数关系;顶板中心力峰值与下落高度呈线性正相关关系。

    (2) 在下落高度一定的情况下,顶板中心力峰值与垫层厚度呈负指数幂函数关系;随着垫层厚度的增加,落石冲击力峰值减小,当垫层厚度增加到落石直径的1.0倍之后,落石冲击力峰值与垫层厚度无关。

    (3) 随垫层厚度的增大,顶板中心力峰值与落石冲击力峰值的比值减小,垫层缓冲效果增大;当垫层厚度增加到落石直径1.5倍之后,垫层缓冲效果增加不明显。垫层厚度建议取值为落石直径的1.5倍。

  • 图  1   地质灾害风险等级划分矩阵图

    Figure  1.   Risk level classification table for geological disasters

    图  2   察雅县城地质灾害发育分布图

    1—全新统冲洪积;2—中侏罗统车大桥组泥页岩;3—下侏罗统汪布组石英细砂岩;4—上三叠统夺盖拉组石英砂岩;5—崩塌;6—滑坡;7—泥石流;8—研究范围;9—逆断层;10-地层界线;11-滑坡边界;12—变形区

    Figure  2.   Distribution map of geological hazard development in Chaya county, Xizang autonomous region, China

    图  3   研究区地质灾害易发性评价结果

    Figure  3.   Evaluation results of geological hazard susceptibility in the study area

    图  4   研究区易发性评价成功率检验曲线

    Figure  4.   Verification curve for geohazard susceptibility evaluation between landslide accumulative frequency and prediction index

    图  5   研究区地质灾害危险性评价图

    Figure  5.   The probability assessment map of geological hazard risks at the study area

    图  6   研究区易损性评价图

    Figure  6.   The vulnerability assessment map of geological hazard risks at the study area

    图  7   研究区地质灾害风险评价图

    Figure  7.   The risk assessment map of geological hazard risks at the study area

    图  8   察雅县城风险区面积随降雨频率变化图

    Figure  8.   Risk zone area variation with rainfall frequency in Chaya County, Xizang autonomous region, China

    图  9   察雅县城地质灾害风险管控方法

    Figure  9.   The risk management and control system of geological disaster at Chaya County, Xizang autonomous region, China

    表  1   研究区承灾体易损性赋值表

    Table  1   Vulnerability assessment table for hazard-bearing bodies in the study area

    承灾体类型分类易损性对应属性字段对应属性
    建筑及
    人口类型
    >1000人0.9类型密集多层居住区
    0.9类型医院
    0.9类型学校
    100~1000人0.8类型密集低矮居住区
    0.7类型寺庙
    0.6类型加油站
    0.8类型行政办公区
    10~100人0.4类型基础设施区
    0.2类型一般居住区
    0.3类型商业设施区
    <10人0.1类型临时居住区
    0.1类型农业区
    0.1类型荒地区
    0.1类型避难场地区
    交通设施县级公路0.3GB420301
    专用公路0.2GB420400
    其他公路0.1GB420800
    城市道路0.2~0.3GB430501、430501
    乡村道路0~0.1GB440100、440300
    下载: 导出CSV

    表  2   各指标因子间的相关性统计

    Table  2   Statistical table for correlation among each index factor

    高程坡度坡形坡向斜坡结构地层距断层
    距离
    高程1
    坡度0.0201
    坡形0.032−0.0011
    坡向0.0690.1680.0261
    斜坡结构0.1340.1280.0210.2581
    地层−0.316−0.1480.079−0.030−0.1101
    距断层距离0.3430.0800.0230.1140.016−0.1721
    下载: 导出CSV

    表  3   研究区各证据因子权重值表

    Table  3   Summary table of weighted values of each featured factor in the study area

    影响因子及分级${ {W} }_{ {i} }^{ {+} } $${ {W} }_{ {i} }^{-}$$W_{\rm{f}}$
    高程/m3000~35000.2483−0.21120.4596
    3500~4000−0.10640.0935−0.1999
    4000~4500−0.95140.0689−1.0203
    坡度/(°)<10−0.72710.0691−0.7962
    10~200.2796−0.07500.3546
    20~300.1089−0.06160.1705
    30~400.0396−0.01460.0542
    40~50−0.64490.0374−0.6823
    50~60−1.17210.0095−1.1816
    >60−4.31250.0014−4.3139
    坡向平面0.5463−0.07920.6256
    1.5770−0.20221.7792
    东北1.0220−0.21891.2409
    −0.11330.0128−0.1260
    东南−0.66380.0553−0.7192
    −2.30820.1450−2.4532
    西南−3.30310.1624−3.4655
    西−1.54410.1140−1.6580
    西北0.2250−0.03260.2575
    坡型凹形−0.22900.0491−0.2780
    凸型0.1337−0.23480.3685
    直线型−0.23920.0546−0.2938
    斜坡结构河谷−7.46340.0526−7.5160
    顺向飘倾坡−2.63800.0150−2.6530
    顺向层面坡−0.78480.0088−0.7936
    顺向伏倾坡−0.50730.0425−0.5498
    斜顺向坡−0.51590.0577−0.5737
    横向坡−0.28630.0976−0.3839
    斜逆向坡0.3733−0.10570.4790
    逆向坡0.5425−0.22250.7649
    地层T3d1.3006−0.13591.4366
    J2d−2.56770.2464−2.8140
    J2c0.00000.0007−0.0007
    J1w0.1942−0.57310.7673
    ${\rm{Q} }{\rm{h} }^{el}$−3.71520.0512−3.7664
    距断层距离/m<2000.5295−0.03950.5690
    200~5000.8501−0.11140.9614
    500~10000.8722−0.20731.0795
    1000~20000.4909−0.19120.6820
    >2000−1.64150.6672−2.3087
    下载: 导出CSV

    表  4   研究区不同降雨频率下的年最大日降雨量估算结果

    Table  4   Estimation results of annual maximum daily rainfall under different rainfall frequencies in the study area

    P/%KPH24P/mm
    11.43655.14
    21.37452.76
    51.28649.38
    101.21246.54
    下载: 导出CSV
  • [1] 齐信,唐川,陈州丰,等. 地质灾害风险评价研究[J]. 自然灾害学报,2012,21(5):33 − 40. [QI Xin,TANG Chuan,CHEN Zhoufeng,et al. Research of geohazards risk assessment[J]. Journal of Natural Disasters,2012,21(5):33 − 40. (in Chinese with English abstract) DOI: 10.13577/j.jnd.2012.0506

    QI Xin, TANG Chuan, CHEN Zhoufeng, et al. Research of geohazards risk assessment[J]. Journal of Natural Disasters, 2012, 21(5): 33-40. (in Chinese with English abstract) DOI: 10.13577/j.jnd.2012.0506

    [2]

    COROMINAS J,VAN WESTEN C,FRATTINI P,et al. Recommendations for the quantitative analysis of landslide risk[J]. Bulletin of Engineering Geology and the Environment,2014,73(2):209 − 263.

    [3] 吴树仁,石菊松,张春山,等. 地质灾害风险评估技术指南初论[J]. 地质通报,2009,28(8):995 − 1005. [WU Shuren,SHI Jusong,ZHANG Chunshan,et al. Preliminary discussion on technical guideline for geohazard risk assessment[J]. Geological Bulletin of China,2009,28(8):995 − 1005. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-2552.2009.08.001

    WU Shuren, SHI Jusong, ZHANG Chunshan, et al. Preliminary discussion on technical guideline for geohazard risk assessment[J]. Geological Bulletin of China, 2009, 28(8): 995-1005. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-2552.2009.08.001

    [4] 康婧,王伟伟,程林,等. 基于模糊数学方法的海岛地质灾害风险评价—以长兴岛为例[J]. 海洋环境科学,2016,35(6):861 − 867. [KANG Jing,WANG Weiwei,CHENG Lin,et al. Risk assessment of geological hazard based on fuzzy mathematics:A case study of Changxing Island[J]. Marine Environmental Science,2016,35(6):861 − 867. (in Chinese with English abstract) DOI: 10.13634/j.cnki.mes.2016.06.035

    KANG Jing, WANG Weiwei, CHENG Lin, et al. Risk assessment of geological hazard based on fuzzy mathematics—a case study of Changxing Island[J]. Marine Environmental Science, 2016, 35(6): 861-867. (in Chinese with English abstract) DOI: 10.13634/j.cnki.mes.2016.06.035

    [5] 李天华,袁永博. 地震重灾区诱发次生地质灾害风险评价研究[J]. 地震工程学报,2018,40(1):111 − 115. [LI Tianhua,YUAN Yongbo. Risk assessment of secondary geological disasters induced in an earthquake-stricken area[J]. China Earthquake Engineering Journal,2018,40(1):111 − 115. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2018.01.111

    LI Tianhua, YUAN Yongbo. Risk assessment of secondary geological disasters induced in an earthquake-stricken area[J]. China Earthquake Engineering Journal, 2018, 40(1): 111-115. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2018.01.111

    [6] 罗路广,裴向军,谷虎,等. 基于GIS的“8•8”九寨沟地震景区地质灾害风险评价[J]. 自然灾害学报,2020,29(3):193 − 202. [LUO Luguang,PEI Xiangjun,GU Hu,et al. Risk assessment of geohazards induced by “8•8” earthquake based on GIS in Jiuzhaigou scenic area[J]. Journal of Natural Disasters,2020,29(3):193 − 202. (in Chinese with English abstract) DOI: 10.13577/j.jnd.2020.0321

    LUO Luguang, PEI Xiangjun, GU Hu, et al. Risk assessment of geohazards induced by “8.8” earthquake based on GIS in Jiuzhaigou scenic area[J]. Journal of Natural Disasters, 2020, 29(3): 193-202. (in Chinese with English abstract) DOI: 10.13577/j.jnd.2020.0321

    [7] 张茂省,薛强,贾俊,等. 山区城镇地质灾害调查与风险评价方法及实践[J]. 西北地质,2019,52(2):125 − 135. [ZHANG Maosheng,XUE Qiang,JIA Jun,et al. Methods and practices for the investigation and risk assessment of geo-hazards in mountainous towns[J]. Northwestern Geology,2019,52(2):125 − 135. (in Chinese with English abstract) DOI: 10.19751/j.cnki.61-1149/p.2019.02.013

    ZHANG Maosheng, XUE Qiang, JIA Jun, et al. Methods and practices for the investigation and risk assessment of geo-hazards in mountainous towns[J]. Northwestern Geology, 2019, 52(2): 125-135. (in Chinese with English abstract) DOI: 10.19751/j.cnki.61-1149/p.2019.02.013

    [8] 王佳佳. 三峡库区万州区滑坡灾害风险评估研究[D]. 武汉: 中国地质大学, 2015

    WANG Jiajia. Landslide risk assessment in Wanzhou County, Three Gorges Reservoir[D]. Wuhan: China University of Geosciences, 2015. (in Chinese with English abstract)

    [9] 王芳. 万州区滑坡灾害风险评价与管理研究[D]. 武汉: 中国地质大学, 2017

    WANG Fang. Study on risk assessment and management of landslide in Wanzhou District[D]. Wuhan: China University of Geosciences, 2017. (in Chinese with English abstract)

    [10] 肖婷. 三峡库区万州区及重点库岸段滑坡灾害风险评价[D]. 武汉: 中国地质大学, 2020

    XIAO Ting. Landslide risk assessment in Wanzhou district and a key section, Three Gorges Reservoir[D]. Wuhan: China University of Geosciences, 2020. (in Chinese with English abstract)

    [11] 周超,常鸣,徐璐,等. 贵州省典型城镇矿山地质灾害风险评价[J]. 武汉大学学报(信息科学版),2020,45(11):1782 − 1791. [ZHOU Chao,CHANG Ming,XU Lu,et al. Risk assessment of typical urban mine geological disasters in Guizhou Province[J]. Geomatics and Information Science of Wuhan University,2020,45(11):1782 − 1791. (in Chinese with English abstract)

    ZHOU Chao, CHANG Ming, XU Lu, et al. Risk assessment of typical urban mine geological disasters in Guizhou Province[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1782-1791. (in Chinese with English abstract)

    [12] 熊小辉,汪长林,白永健,等. 基于不同耦合模型的县域滑坡易发性评价对比分析—以四川普格县为例[J]. 中国地质灾害与防治学报,2022,33(4):114 − 124. [XIONG Xiaohui,WANG Changlin,BAI Yongjian,et al. Comparison of landslide susceptibility assessment based on multiple hybrid models at County level:A case study for Puge County,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):114 − 124. (in Chinese with English abstract)

    XIONG Xiaohui, WANG Changlin, BAI Yongjian, et al. Comparison of landslide susceptibility assessment based on multiple hybrid models at County level: a case study for Puge County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 114-124. (in Chinese with English abstract)

    [13] 解明礼,巨能攀,刘蕴琨,等. 崩塌滑坡地质灾害风险排序方法研究[J]. 水文地质工程地质,2021,48(5):184 − 192. [XIE Mingli,JU Nengpan,LIU Yunkun,et al. A study of the risk ranking method of landslides and collapses[J]. Hydrogeology & Engineering Geology,2021,48(5):184 − 192. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202007011

    XIE Mingli, JU Nengpan, LIU Yunkun, et al. A study of the risk ranking method of landslides and collapses[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 184-192. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202007011

    [14] 范强,巨能攀,解明礼,等. 2017年九寨沟MS7.0地震前后地质灾害风险对比[J]. 地震研究,2019,42(3):419 − 427. [FAN Qiang,JU Nengpan,XIE Mingli,et al. Comparation of geological hazard risks before and after Jiuzhaigou MS7.0 earthquake in 2017[J]. Journal of Seismological Research,2019,42(3):419 − 427. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0666.2019.03.016

    FAN Qiang, JU Nengpan, XIE Mingli, et al. Comparation of geological hazard risks before and after Jiuzhaigou MS7.0 earthquake in 2017[J]. Journal of Seismological Research, 2019, 42(3): 419-427. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0666.2019.03.016

    [15] 关朝阳,李章国. 西藏昌都地质灾害特点及防治对策[J]. 中国地质灾害与防治学报,2018,29(2):104 − 107. [GUAN Chaoyang,LI Zhangguo. Characteristics and prevention measures of geological hazards in Changdu City,Tibet[J]. The Chinese Journal of Geological Hazard and Control,2018,29(2):104 − 107. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2018.02.17

    GUAN Chaoyang, LI Zhangguo. Characteristics and prevention measures of geological hazards in Changdu City, Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(2): 104-107. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2018.02.17

    [16] 范强,巨能攀,向喜琼,等. 证据权法在区域滑坡危险性评价中的应用—以贵州省为例[J]. 工程地质学报,2014,22(3):474 − 481. [FAN Qiang,JU Nengpan,XIANG Xiqiong,et al. Landslides hazards assessment with weights of evidence:A case study in Guizhou,China[J]. Journal of Engineering Geology,2014,22(3):474 − 481. (in Chinese with English abstract) DOI: 10.13544/j.cnki.jeg.2014.03.017

    FAN Qiang, JU Nengpan, XIANG Xiqiong, et al. Landslides hazards assessment with weights of evidence—a case study in Guizhou, China[J]. Journal of Engineering Geology, 2014, 22(3): 474-481. (in Chinese with English abstract) DOI: 10.13544/j.cnki.jeg.2014.03.017

    [17] 郭长宝,唐杰,吴瑞安,等. 基于证据权模型的川藏铁路加查—朗县段滑坡易发性评价[J]. 山地学报,2019,37(2):240 − 251. [GUO Changbao,TANG Jie,WU Ruian,et al. Landslide susceptibility assessment based on WOE model along Jiacha—Langxian County section of Sichuan—Tibet railway,China[J]. Mountain Research,2019,37(2):240 − 251. (in Chinese with English abstract) DOI: 10.16089/j.cnki.1008-2786.000418

    GUO Changbao, TANG Jie, WU Ruian, et al. Landslide susceptibility assessment based on WOE model along Jiacha—Langxian County section of sichuan—tibet railway, China[J]. Mountain Research, 2019, 37(2): 240-251. (in Chinese with English abstract) DOI: 10.16089/j.cnki.1008-2786.000418

    [18] 胡燕,李德营,孟颂颂,等. 基于证据权法的巴东县城滑坡灾害易发性评价[J]. 地质科技通报,2020,39(3):187 − 194. [HU Yan,LI Deying,MENG Songsong,et al. Landslide susceptibility evaluation in Badong County based on weights of evidence method[J]. Bulletin of Geological Science and Technology,2020,39(3):187 − 194. (in Chinese with English abstract)

    HU Yan, LI Deying, MENG Songsong, et al. Landslide susceptibility evaluation in Badong County based on weights of evidence method[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 187-194. (in Chinese with English abstract)

    [19] 刘传正. 崩塌滑坡灾害风险识别方法初步研究[J]. 工程地质学报,2019,27(1):88 − 97. [LIU Chuanzheng. Analysis methods on the risk identification of landslide disasters[J]. Journal of Engineering Geology,2019,27(1):88 − 97. (in Chinese with English abstract) DOI: 10.13544/j.cnki.jeg.2019-009

    LIU Chuanzheng. Analysis methods on the risk identification of landslide disasters[J]. Journal of Engineering Geology, 2019, 27(1): 88-97. (in Chinese with English abstract) DOI: 10.13544/j.cnki.jeg.2019-009

    [20] 中国地质调查局. 地质灾害风险调查评价技术要求(1∶50000)[S]. 2020

    China Geological Survey. Technical guide for geohazard risk survey and evaluation (1∶50000)[S]. 2020.(in Chinese)

    [21] 张俊,殷坤龙,王佳佳,等. 三峡库区万州区滑坡灾害易发性评价研究[J]. 岩石力学与工程学报,2016,35(2):284 − 296. [ZHANG Jun,YIN Kunlong,WANG Jiajia,et al. Evaluation of landslide susceptibility for Wanzhou District of Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(2):284 − 296. (in Chinese with English abstract) DOI: 10.13722/j.cnki.jrme.2015.0318

    ZHANG Jun, YIN Kunlong, WANG Jiajia, et al. Evaluation of landslide susceptibility for Wanzhou district of Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 284-296. (in Chinese with English abstract) DOI: 10.13722/j.cnki.jrme.2015.0318

    [22] 汤明高, 陈浩文, 赵欢乐, 等. 青藏高原冰湖溃决灾害隐患识别、发育规律及危险性评价[J]. 地质通报,2023,42(5):730 − 742. [TANG Minggao, CHEN Haowen, ZHAO Huanle, et al. Identification, development law and risk assessment of the hidden dangers of glacial lake outburst disasters on the Qinghai-Tibet Plateau[J]. Geological Bulletin of China,2023,42(5):730 − 742. (in Chinese with English abstract)

    [TANG Minggao, CHEN Haowen, ZHAO Huanle, et al. Identification, development law and risk assessment of the hidden dangers of glacial lake outburst disasters on the Qinghai-Tibet Plateau[J]. Geological Bulletin of China, 2023, 42(5): 730-742.(in Chinese with English abstract)

    [23] 李彩虹, 李雪, 郭长宝, 等. 青藏高原东部鲜水河断裂带地震滑坡危险性评价[J]. 地质通报,2022,41(8):1473 − 1486. [LI Caihong, LI Xue, GUO Changbao, et al. Seismic landslide hazards assessment along the Xianshuihe fault zone, Tibetan Plateau, China[J]. Geological Bulletin of China,2022,41(8):1473 − 1486. (in Chinese with English abstract)

    LI Caihong, LI Xue, GUO Changbao, et al. Seismic landslide hazards assessment along the Xianshuihe fault zone, Tibetan Plateau, China[J]. Geological Bulletin of China, 2022, 41(8): 1473-1486.(in Chinese with English abstract)

    [24]

    CHUNG C,FABBRI A. Probabilistic prediction models for landslide hazard mapping[J]. Photogrammetric Engineering and Remote Sensing,1999,65:1389 − 1400.

    [25] 袁东, 张广泽, 王栋, 等. 西部山区交通廊道泥石流发育特征及选线对策[J]. 地质通报,2023,42(5):743 − 752. [YUAN Dong, ZHANG Guangze, WANG Dong, et al. Analysis on development characteristics of debris flow and route selection countermeasures along the traffic lines in mountain areas of Western China[J]. Geological Bulletin of China,2023,42(5):743 − 752. (in Chinese with English abstract)

    [YUAN Dong, ZHANG Guangze, WANG Dong, et al. Analysis on development characteristics of debris flow and route selection countermeasures along the traffic lines in mountain areas of Western China[J]. Geological Bulletin of China, 2023, 42(5): 743-752.(in Chinese with English abstract)

  • 期刊类型引用(8)

    1. 程强,周兴泉,张肖. 四川新市—金阳公路唐家湾滑坡变形特征和形成机理分析. 中国地质灾害与防治学报. 2025(01): 46-56 . 本站查看
    2. 杨腾飞,严志文. 无人机航测技术在露天矿山采空区勘探中的应用. 中国新技术新产品. 2024(02): 89-91 . 百度学术
    3. 黄荣. 无人机倾斜摄影测量技术在地灾监测中的应用. 地下水. 2024(02): 179-181+267 . 百度学术
    4. 蒋李亚. 基于“天地一体化”分析风电场边坡水土流失情况——以南方某风电场为例. 农业灾害研究. 2024(05): 317-319 . 百度学术
    5. 孙文庆,张忠辉,高新妍,忽巍,王延伟. 附加模型补偿的多期GNSS网监测. 测绘标准化. 2024(03): 150-157 . 百度学术
    6. 王瑞. 基于三维激光扫描技术的植物园林假山沉降监测方法. 激光杂志. 2024(11): 209-213 . 百度学术
    7. 李文龙. 机载LiDAR技术在广州黄埔区地质灾害调查中的应用. 中国地质灾害与防治学报. 2024(06): 164-172 . 本站查看
    8. 李大猛,孙东,余辉,李松,张正鹏. 绿色矿山建设与矿山生态修复关联探析. 世界有色金属. 2023(22): 162-165 . 百度学术

    其他类型引用(0)

图(9)  /  表(4)
计量
  • 文章访问数:  1400
  • HTML全文浏览量:  1419
  • PDF下载量:  228
  • 被引次数: 8
出版历程
  • 收稿日期:  2022-08-23
  • 修回日期:  2022-11-14
  • 录用日期:  2023-04-20
  • 网络出版日期:  2023-04-28
  • 刊出日期:  2024-04-24

目录

/

返回文章
返回