Landslide hazard assessment in the middle reach area of the Dadu River based on the GDIV model
-
摘要: 区域地质灾害评价是减灾防治的重要非工程手段,构建区域滑坡危险性评价模型,对提高地质灾害评价精度和防治效率具有重要意义。文章以滑坡频发的大渡河中游地区为研究区,初选高程、坡度、坡向、地震动参数、土壤类型、工程地质岩组、年平均降雨量和地形湿度指数(TWI)等13个因子,建立滑坡危险性初级评价指标体系。考虑各因子对滑坡形成贡献程度的不同和目前常权栅格叠加方式对滑坡危险性评价结果精度的影响,引入了地理探测器和变权栅格叠加,构建了地理探测器、信息量法和变权栅格叠加的组合模型(GDIV模型)。基于2021年四川省1∶50 000地质灾害风险调查中313处滑坡地质灾害隐患点,开展基于GDIV模型的大渡河中游地区滑坡危险性评价,并与逻辑回归模型和信息量模型的组合模型(LRI模型)评价结果进行对比分析。结果表明:研究区以中危险及以下危险区为主,占总面积的78.3%,极高和高危险区主要分布在大渡河、革什扎河和东谷河两岸的低海拔地区;与LRI模型相比,基于GDIV模型的评价结果精度更高,其受试者工作特征(ROC)曲线的线下面积(AUC)值为0.917。文章提出的GDIV模型提高了区域滑坡危险性评价精度,可为类似地区地质灾害评价提供方法参考。Abstract: Regional geological hazard assessment is an important non-engineering approach for disaster reduction and prevention. Constructing a regional landslide hazard assessment model is of great significance in improving the accuracy of geological hazard evaluation and the efficiency of prevention. This study focuses on the frequent landslide occurrence in the middle reach area of the Dadu River and selects 13 primary factors, including elevation, slope, aspect, seismic parameters, soil type, engineering geological lithology, annual average rainfall, and topographic wetness index (TWI), to establish a primary evaluation index system for landslide hazard. Considering the varying contributions of each factor to landslide formation and the impact of the commonly used weighted raster superposition methods on assessment accuracy, the geographic detector and variable weight raster overlay techniques are introduced, leading to the development of the GDIV model. Using data from 313 landslide hazard points identified in the 2021 geological hazard risk survey at a scale of 1∶50,000 in Sichuan Province, the landslide hazard assessment in the middle reach area of the Dadu River basin is conducted based on the GDIV model, and the evaluation results are compared with those of the LRI model. The results show that the study area is predominantly characterized by middle and lower risk areas, accounting for 78.3% of the total area. The extremely high and high-risk areas are primarily located in the low-elevation regions along the banks of Dadu River, Geshizha River, and Donggu River. Compared to the LRI model, the evaluation results based on the GDIV model exhibit higher accuracy, with an area under the receiver operating characteristics (ROC) curve of 0.917. The GDIV model proposed in this paper improves the accuracy of regional Landslide hazards assessment, and serves as a valuable reference for similar geological disaster evaluations in other areas.
-
0. 引言
地质灾害易发性评价是地质灾害风险评价的核心工作内容之一,是通过分析地质灾害位置与其相关因素之间的关系。利用统计、数据挖掘以及地理信息系统在空间上识别地质灾害易发区域,影响因子选取是易发性评价的前提工作[1 − 3]。因子的正确选择取决于地质灾害的类型、机理、特征、案例区、分析的尺度、数据的可用性和使用的评价模型方法[4 − 6]。地质灾害影响因子可划分为以下几类:(1)地质因子:岩性、断层距离(密度)、工程地质岩组、斜坡结构类型、向斜与背斜构造、褶皱轨迹等;(2)地形因子:坡度、坡高(地形起伏度)、高程、地形曲率(平面曲率、剖面曲率、标准曲率、坡形)、坡长、坡位、沟谷密度、地形表面纹理、地形位置指数(topographic position index,TRI)、地形耐用指数(terrain ruggedness index,TPI)、粗糙度指数、地表切割度等;(3)水文因子:河流距离(密度)、降雨、地形湿度指数(topographic wetness index,TWI)、水动力指数、地下水高度、有效补给率、侵蚀程度、输沙能力指数、河谷深度、流路长度、径流强度指数、河流流量等;(4)地表覆盖因子:土地利用、植被指数(NDVI)、土壤类型、土壤厚度、森林类型、土壤渗透率、地表太阳辐射强度等;(5)人类活动因子:道路距离(密度)、居民距离(密度)等;(6)地震因子:地震烈度、峰值加速度、地震密度、震中距离等[7 − 10]。地形因子与地质因子可以表征主导滑坡发生的背景条件,地表覆盖因子、水文因子、人类活动因子与地震因子则反映附加因素加剧滑坡的可能。在已有的研究中,坡度是地质灾害易发性评价工作中最为常用的因素,岩性、高程、坡向、河流距离和断层距离等也是常用的评价因子,而其它因素的适用性因地制宜[11 − 14]。
对于地质灾害影响因子的选择,目前还没有统一的标准,以往研究工作中地质灾害易发性评价选择的影响因子往往是根据经验选取地质因子、地形因子、水文因子中的部分参数,每项研究选取的因子类型存在一定差异,且因子数量不一致[15 − 19]。可能存在以下问题:①选择因子较少,预测精度不足;②选择因子过多,叠加部分因子后预测精度可能达到峰值,叠加过多因子增加一定工作量。此外,是否在地质灾害易发性评价中叠加的因子数量越多,模型预测精度越高或者上下大幅度波动?易发性评价中是否存在“最优因子数量”这一概念?这些问题值得探讨。
基于以上提出的问题,本文在以往研究工作基础上,以四川省汶川县作为案例区,选取多个常用地质灾害影响因子,将所选取影响因子按照一定排列组合模式运用信息量法进行案例区地质灾害易发性评价,并采用成功率曲线验证叠加不同数量对地质灾害易发性评价精度的影响[20]。
1. 研究方法
本研究选取“5•12”汶川地震后地质灾害频发的汶川县为案例区,案例区共发育有地质灾害690处,包括崩塌192处、滑坡351处、泥石流147处(图1)。基于所收集资料与已有研究基础[16],选取地质灾害易发性评价常用影响因子11种:地貌类因子(高程、坡度、起伏度、坡形、起伏度、沟谷密度)、地质类因子(工程岩组、断裂)、水文类(河流)、人类工程活动(道路、植被指数),并对因子进行分级(表1)。运用信息量模型(表1),以案例区70%历史灾害点为训练样本,计算每个影响因子各个分级的信息量,信息量计算方法如式(1)—(2)所示。根据不同排列组合叠加3到11个因子信息量获得对应的地质灾害易发性指数分布图,易发性指数越高代表地质灾害易发性越高。以30%历史灾害点和非灾害点为检验样本,本文中非灾害点为历史地质灾害点数据1 km缓冲区范围外随机生成的点位数据,运用成功率(receiver operating characteristic,ROC)曲线确定线下面积 (area under curve,AUC)值对各个结果进行预测精度评价,历史灾害点成功率曲线AUC值越趋近于1代表其评价精度越高,而非灾害点成功率曲线AUC值越趋近于0代表其评价精度越高。对比各个组合结果,分析叠加影响因子数量与地质灾害易发性评价精度的关系。研究思路如图2所示。
表 1 因子分级及信息量Table 1. Classification and information value of the factors因子 分级 灾害点比例/% 因子分级
面积比例/%信息量 高程/m [784, 1200) 27.87 2.60 3.42 [1200, 1700) 40.78 8.69 2.23 [1700, 2200) 19.88 13.23 0.59 [2200, 2700) 7.26 16.98 −1.23 [2700, 5832] 4.21 58.50 −3.80 坡度/(°) [0, 10) 19.88 3.21 2.63 [0, 20) 26.85 13.30 1.01 [20, 30) 34.40 32.75 0.07 [30, 40) 14.95 37.66 −1.33 [40, 88] 3.92 13.08 −1.74 地面起伏度/m [0, 200) 15.09 4.49 1.75 [200, 400) 68.36 42.07 0.70 [400, 600) 15.38 45.22 −1.56 [600, 800) 1.02 7.29 −2.84 [800, ∞) 0.15 0.93 −2.69 沟谷密度
/(km·km−2)[0.23, 0.46) 1.30 13.65 −3.39 [0.46, 0.58) 6.08 24.26 −2.00 [0.58, 0.69) 31.84 33.00 −0.05 [0.69, 0.82) 42.26 23.38 0.85 [0.82, 1.23] 18.52 5.71 1.70 道路距离/m [0, 200) 1.01 1.70 −0.75 [200, 400) 2.32 1.68 0.46 [400, 600) 2.32 1.66 0.48 [600, 800) 2.32 1.66 0.48 [800, 1000) 2.32 1.64 0.50 [1000, ∞) 89.73 91.66 −0.03 断层距离/m [0, 500) 28.94 9.96 1.54 [500, 1000) 25.90 8.80 1.56 [1000, 1500) 10.27 7.27 0.50 [1500, 2000) 7.96 6.07 0.39 [2000, ∞) 26.92 67.90 −1.33 工程岩组 硬质岩组 18.38 9.56 0.94 软硬互层岩组 46.74 53.02 −0.18 软质岩组 34.88 37.42 −0.10 河流距离/m [0, 200) 8.10 1.59 2.35 [200, 400) 10.27 1.59 2.69 [400, 600) 11.29 1.59 2.82 [600, 800) 5.79 1.57 1.88 [800, 1000) 3.47 1.57 1.14 [1000, ∞) 61.07 92.07 −0.59 坡向 北 6.34 11.30 −0.83 北东 11.21 12.43 −0.15 东 16.37 14.93 0.13 南东 19.03 13.62 0.48 南 7.96 11.82 −0.57 南西 9.00 12.47 −0.47 西 12.24 11.26 0.12 北西 17.85 12.17 0.55 坡形 凹形坡 68.80 54.79 0.33 凸形坡 31.20 45.21 −0.53 植被指数 [−1, 0) 2.03 4.76 −1.23 [0, 0.1) 18.43 22.12 −0.26 [0.1, 0.25) 31.64 20.93 0.60 [0.25, 0.4) 23.08 23.69 −0.04 [0.4, 0.55) 21.04 18.31 0.20 [0.55, 0.6] 3.77 10.18 −1.43 $$ {Y_{{i}}} = \frac{{{N_i}}}{N}\cdot{\left( {\frac{{{S _i}}}{S}} \right)^{ - 1}} $$ (1) $$ {{I}} = \mathop \sum \limits_{i = 1}^n {\text{lg}}\left( {{Y_i}} \right) $$ (2) 式中:I——评价区某单元信息量预测值;
$ {N}_{i} $ ——分布在因素$ {X}_{i} $ 内特定类别内的灾害点单元数;$ N $ ——案例区含有灾害点分布的单元总数;$ {S} _{i} $ ——案例区内含有评价因素$ {X}_{i} $ 的面积;$ S $ ——为案例区总面积;${Y_i}$ ——致灾因子指标值。2. 因子排序组合
首先采用层次分析法确定每个因子的权重,层次分析法是一种多指标分析评价方法,具有精度高,使用方便等特点。通过专家估计两两影响因子之间的关系构造矩阵对所有影响因子进行两两比较确定各个影响因子的权重,这样避免了个别比较不合理而造成的结果偏差过大。
然而层次分析法带有一定的主观性,为避免主观性,选取8位从事工程地质研究工作学者对案例区11个因子进行打分,8位专家打分结果平均值作为因子最终权重值(表2)。最终确定各个因子对地质灾害敏感度从高到低排序为:①断裂②岩性③坡度④河流⑤坡形⑥起伏度⑦沟谷⑧高程⑨公路⑩坡向⑪植被指数。结合汶川县地质灾害发育分布特征及每个因子的信息量综合分析,区内发育汶茂断裂与北川映秀断裂,地质灾害主要集中于河流两岸,受坡度控制明显,且区内地质灾害与构造活动有着高度耦合性,这一结论与已有研究成果是相同的[16]。综上说明通过多位专家打分的汶川县各个因子对地质灾害敏感度排序结果合理性较高。
表 2 因子权重Table 2. Factor weights table专家因子 1 2 3 4 5 6 7 8 平均值 ① 断层 0.055 0.269 0.193 0.223 0.138 0.182 0.209 0.135 0.176 ② 岩性 0.023 0.133 0.182 0.124 0.168 0.106 0.182 0.143 0.133 ③ 高程 0.171 0.053 0.018 0.022 0.099 0.138 0.012 0.056 0.071 ④ 坡度 0.028 0.116 0.108 0.146 0.083 0.203 0.141 0.112 0.117 ⑤ 坡向 0.169 0.014 0.038 0.041 0.086 0.106 0.024 0.023 0.063 ⑥ 沟谷密度 0.063 0.064 0.082 0.055 0.082 0.106 0.096 0.073 0.078 ⑦ 坡形 0.128 0.105 0.046 0.100 0.073 0.046 0.105 0.090 0.087 ⑧ 河流 0.123 0.031 0.084 0.103 0.042 0.043 0.089 0.196 0.089 ⑨ 道路 0.128 0.042 0.078 0.064 0.057 0.021 0.057 0.075 0.065 ⑩ 植被指数 0.044 0.053 0.018 0.043 0.036 0.036 0.050 0.028 0.039 ⑪ 起伏度 0.069 0.119 0.153 0.079 0.138 0.014 0.035 0.067 0.084 为了避免按照某种顺序叠加因子导致结果规律的偶然性,本文将各个因子按照不同排列组合成由3个因子至11个因子组成的评价模型,因子组合分为两类:顺序数组与随机数组。顺序数组涵盖两种组合:因子对地质灾害发生的敏感度从高至低排列与从低至高排列模式;随机数据由编程语言随机函数生成1~11中包含不同个数并且不重复的随机数组。因子排列组合如表3所示。
表 3 因子排列组合Table 3. Factor combination table因子数量 顺序组合 随机组合 组合 1 组合2 组合3 组合4 A(3) ①②③ ⑪⑩⑨ ③⑦⑪ ②④⑥ B(4) ①②③④ ⑪⑩⑨⑧ ①③⑤⑩ ②⑤⑨⑪ C(5) ①②③④⑤ ⑪⑩⑨⑧⑦ ②③⑤⑦⑨ ⑤⑦⑨⑩⑪ D(6) ①②③④⑤⑥ ⑪⑩⑨⑧⑦⑥ ①③④⑤⑧⑩ ②④⑥⑨⑩⑪ E(7) ①②③④⑤⑥⑦ ⑪⑩⑨⑧⑦⑥⑤ ①②④⑥⑦⑧⑪ ①③④⑤⑧⑨⑩ F(8) ①②③④⑤⑥⑦⑧ ⑪⑩⑨⑧⑦⑥⑤④ ①④⑤⑥⑧⑨⑩⑪ ①②③⑤⑦⑨⑩⑪ G(9) ①②③④⑤⑥⑦⑧⑨ ⑪⑩⑨⑧⑦⑥⑤④③ ①②④⑤⑥⑧⑨⑩⑪ ②③④⑥⑦⑧⑨⑩⑪ H(10) ①②③④⑤⑥⑦⑧⑨⑩ ⑪⑩⑨⑧⑦⑥⑤④③② ①②③⑤⑥⑦⑧⑨⑩⑪ ①②③④⑤⑥⑦⑧⑨⑪ I(11) ①②③④⑤⑥⑦⑧⑨⑩⑪ ⑪⑩⑨⑧⑦⑥⑤④③②① ①②③④⑤⑥⑦⑧⑨⑩⑪ ①③④⑤⑥⑦⑧⑨⑩⑪ 3. 评价精度分析
将各个因子信息量按照表3中因子组合方式分别叠加,计算出各个组合的案例区地质灾害易发性指数图(图3),运用成功率曲线验证和比较各个组合模型易发性精度。
如图3所示,为多个组合模型不同数量因子叠加的案例区地质灾害易发性指数图,结果表明当叠加因子数量3~5个时,易发性指数图受单个因子控制性较为明显,例如组合1A(3)与组合1B(4)中断层控制易发性指数图最为明显、组合2A(3)中道路控制易发性指数图最为明显。而当叠加因子6~7个时,地质灾害易发性指数图受单个因子控制性不再明显,显现出了多个因子的叠加效应,但不同组合模型的地质灾害易发性指数图图面信息差异性较大,易发性高分布的区域和面积各不相同。当叠加至8个以上因子后,各个组合模型的易发性指数图相似性较高,显现出的高易发区与实际情况匹配度较高。
对比各类组合模型基于历史地质灾害点验证样本的成功率曲线(图4),统计出随因子数增多成功率曲线下面积(AUC)变化规律(图5)。叠加3个因子预测精度较差,组合2和组合4 中AUC值仅在0.65左右,而组合1和组合3相对于组合2和组合4同等数量因子组合中叠加预测精度较高。其共同规律为:4种组合中AUC值随因子数增多而不断增高,即随着叠加因子数量增多预测精度不断增高,但叠加因子数至8个时,AUC值不再明显上升与下降,其值约为0.9,浮动幅度在0.005左右,说明叠加8个以上因子时预测精度不再变化。
对比各类组合基于非地质灾害点样本的成功率曲线,统计出随因子数增多成功率曲线下面积(AUC)变化规律(图6、图7)。由图中可观察出叠加少于8个因子的组合随叠加因子数增多,AUC值浮动较大,且有着随因子数增多而逐渐下降的趋势。叠加至8个以上因子的组合模型AUC值相对变化浮动较小,稳定于0.385左右。
结合两种地质灾害易发性评价精度检验方法,对比分析了按照不同组合方式叠加3至11个因子的36种组合模型,分析结果发现随叠加因子数量增多,组合模型精度不断提升,但叠加至8个因子后,模型精度不再变化,精度值上下浮动较小,历史灾害点验证样本的AUC值稳定于0.9左右,非灾害点验证样本的AUC值稳定于0.385左右,由于所选用的非地质灾害点为历史地质灾害点数据1 km缓冲区范围外随机生成的点位数据,非地质灾害点又有可能在不久的将来成为新的地质灾害点,AUC难以趋近于0,说明评价模型叠加至8个因子时模型精度已达到峰值,叠加更多因子不会明显提升或降低其精度。
4. 讨论
根据不同因子组合方式可发现,各个因子对于案例区的地质灾害易发性影响存在较大的差异性。由于汶川地区受到2008年“5·12”Ms8.0地震的震裂影响,在断裂带区域地质灾害分布较为密集,断层缓冲区因子对于案例区的地质灾害易发性控制性最强。综合图5和图7中叠加各个因子后AUC值的变化幅度,重新梳理各个影响因子的控制性排序为:断层>河流>道路>岩性>高程>起伏度>坡度>沟谷密度>坡形>坡向>植被指数。这一排序结果与前文通过专家打分确定因子重要性等级排序存在一定差异,分析原因为专家打分存在一定主观性,尽管采用了多个专家打分的平均值,但还是难以消去其主观性。
对比前文四种因子组合模型,它们有着共同的特点,运用验证样本成功率曲线检验各种组合模型评价精度时:模型精度随着叠加因子数增多而提高,叠加至8个因子时模型精度不再变化,趋于平稳状态,AUC稳定于0.9左右,上下浮动约0.005;运用非灾害点样本成功率曲线检验各种组合模型评价精度时:模型AUC值随叠加因子数增多而下降,即模型精度随着叠加因子数增多而上升,同样在叠加至8个因子时模型精度趋于稳定,AUC稳定于0.385。根据这一结果,可以确定当模型选取8个以上因子时,模型精度将不会改变,8个因子可能是地质灾害易发性评价叠加最佳因子数。但这一结论是否正确值得再次证明与讨论。
按照前文多次叠加后确定的因子实际控制性从高到低与从低到高两种组合模型再次检验随着因子叠加数量增多易发性评价精度的变化规律。如图8—9所示,按照因子实际控制性从高到低排列组合,叠加断层、河流、道路3个因子后AUC值已经接近峰值,为0.889,其后再次叠加其它因子,AUC值上下浮动约0.02。而按照实际因子控制性从低到高排列组合,当叠加到最后一个因子(断层)时AUC值才达到峰值。
结合前面的试验研究与后面的验证结果综合分析,造成叠加至8个因子时易发性指数的AUC值最大的原因在于叠加过程中存在一定偶然性:前期四种组合模型在叠加因子时仅靠个人经验或随机组合,未将关键因子优先组合,AUC值无法快速达不到峰值。而当叠加至7~8个因子时已经包含了这类关键因子(例如断层、河流、道路),此时达到了评价结果精度的峰值,其AUC值在0.9上下以0.005浮动。
综上试验研究表明,开展某地区地质灾害易发性评价时,最先开展的工作应是确定出该区域地质灾害的主控因素,例如构造、水文、岩性、地形等因素,即需要开展的是孕灾条件分析。且对于大区域,例如省级地质灾害易发性评价,应根据地质环境条件与地质灾害发育特征,对研究区开展综合分区,找出各个分区的主控因素,进行分区评价。可采用反演分析模式,综合运用信息量模型与ROC曲线法,将逐个因子不同等级所对应的信息量作为检验变量,利用ROC曲线法进行单因子分析,根据AUC值确定各个因子对研究区地质灾害敏感度重要程度排序。
5. 结论
本文以四川省汶川县为案例区,选取广泛应用的11种地质灾害影响因子进行不同排列组合,验证“是否在地质灾害易发性评价中叠加的因子数量越多,模型预测精度越高或者上下波动。”这一问题。经对比试验研究,得出以下结论:
(1)地质灾害影响因子进行随机组合时,叠加因子数量越多,地质灾害易发性评价结果精度越高,但叠加至一定数量因子后评价精度达到峰值,叠加更多因子不会明显提升或降低精度。
(2)地质灾害的发生在不同区域有着不同的主控因子,因子选取原则不仅仅根据个人经验,更应该计算出来每个因子独立的控制性,可采用单因子信息量与ROC曲线组合模型评价结果确定出主控因子,优先叠加控制性较强的因子,能够快速达到易发性评价精度的最高值。
(3)根据本文有限的多次测试结果表明,地质灾害易发性评价中叠加的因子数量越多,模型预测精度越高,叠加过程中如未加入关键因子,模型预测精度将不会达到峰值,说明地质灾害易发性评价存在关键因子,但不存在 “最优因子数量”。
-
表 1 交互作用探测器因子关系
Table 1 Factor relationships of interaction detectors
因子关系 交互作用 q(X1∩X2)<Min(q(X1), q(X2)) 非线性减弱 Min(q(X1), q(X2))< q(X1∩X2)< Max (q(X1), q(X2)) 单因子非线性减弱 q(X1∩X2)> Max (q(X1), q(X2)) 双因子增强 q(X1∩X2)= q(X1)+q(X2) 独立 q(X1∩X2)> q(X1)+q(X2) 非线性增强 表 2 滑坡初级评价指标q值统计
Table 2 Statistical analysis of primary evaluation index q-values for landslides
类别 指标 q值 p值 地质特征 工程地质岩组(X1) 0.156 0.000 与断层距离(X2) 0.087 0.000 地震 地震动参数(X3) 0.164 0.000 地形地貌 高程(X4) 0.583 0.000 坡度(X5) 0.021 0.023 坡向(X6) 0.038 0.003 地形湿度指数(X7) 0.017 0.297 归一化植被指数(X8) 0.072 0.000 土壤类型(X9) 0.415 0.000 地表水系 与河流距离(X10) 0.158 0.000 径流强度指数(X11) 0.032 0.015 降雨 年平均降雨量(X12) 0.182 0.000 人类活动 与道路距离(X13) 0.115 0.000 表 3 部分滑坡初级评价指标交互作用
Table 3 Interactions of primary evaluation indicators for landslides
Xi∩Xj q(Xi) q(Xj) q(Xi∩Xj) q(Xi)+q(Xj) 交互类型 X4∩X1 0.583 0.156 0.736 0.739 双因子增强 X3∩X4 0.164 0.583 0.676 0.747 双因子增强 X9∩X4 0.415 0.583 0.596 0.998 双因子增强 X10∩X4 0.158 0.583 0.603 0.741 双因子增强 X13∩X4 0.115 0.583 0.597 0.698 双因子增强 X12∩X4 0.182 0.583 0.672 0.765 双因子增强 X9∩X3 0.415 0.164 0.537 0.579 双因子增强 X9∩X1 0.415 0.156 0.555 0.571 双因子增强 X9∩X10 0.415 0.158 0.434 0.573 双因子增强 X9∩X13 0.415 0.115 0.428 0.53 双因子增强 X9∩X12 0.415 0.182 0.527 0.597 双因子增强 X10∩X3 0.158 0.164 0.312 0.322 双因子增强 X10∩X1 0.158 0.156 0.344 0.314 非线性增强 X13∩X3 0.115 0.164 0.276 0.279 双因子增强 X13∩X1 0.115 0.156 0.278 0.271 非线性增强 X3∩X1 0.164 0.156 0.329 0.320 非线性增强 X13∩X10 0.115 0.158 0.226 0.273 双因子增强 X10∩X12 0.158 0.182 0.343 0.340 非线性增强 X13∩X12 0.115 0.182 0.292 0.297 双因子增强 X3∩X12 0.164 0.182 0.269 0.346 双因子增强 X12∩X1 0.182 0.156 0.348 0.338 非线性增强 表 4 危险性评价因子分级与信息量值
Table 4 Grading and information value of hazard evaluation factors
评价因子 分级 信息量值 评价因子 分级 信息量值 高程/m <2 700 2.058 年平均
降雨量/mm<750 −0.557 2 700~3 200 1.308 750~775 0.438 3 200~3 600 −1.37 775~800 −1.014 3 600~4 000 −2.445 800~840 −0.055 4 000~4 400 −3.76 840~880 −0.404 > 4400 — >880 −0.231 土壤类型 淋溶土 1.685 地震动
参数<0.1 0.151 半淋溶土 — 0.1~0.15 0.464 初育土 −3.921 0.15~0.2 −1.059 高山土 0.107 0.2~0.3 — 人为土 1.429 与道路
距离/m<100 1.500 铁铝土 0.890 100~200 1.227 与河流
距离/m<400 −1.204 200~300 1.148 400~800 −0.826 300~400 1.053 800~1 200 −0.025 400~500 0.789 1 200~1 600 0.004 >500 −0.335 1 600~2 000 0.577 >2 000 1.038 工程地质
岩组坚硬岩 0.023 较坚硬岩 0.443 较软岩 1.878 松散土类 −1.086 表 5 滑坡危险性评价因子逻辑回归分析结果
Table 5 Results of logistic regression analysis for landslide hazard evaluation factors
评价因子 B SE Wald df sig Exp(B) 高程 4.992 0.551 82.210 1 0.000 147.24 土壤类型 3.001 0.550 29.785 1 0.000 20.110 工程地质岩组 1.606 0.837 3.387 1 0.000 4.666 年平均降雨量 1.103 0.379 8.468 1 0.000 3.013 与道路距离 0.995 0.396 2.573 1 0.000 2.435 地震动参数 0.802 0.469 1.657 1 0.000 1.830 与河流距离 0.148 0.398 5.259 1 0.001 0.739 常数 −7.132 0.696 104.815 1 0.000 0.001 注:B为模型中各变量的回归系数、SE是标准差、Wald是卡方统计、Sig为显著性水平,df和Exp(B)为逻辑回归的结果参数。 表 6 滑坡危险性评价因子权重值
Table 6 Weight values of landslide hazard assessment factors
因子 q值 权重 高程 0.583 0.329 土壤类型 0.415 0.234 年平均降雨量 0.182 0.103 地震动参数 0.164 0.092 与河流距离 0.158 0.089 工程地质岩组 0.156 0.088 与道路距离 0.115 0.065 -
[1] 赵东亮,兰措卓玛,侯光良,等. 青海省河湟谷地地质灾害易发性评价[J]. 地质力学学报,2021,27(1):83 − 95. [ZHAO Dongliang,LAN C,HOU Guangliang,et al. Assessment of geological disaster susceptibility in the Hehuang Valley of Qinghai Province[J]. Journal of Geomechanics,2021,27(1):83 − 95. (in Chinese with English abstract) ZHAO Dongliang, LAN C, HOU Guangliang, et al. Assessment of geological disaster susceptibility in the Hehuang Valley of Qinghai Province[J]. Journal of Geomechanics, 2021, 27(1): 83-95. (in Chinese with English abstract)
[2] CENGIZ L D,ERCANOGLU M. A novel data-driven approach to pairwise comparisons in AHP using fuzzy relations and matrices for landslide susceptibility assessments[J]. Environmental Earth Sciences,2022,81(7):1 − 23.
[3] WANG Di,HAO Mengmeng,CHEN Shuai,et al. Assessment of landslide susceptibility and risk factors in China[J]. Natural Hazards,2021,108(3):3045 − 3059. DOI: 10.1007/s11069-021-04812-8
[4] TAN Qulin,BAI Minzhou,ZHOU Pinggen,et al. Geological hazard risk assessment of line landslide based on remotely sensed data and GIS[J]. Measurement,2021,169:108370. DOI: 10.1016/j.measurement.2020.108370
[5] BIÇER Ç T,ERCANOGLU M. A semi-quantitative landslide risk assessment of central Kahramanmaraş City in the Eastern Mediterranean region of Turkey[J]. Arabian Journal of Geosciences,2020,13(15):732. DOI: 10.1007/s12517-020-05697-w
[6] SCIARRA M,COCO L,URBANO T. Assessment and validation of GIS-based landslide susceptibility maps:A case study from Feltrino stream basin (Central Italy)[J]. Bulletin of Engineering Geology and the Environment,2017,76(2):437 − 456. DOI: 10.1007/s10064-016-0954-7
[7] 罗守敬,王珊珊,付德荃. 北京山区突发性地质灾害易发性评价[J]. 中国地质灾害与防治学报,2021,32(4):126 − 133. [LUO Shoujing,WANG Shanshan,FU Dequan. Assessment on the susceptibility of sudden geological hazards in mountainous areas of Beijing[J]. The Chinese Journal of Geological Hazard and Control,2021,32(4):126 − 133. (in Chinese with English abstract) LUO Shoujing, WANG Shanshan, FU Dequan. Assessment on the susceptibility of sudden geological hazards in mountainous areas of Beijing[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(4): 126-133. (in Chinese with English abstract)
[8] ZHAO Fumeng,MENG Xingmin,ZHANG Yi,et al. Landslide susceptibility mapping of Karakorum highway combined with the application of SBAS-InSAR technology[J]. Sensors,2019,19(12):2685. DOI: 10.3390/s19122685
[9] 王世宝,庄建琦,樊宏宇,等. 基于频率比与集成学习的滑坡易发性评价—以金沙江上游巴塘—德格河段为例[J]. 工程地质学报,2022,30(3):817 − 828. [WANG Shibao,ZHUANG Jianqi,FAN Hongyu,et al. Evaluation of landslide susceptibility based on frequency ratio and ensemble learning:Taking the Batang-Dege section in the upstream of Jinsha River as an example[J]. Journal of Engineering Geology,2022,30(3):817 − 828. (in Chinese with English abstract) WANG Shibao, ZHUANG Jianqi, FAN Hongyu, et al. Evaluation of landslide susceptibility based on frequency ratio and ensemble learning—taking the Batang-Dege section in the upstream of Jinsha River as an example[J]. Journal of Engineering Geology, 2022, 30(3): 817-828. (in Chinese with English abstract)
[10] 屠水云,张钟远,付弘流,等. 基于CF与CF-LR模型的地质灾害易发性评价[J]. 中国地质灾害与防治学报,2022,33(2):96 − 104. [TU Shuiyun,ZHANG Zhongyuan,FU Hongliu,et al. Geological hazard susceptibility evaluation based on CF and CF-LR model[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):96 − 104. (in Chinese with English abstract) TU Shuiyun, ZHANG Zhongyuan, FU Hongliu, et al. Geological hazard susceptibility evaluation based on CF and CF-LR model[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 96-104. (in Chinese with English abstract)
[11] JIAO Yuanmei,ZHAO Dongmei,DING Yinping,et al. Performance evaluation for four GIS-based models purposed to predict and map landslide susceptibility:A case study at a World Heritage site in Southwest China[J]. CATENA,2019,183:104221. DOI: 10.1016/j.catena.2019.104221
[12] 罗路广,裴向军,谷虎,等. 基于GIS的 “8·8” 九寨沟地震景区地质灾害风险评价[J]. 自然灾害学报,2020,29(3):193 − 202. [LUO Luguang,PEI Xiangjun,GU Hu,et al. Risk assessment of geohazards induced by “8·8” earthquake based on GIS in Jiuzhaigou scenic area[J]. Journal of Natural Disasters,2020,29(3):193 − 202. (in Chinese with English abstract) LUO Luguang, PEI Xiangjun, GU Hu, et al. Risk assessment of geohazards induced by “8.8” earthquake based on GIS in Jiuzhaigou scenic area[J]. Journal of Natural Disasters, 2020, 29(3)193-202(in Chinese with English abstract)
[13] 付树林,梁丽萍,刘延国. 基于CF-Logistic模型的雅砻江新龙段地质灾害易发性评价[J]. 水土保持研究,2021,28(4):404 − 410. [FU Shulin,LIANG Liping,LIU Yanguo. Assessment on geohazard susceptibility in Xinlong section of Yalong River based on CF-logistic model[J]. Research of Soil and Water Conservation,2021,28(4):404 − 410. (in Chinese with English abstract) FU Shulin, LIANG Liping, LIU Yanguo. Assessment on geohazard susceptibility in Xinlong section of yalong river based on CF-logistic model[J]. Research of Soil and Water Conservation, 2021, 28(4)404-410(in Chinese with English abstract)
[14] DUMAN T Y,CAN T,GOKCEOGLU C,et al. Application of logistic regression for landslide susceptibility zoning of Cekmece Area,Istanbul,Turkey[J]. Environmental Geology,2006,51(2):241 − 256. DOI: 10.1007/s00254-006-0322-1
[15] 胡涛,樊鑫,王硕,等. 基于逻辑回归模型和3S技术的思南县滑坡易发性评价[J]. 地质科技通报,2020(2):113 − 121. [HU Tao,FAN Xin,WANG Shuo,et al. Landslide susceptibility evaluation of Sinan County using logistics regression model and 3S technology[J]. Geological Science and Technology Information,2020(2):113 − 121. (in Chinese with English abstract) HU Tao, FAN Xin, WANG Shuo, et al. Landslide susceptibility evaluation of Sinan County using logistics regression model and 3S technology[J]. Geological Science and Technology Information, 2020(2): 113-121. (in Chinese with English abstract)
[16] 田春山,刘希林,汪佳. 基于CF和Logistic回归模型的广东省地质灾害易发性评价[J]. 水文地质工程地质,2016,43(6):154 − 161. [TIAN Chunshan,LIU Xilin,WANG Jia. Geohazard susceptibility assessment based on CF model and Logistic Regression models in Guangdong[J]. Hydrogeology & Engineering Geology,2016,43(6):154 − 161. (in Chinese with English abstract) TIAN Chunshan, LIU Xilin, WANG Jia. Geohazard susceptibility assessment based on CF model and Logistic Regression models in Guangdong[J]. Hydrogeology and Engineering Geology, 2016, 43(6)154-161(in Chinese with English abstract)
[17] 饶品增,曹冉,蒋卫国. 基于地理加权回归模型的云南省地质灾害易发性评价[J]. 自然灾害学报,2017,26(2):134 − 143. [RAO Pinzeng,CAO Ran,JIANG Weiguo. Susceptibility evaluation of geological disasters in Yunnan Province based on geographically weighted regression model[J]. Journal of Natural Disasters,2017,26(2):134 − 143. (in Chinese with English abstract) Rao Pinzeng, Cao Ran, Jiang Weiguo. Susceptibility evaluation of geological disasters in Yunnan Province based on geographically weighted regression model[J]. Journal of Natural Disasters, 2017, 26(2): 134-143. (in Chinese with English abstract)
[18] 王丽丽,苏程,冯存均,等. 数据驱动自适应更新的斜坡地质灾害易发性评价系统[J]. 岩石力学与工程学报,2016,35(S1):3076 − 3083. [WANG Lili,SU Cheng,FENG Cunjun,et al. A data driven self-adaptive update landslide susceptibility assessment system[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(S1):3076 − 3083. (in Chinese with English abstract) WANG Lili, SU Cheng, FENG Cunjun, et al. A data driven self-adaptive update landslide susceptibility assessment system[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S1): 3076-3083. (in Chinese with English abstract)
[19] 黄发明,殷坤龙,蒋水华,等. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报,2018,37(1):12 − 167. [HUANG Faming,YIN Kunlong,JIANG Shuihua,et al. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(1):12 − 167. (in Chinese with English abstract) Huang Faming, Yin Kunlong, Jiang Shuihua, et al. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 12. (in Chinese with English abstract)
[20] 吴润泽,胡旭东,梅红波,等. 基于随机森林的滑坡空间易发性评价—以三峡库区湖北段为例[J]. 地球科学,2021(1):321 − 330. [WU Runze,HU Xudong,MEI Hongbo,et al. Spatial susceptibility assessment of landslides based on random forest:A case study from Hubei section in the Three Gorges Reservoir area[J]. Earth Science,2021(1):321 − 330. (in Chinese with English abstract) WU Runze, HU Xudong, MEI Hongbo, et al. Spatial susceptibility assessment of landslides based on random forest: a case study from Hubei section in the Three Gorges Reservoir area[J]. Earth Science, 2021(1): 321-330. (in Chinese with English abstract)
[21] 丁茜,赵晓东,吴鑫俊,等. 基于RBF核的多分类SVM滑塌易发性评价模型[J]. 中国安全科学学报,2022,32(3):194 − 200. [DING Xi,ZHAO Xiaodong,WU Xinjun,et al. Landslide susceptibility assessment model based on multi-class SVM with RBF kernel[J]. China Safety Science Journal,2022,32(3):194 − 200. (in Chinese with English abstract) DING Xi, ZHAO Xiaodong, WU Xinjun, et al. Landslide susceptibility assessment model based on multi-class SVM with RBF kernel[J]. China Safety Science Journal, 2022, 32(3): 194-200. (in Chinese with English abstract)
[22] 唐川,马国超. 基于地貌单元的小区域地质灾害易发性分区方法研究[J]. 地理科学,2015(1):91 − 98. [TANG Chuan,MA Guochao. Small regional geohazards susceptibility mapping based on geomorphic unit[J]. Scientia Geographica Sinica,2015(1):91 − 98. (in Chinese with English abstract) Tang Chuan, Ma Guochao. Small regional geohazards susceptibility mapping based on geomorphic unit[J]. Scientia Geographica Sinica, 2015(1): 91-98. (in Chinese with English abstract)
[23] WANG Fei,XU Peihua,WANG Changming,et al. Application of a GIS-based slope unit method for landslide susceptibility mapping along the Longzi River,southeastern Tibetan Plateau,China[J]. ISPRS International Journal of Geo-Information,2017,6(6):172. DOI: 10.3390/ijgi6060172
[24] 陈前,晏鄂川,黄少平,等. 基于样本与因子优化的黄冈南部地区地质灾害易发性评价[J]. 地质科技通报,2020(2):175 − 185. [CHEN Qian,YAN Echuan,HUANG Shaoping,et al. Susceptibility evaluation of geological disasters in southern Huanggang based on samples and factor optimization[J]. Geological Science and Technology Information,2020(2):175 − 185. (in Chinese with English abstract) CHEN Qian, YAN Echuan, HUANG Shaoping, et al. Susceptibility evaluation of geological disasters in southern Huanggang based on samples and factor optimization[J]. Geological Science and Technology Information, 2020(2): 175-185. (in Chinese with English abstract)
[25] 陈绪钰,倪化勇,李明辉,等. 基于加权信息量和迭代自组织聚类的地质灾害易发性评价[J]. 灾害学,2021,36(2):71 − 78. [CHEN Xuyu,NI Huayong,LI Minghui,et al. Geo-hazard susceptibility evaluation based on weighted information value model and ISODATA cluster[J]. Journal of Catastrophology,2021,36(2):71 − 78. (in Chinese with English abstract) CHEN Xuyu, NI Huayong, LI Minghui, et al. Geo-hazard susceptibility evaluation based on weighted information value model and ISODATA cluster[J]. Journal of Catastrophology, 2021, 36(2): 71-78. (in Chinese with English abstract)
[26] 牛强,揭巧,李县. 变权栅格叠加方法研究—以生态敏感性评价为例[J]. 地理信息世界,2017,24(5):27 − 34. [NIU Qiang, JIE Qiao,LI Xian. Research on variable weight raster overlay-taking ecological sensitivity evaluation as an example[J]. Geomatics World,2017,24(5):27 − 34. (in Chinese with English abstract) QIANG niu, QIAO Jie, XIAN Li. Research on variable weight raster overlay-taking ecological sensitivity evaluation as an example[J]. Geomatics World, 2017, 24(5): 27-34. (in Chinese with English abstract)
[27] 韩用顺,孙湘艳,刘通,等. 基于证据权-投影寻踪模型的藏东南地质灾害易发性评价[J]. 山地学报,2021,39(5):672 − 686. [HAN Yongshun,SUN Xiangyan,LIU Tong,et al. Susceptibility evaluation of geological hazards based on evidence weight-projection pursuit model in southeast Tibet,China[J]. Mountain Research,2021,39(5):672 − 686. (in Chinese with English abstract) HAN Yongshun, SUN Xiangyan, LIU Tong, et al. Susceptibility evaluation of geological hazards based on evidence weight-projection pursuit model in southeast Tibet, China[J]. Mountain Research, 2021, 39(5): 672-686. (in Chinese with English abstract)
[28] 支泽民, 刘峰贵, 周强, 等. 基于流域单元的地质灾害易发性评价—以西藏昌都市为例[J]. 中国地质灾害与防治学报,2023,34(1):139 − 150. [ZHI Zemin, LIU Fenggui, ZHOU Qiang, et al. Evaluation of geological hazards susceptibility based on watershed units:A case study of the Changdu City, Tibet[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1):139 − 150. (in Chinese with English abstract) ZHI Zemin, LIU Fenggui, ZHOU Qiang, et al. Evaluation of geological hazards susceptibility based on watershed units: a case study of the Changdu City, Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 139-150.(in Chinese with English abstract)
[29] YANG Yanguo,YU Jiaqi,FU Yubin,et al. Research on geological hazard risk assessment based on the cloud fuzzy clustering algorithm[J]. Journal of Intelligent & Fuzzy Systems,2019,37(4):4763 − 4770.
[30] 孙滨, 祝传兵, 康晓波, 等. 基于信息量模型的云南东川泥石流易发性评价[J]. 中国地质灾害与防治学报,2022,33(5):119 − 127. [SUN Bin, ZHU Chuanbing, KANG Xiaobo, et al. Susceptibility assessment of debris flows based on information model in Dongchuan, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(5):119 − 127. (in Chinese with English abstract) SUN Bin, ZHU Chuanbing, KANG Xiaobo, et al. Susceptibility assessment of debris flows based on information model in Dongchuan, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5)119-127(in Chinese with English abstract)
[31] 王劲峰,徐成东. 地理探测器:原理与展望[J]. 地理学报,2017,72(1):116 − 134. [WANG Jinfeng,XU Chengdong. Geodetector:Principle and prospective[J]. Acta Geographica Sinica,2017,72(1):116 − 134. (in Chinese with English abstract) WANG Jinfeng, XU Chengdong. Geodetector: principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1)116-134(in Chinese with English abstract)
[32] LUO Wei,LIU C C. Innovative landslide susceptibility mapping supported by geomorphon and geographical detector methods[J]. Landslides,2018,15(3):465 − 474. DOI: 10.1007/s10346-017-0893-9
[33] 韩继冲,张朝,曹娟. 基于逻辑回归的地震滑坡易发性评价—以汶川地震、鲁甸地震为例[J]. 灾害学,2021,36(2):193 − 199. [HAN Jichong,ZHANG Hao,CAO Juan. Assessing earthquake-induced landslide susceptibility based on logistic regression in 2008 Wenchuan earthquake and 2014 Ludian earthquake[J]. Journal of Catastrophology,2021,36(2):193 − 199. (in Chinese with English abstract) HAN Jichong, ZHANG Hao, CAO Juan. Assessing earthquake-induced landslide susceptibility based on logistic regression in 2008 Wenchuan earthquake and 2014 Ludian earthquake[J]. Journal of Catastrophology, 2021, 36(2): 193-199. (in Chinese with English abstract)