Assessment of rockfall susceptibility along the expressway based on the CF-AHP coupling model: A case study of the Tucheng-Wanglong section of the Rongzun expressway
-
摘要: 蓉遵高速公路(土城—旺隆段)沿线崩塌频繁发生,威胁公路安全甚至人类的生命财产安全。文章通过实地调查蓉遵高速公路(土城-旺隆段)崩塌地质灾害的影响因素,构建了9个影响因子,分别是地形起伏度、高程、归一化植被指数、坡向、地层岩性、距道路距离、距河流距离、坡度及降雨量。采用确定性系数模型(certain factors,CF)、层次分析法(analytic hierarchy process,AHP)及耦合模型(CF-AHP)对研究区进行崩塌地质灾害易发性评价,并分别采用崩塌地质灾害点频率统计和成功率曲线对3种模型的评价精度进行检验。结果表明,CF、AHP和CF-AHP的AUC预测精度分别为0.848,0.835,0.866,且3种评价模型得到的崩塌地质灾害的高、中易发区频率比值占总频率比值均超过70%。 3种模型精确度由大到小分别为CF-AHP、CF、AHP模型,说明CF-AHP模型的滑坡预测优于单一的CF、AHP模型,能精确地评价蓉遵高速公路(土城-旺隆段)崩塌地质灾害易发性,为公路沿线区域崩塌灾害的防灾减灾提供决策依据。
-
关键词:
- 崩塌地质灾害 /
- 高速公路 /
- 易发性评价 /
- CF-AHP耦合模型
Abstract: Frequent geological hazards have occurred along the Rongzun Expressway (Tucheng - Wanglong section, posing a threat to the safety of the highway and even human life and property. This study investigated the causes of rockfall along the expressway and identified nine influencing factors, including terrain fluctuation, elevation, normalized difference vegetation index (NDVI), slope direction, lithology, distance from the road, distance from the river, slope, and rainfall. The certainty factor model (CF), analytic hierarchy process (AHP), and coupling model (CF-AHP) were used to evaluate the susceptibility of geological hazard in the study area, and the accuracy of the three models was tested using the distribution of rockfalls at various levels and the success rate curve. The results indicated that the AUC evaluation accuracy of CF, AHP and CF-AHP was 0.848, 0.835 and 0.866, respectively. The frequency ratios of high and moderate prone areas of geohazards obtained by the three evaluation models accounted for more than 70% of the total frequency ratios. The accuracy of the three models in descending order is CF-AHP, CF, AHP models, respectively. This indicates that the CF-AHP model is better than the single CF and AHP models in geohazard prediction and can accurately evaluate the geohazard susceptibility of expressway. It provides a decision-making basis for disaster prevention and mitigation of regional rockfall disaster along the highway. -
0. 引言
膨胀土边坡的稳定性一直是岩土界广泛关注的问题。目前,边坡稳定性分析的常用方法主要包括了极限平衡法、极限分析法等,都建立在极限平衡理论基础之上,并不适用于膨胀土边坡的稳定性分析[1]。另一种常用的方法是有限元强度折减法,早在1975年该方法就被Zienkiewice等[2]用来求解边坡稳定问题,随着计算机硬件技术和有限元软件技术的飞速发展,运用有限元强度折减法分析边坡稳定已经成为新的趋势[3-10]。国内很多学者将强度折减法运用到膨胀土边坡稳定分析中,取得了一系列成果。
周健等[11]利用强度折减法研究膨胀土边坡的稳定性,发现干湿循环会导致膨胀土抗剪强度衰减,且随着干湿循环次数的增加,边坡稳定性降低,安全系数减小。刘明维等[12]研究了强度折减法在膨胀土斜坡地基路堤稳定性分析中的应用,发现强度折减法所得结果与实际情况相符。张硕等[3]基于有限元强度折减法研究了雨季土体增重、强度降低和膨胀作用对膨胀土边坡稳定性的影响,发现强度降低是导致边坡失稳的主要原因,膨胀作用次之,土体增重较小。程灿宇等[13]利用MIDAS/GTS、FLAC和ANSYS三种软件采用强度折减法分别对不同工况进行了稳定性分析,发现弱膨胀土边坡无论采用M-C屈服准则,还是D-P屈服准则所得结果差异不大。谭波等[14]采用强度折减法对不同条件下的膨胀土边坡的安全系数进行了计算,发现次生裂隙面发育是导致膨胀土边坡失稳的主要原因之一。杨才等[15]根据强度折减有限元法对不同条件失稳边坡稳定性分析结果,提出以最大塑性应变以及最小塑性应变的量级指标来判定塑性区贯通时刻。
然而,干湿循环、降雨入渗等因素会引起浅层膨胀土干密度降低、吸力衰减,从而使抗剪强度大幅度下降。目前,在采用强度折减法分析膨胀土边坡稳定性的同时系统考虑抗剪强度衰减影响的研究尚不多见。为此,本文采用试验与数值模拟相结合的方式,系统地考虑了抗剪强度衰减特性的膨胀土边坡稳定性分析。首先对广西宁明膨胀土开展了室内直剪试验,分析了含水量、干密度对膨胀土抗剪强度衰减的影响;再以此为依据,利用Midas有限元分析软件研究考虑抗剪强度衰减特性对膨胀土边坡稳定性安全系数的影响,获取了边坡安全系数随抗剪强度折减的动态变化规律,以期为工程实践提供参考。
1. 抗剪强度衰减特性试验设计
1.1 试验用土
土样取自广西崇左-夏石镇某高速公路膨胀土边坡路段,其天然含水量、最优含水量和天然干密度分别为32.5%,24%和1.40 g/cm3,其他土性指标,比重(Gs),液限(WL),塑限(WP),塑性指数(IP),自由膨胀率(σf)见表1。自由膨胀率为42.8%,按照《膨胀土地区建筑技术规范》[16]的分类,该膨胀土为弱膨胀性膨胀土。
表 1 宁明膨胀土基本土体参数Table 1. Basic soil parameters of Ningming expansive soil参数 Gs/(g.cm−3) wL/% wP/% IP σf/% 取值 2.80 59.11 24.68 34.43 42.8 1.2 试样制备及试验方法
1.2.1 试样制备
首先,将现场取回的扰动土试样碾散过2 mm筛,过筛后放入105℃的烘箱中烘24h,使试样具有相同的初始结构,并将烘干土用收纳箱密封保存备用。接着,按目标含水量(控制干密度为1.6 g/cm3)和目标干密度(控制含水量18%)要求配制成湿土,并装入保鲜袋,经闷料24 h后测得土样的最终含水量与目标含水量之间误差不超过1%;最后,为保证环刀试样均匀一致,采用自制的模具(图1)进行制样,并利用液压千斤顶脱模推出,控制试样的直径为61.8 mm,高度为15 mm,目的是使试样在竖直方向上能够充分膨胀,每组平行土样密度差不超过±0.02 g/cm3,否则废弃重做。试样配制过程如图2,最终制成的每个环刀试样表面均平整无破损,且长度误差不超过0.2 mm,则为满足要求的试样。
1.2.2 试验方法
以初始干密度为1.6 g/cm3,含水量分别为9%、12%、15%、18%、21%、24%和27%制取环刀试样7组,每组4个;并以初始含水量为18%,干密度分别为1.4、1.5、1.6和1.7 g/cm3制取环刀试样4组,每组4个,然后进行常规直剪试验(图3),试验施加的竖向压力分别为100 kPa、200 kPa、300 kPa、400 kPa,剪切速率为0.02 mm/min,初始剪切位移均保持在3.850 mm左右,剪切位移量程13.000 mm。
2. 抗剪强度衰减特性试验结果与分析
2.1 含水量对抗剪强度衰减的影响分析
为研究广西宁明膨胀土的抗剪强度随含水量变化的规律,对不同含水量的土样进行直剪试验,试验结果如表2所示。
表 2 宁明膨胀土抗剪强度试验结果表Table 2. Results of shear strength of Ningming expensive soils试验参数 w/% φ/(°) c/kPa 试验结果 8.80 27.3 100.36 11.7 24.56 93.28 14.6 21.80 67.34 17.5 19.82 54.64 20.8 17.92 41.22 23.3 15.20 30.86 26.1 12.38 9.90 根据表2可绘制出宁明膨胀土黏聚力和内摩擦角与含水量的关系如图4和图5所示,拟合后可得到黏聚力和内摩擦角与含水量的关系式:
$$ c = { - 5.192}w + 147.9 $$ (1) $$ \varphi = - 0.827w + 34.36 $$ (2) 由式(1)和(2)可知,c和φ与w都存在近似线性的关系,这与文献[17-18]结果一致,含水量每增大5%,其黏聚力约减小26 kPa,内摩擦角减小4.2°左右;为更好的表示c随w的衰减规律,参考吕海波等[19]的研究,可计算出c的衰减率为:
$$ \eta = \frac{{\left| {{c_0} - {c_1}} \right|}}{{{c_0}}} \times 100\% $$ (3) 式中:η——黏聚力衰减率;
c0——初始黏聚力;
c1——随含水量变化后的黏聚力。
根据表3可知,随着宁明膨胀土含水量的逐渐增大黏聚力不断衰减,在最低目标含水量9%以3%递增至目标含水量27%的过程中,黏聚力的衰减率变化趋势为增大-减小-增大,说明膨胀土在低含水量和接近饱和含水量时,黏聚力对含水量的变化显得十分敏感。
表 3 宁明膨胀土黏聚力衰减率计算结果表Table 3. Results of cohesion decay rate of Ningming expansive soil试验参数 w/% c/kPa η/% 试验结果 8.8 100.36 − 11.7 93.28 7.05 14.6 67.34 27.81 17.5 54.64 18.86 20.8 41.22 24.56 23.3 30.86 25.13 26.1 9.9 67.92 在试样ρd保持一致的情况下(1.6 g/cm3),可从图6及图7中看出在相同垂直应力作用下,抗剪强度随着w的增大呈现减小的趋势。
上述试验结果表明,宁明膨胀土的抗剪强度随着含水量的改变发生显著变化;主要表现为在含水量增大时黏聚力和内摩擦角发生衰减,其中黏聚力的衰减较内摩擦角更为明显。
2.2 干密度对抗剪强度衰减的影响分析
根据表4数据可拟合出试样黏聚力和内摩擦角随干密度的变化规律,如图8、图9所示。
表 4 不同干密度下试样试验结果记录表Table 4. Record table of test results under different dry densities试验参数 ρd/(g·cm−3) c/(kPa) φ/(°) 试验结果 1.7 97.26 26.5 1.6 54.64 19.82 1.5 40.34 17.82 1.4 37.57 16.87 由图8和图9可观察出宁明膨胀土的黏聚力和内摩擦角随干密度的变化曲线符合乘幂函数的拟合结果,其中:
$$ c = 0.126{{\rm{e}}^{3.884{\rho _{\rm{d}}}}} $$ (4) $$ \varphi = 1.631{{\rm{e}}^{1.614{\rho _{\rm{d}}}}} $$ (5) 分析式(4)可知试样c随着ρd的减小而减小,且随着ρd的减小,c的衰减速率由快到慢,并最终趋于稳定;而在接近最大干密度(1.78 g/cm3)时变化较为显著,在干密度由1.4 g/cm3增大至1.6 g/cm3时,c增加了17.07 kPa;在干密度由1.6 g/cm3增大至1.7 g/cm3时,c增加了42.62 kPa。而由式(5)能看出φ亦随着ρd的减小而减小,但其整体的变化幅度并不大,干密度1.4 g/cm3与1.7 g/cm3的试样φ相差约9.6°;图10中各级载荷下的抗剪强度都随着试样ρd的减小而降低,且其变化幅度在高垂直应力条件下更为显著。
干密度对宁明膨胀土抗剪强度的影响主要体现在黏聚力上,试样干密度越小,单位体积土体的土颗粒越少,土粒间水膜越薄,其抗剪强度越小;此外,膨胀土干密度越小,其吸力越大,试样的抗剪强度越低;而干密度对于内摩擦角的整体影响并不显著,其变化在10°以内。
3. 考虑抗剪强度衰减特性的边坡稳定性分析
3.1 几何模型
根据广西崇左-夏石镇某高速公路膨胀土边坡为研究对象,并参考该公路的地质勘察报告,该边坡土质主要由填土(①1和①2)、黏土②、强风化泥岩③和中风化泥岩④组成。同时根据地质调查及钻探、探槽揭示,该边坡滑动带基本位于黏土层,且下部强风化泥岩等土体不透水,大气影响深度为7 m,刚好大致为填土厚度和黏土厚度之和,影响急剧层深度为2.5 m。相关土层天然状态下基本参数指标见表5。
表 5 土层相关参数Table 5. Soil layer related parameters地层岩性 厚度
/m重度
/(kN·m−3)内摩擦角
/(°)黏聚力
/kPa其它 填土①1 0.2~1 18.0 5 24 成分黏土 填土①2 2.5~3.3 18.8 30 7 上层砾砂,
下层碎石黏土② 0.3~4 18.4 8.4 35.6 中等膨胀土 强风化泥岩③ 0.6~1 19.3 25 45 质量等级Ⅴ级 中风化泥岩④ 未钻穿 19.6 35 65 质量等级Ⅴ级 结合上述实际工程地质勘察报告,将膨胀土边坡考虑为非匀质边坡,同时为提高模型求解时间,取黏土弹性模量12000 kPa,容重18.4 N/m3,泊松比0.3,边坡高20 m,坡比1∶1.5。为避免尺寸效应带来的误差和便于模型求解收敛,坡顶取15 m,坡底取25 m,网格按线性梯度(长度)划分,起始长度1.2 m,结束长度0.5 m。由于填土土层由于土体较松散,易膨胀开裂,在降雨作用下容易引发降雨入渗,易软化下部土体,因此实际工程中对该部分填土进行了挖除。填土挖除后,为充分合理考虑到大气影响层对膨胀土边坡中黏土的影响,同时又不会影响到下部不透水泥岩,取大气影响层为距离坡面4 m范围的土体,正好为黏土厚度,急剧层为距离坡面1.5 m范围的土体(图11)。
3.2 含水量对稳定性的影响
根据室内直剪试验结果,同时考虑到膨胀土具有浅层性,将测得的7个含水量下(干密度均为1.6 g/cm3)的膨胀土抗剪强度参数指标c和φ赋予给受大气影响的风化层土体,即距离坡面4 m范围内的黏土。强、中风化泥岩层土体参数指标取地质勘察报告的值,具体数值见表5。计算得到不同含水量w下膨胀土边坡整体位移和潜在滑移面,如图12、图13所示。
分析图12和图13可知,随着含水量w的增大,边坡的整体位移整体呈增大趋势,非饱和膨胀土边坡的浅层破坏由受大气影响层膨胀土强度衰减导致。随着含水量的增加,土体的c不断减小,边坡位移不断增大,滑移面逐渐变浅;破坏形式为浅层滑塌式的破坏。边坡失稳的滑移面位置位于大气影响层和不透水泥岩的交界处,且与黏土的底部相切。
基于相同干密度,不同含水量下膨胀土的剪切试验和地质勘察报告,利用有限元分析软件对边坡进行稳定性分析,可得到随着膨胀土含水量的变化对边坡稳定性安全系数的影响规律,如图14所示的曲线,表达式为:
$$ y = - {\text{0}}{\text{.008}}{x^2} + {\text{0}}{\text{.1884}}x + {\text{2}}{\text{.025}} $$ (6) 随着w的增大,膨胀土的强度参数指标不断衰减,含水量较高比低含水量情况下的衰减速度更大。同时,膨胀土边坡在天然状况下处于稳定状态,但当w增大至27%时,其Fs为0.850,稳定性转变为失稳状态,发生滑坡、坍塌等工程现象;在此基础上,若继续增大含水量,膨胀土边坡将可能由浅层失稳进入完全失稳状态,这与实际工程中,在长时间降雨后,曾出现的多次滑坡现象类似。
3.3 干密度对稳定性的影响
根据试验结果,将测得的四个干密度下(含水量均为18%)的膨胀土抗剪强度参数指标c和φ赋予给距离坡面4 m范围的黏土。强、中风化泥岩层土体抗剪强度参数指标取地质勘察报告值,具体数值见表5。计算得到不同ρd下膨胀土边坡整体位移和潜在滑移面,如图15、图16所示。
从图15和图16中可以看出试样的ρd越小,边坡位移越大,潜在滑移面变浅;这是因为土体的c随着ρd的减小而减小,使得其抗剪强度降低;此时,边坡的破坏形式由整体滑动变为浅层滑塌。基于相同含水量,不同干密度下膨胀土的剪切试验和地质勘察报告,利用有限元分析软件对边坡进行稳定性分析,可得到随着膨胀土干密度的变化对边坡稳定性安全系数的影响规律,如图17所示的曲线,其表达式为:
$$ y = {\text{8}}{\text{.375}}{x^2} - {\text{23}}{\text{.24}}x + {\text{18}}{\text{.41}} $$ (7) 试样ρd越小,其抗剪强度越低;且在ρd越大时其Fs增大趋势越为显著;1.5 g/cm3干密度下的Fs为2.409,比1.4 g/cm3的高出0.124,而1.7 g/cm3干密度下的Fs与1.6 g/cm3条件下的差值为0.459。
4. 结 论
(1)含水量的增大、干密度的减小都会引起膨胀土的峰值抗剪强度、黏聚力以及内摩擦角发生不同程度的衰减,其中,黏聚力的衰减幅度相较于内摩擦角更大。
(2)通过多次膨胀土强度折减的方法可以很好地模拟降雨过程中由抗剪强度衰减引起的边坡稳定性的动态变化:风化层土体强度接近未风化层土体强度时,边坡处于稳定状态,潜在滑动面穿过分层界面;随着含水量增大、干密度变小,风化层抗剪强度会不断衰减,引起潜在滑动面逐渐外移,边坡稳定性降低。
(3)数值模拟结果表明:与干密度减小相比,含水量的增大对边坡稳定更为不利,含水量增加到27%以后,膨胀土边坡由稳定状态变为欠稳定状态,因此在分析膨胀土边坡稳定性时,应着重考虑含水量变化的影响。
-
表 1 判断矩阵标度及其含义
Table 1 Judgment matrix scale and its meaning
标度值 含义 1 表示两个因素相比,具有相同重要性 3 表示两个因素相比,前者比后者稍重要 5 表示两个因素相比,前者比后者明显重要 7 表示两个因素相比,前者比后者强烈重要 9 表示两个因素相比,前者比后者极端重要 2,4,6,8 表示上述相邻判断的中间值 倒数 与上述影响情况相反 表 2 评价因子分级及CF值
Table 2 Classification of evaluation factors and CF values of each grade
指标因子 分级 面积/km2 灾害点数/个 点密度/(个·km-2) CF值 高程/m 222~325 7.277 0 0 −1 >325~407 4.458 6 1.345986 0.297557 >407~488 4.587 10 2.179932 0.566281 >488~581 3.609 4 1.10834 0.146942 >581~790 1.451 0 0 −1 坡度/(°) 0~10 2.962 0 0 −1 >10~20 4.497 0 0 −1 >20~30 6.335 3 0.473552 −0.49914 >30~40 4.993 11 2.202996 0.570822 >40 2.595 6 2.312406 0.591128 地形起伏度/m 152~285 1.067 0 0 −1 286~362 6.290 2 0.31796 −0.66371 363~439 6.170 3 0.486192 −0.48577 440~526 5.431 15 2.762126 0.657699 527~672 2.440 0 −1 坡向/(°) 平面 0.002 0 0 −1 北 2.435 3 1.231831 0.23246 东北 6.026 10 1.659613 0.430302 东 5.409 5 0.924385 −0.02231 东南 3.192 1 0.313254 −0.66868 南 1.951 1 0.512505 −0.45794 西南 0.556 0 0 −1 西 0.943 0 0 −1 西北 0.868 0 0 −1 地层 J3p1 0.208 0 0 −1 Kjd1 13.538 11 0.81254 −0.14061 Kjd2 3.333 5 1.500285 0.369801 J3p2 4.086 4 0.978953 0.034193 归一化植被指数 −0.0897~0.0962 1.485 0 0 −1 0.0963~0.2405 2.528 0 0 −1 0.2406~0.3432 3.047 4 1.312982 0.2799 0.3433~0.419 6.817 7 1.026905 0.079293 0.4191~0.534 7.309 9 1.231375 0.232177 距道路距离/m 0~50 2.858 6 2.099076 0.549574 >50~100 2.863 5 1.746481 0.458638 >100~150 2.856 4 1.400707 0.324999 >150~200 2.806 3 1.069061 0.115599 >200~250 2.646 1 0.377929 −0.60028 >250 7.127 1 0.14031 −0.8516 距河流距离/m 0~100 5.868 0 0 −1 >100~200 2.928 3 1.024695 0.077307 >200~300 2.878 8 2.779515 0.659841 >300~400 2.824 8 2.832661 0.666223 400~500 2.713 1 0.36865 −0.61009 >500 3.933 0 −1 降雨量/mm 0~800 5.108 4 1.379483 −0.17168 >800~900 8.063 5 0.620109 −0.34413 >900~1000 7.974 11 0.783162 0.314614 表 3 中间层(B)判断矩阵
Table 3 Judgment matrix for intermediate layer (B)
易发性 诱发因素B2 自然因素B1 权重 诱发因素B2 1 0.3333 0.25 自然因素B1 3 1 0.75 表 4 指标层(B1)判断矩阵
Table 4 Judgment matrix for indicator layer (B1)
自然因素B1 高程C1 坡度C2 坡向C3 地形起伏度C4 地层岩性C5 归一化植被指数 C6 权重 高程C1 1 0.3333 3 0.3333 0.25 3 0.1017 坡度C2 3 1 5 0.5 0.3333 3 0.1815 坡向C3 0.3333 0.2 1 0.2 0.2 2 0.0543 地形起伏度C4 3 2 5 1 0.5 4 0.247 地层岩性C5 4 3 5 2 1 5 0.3673 NDVI C6 0.3333 0.3333 0.5 0.25 0.2 1 0.0482 表 5 指标层(B2)判断矩阵
Table 5 Judgment matrix for indicator layer (B2)
诱发因素B2 降雨C7 距河流距离C8 距道路距离C9 权重 降雨量C7 1 3 1 0.4286 距河流距离C8 0.3333 1 0.3333 0.1429 距道路距离C9 1 3 1 0.4286 表 6 各因子的权重
Table 6 Influence weight of each factor
备选方案 地层岩性C5 地形起伏度C4 坡度C2 降雨量C7 距道路距离C9 高程C1 坡向C3 NDVI C6 距河流距离C8 权重 0.2755 0.1852 0.1361 0.1071 0.1071 0.0763 0.0407 0.0361 0.0357 表 7 易发性评价结果
Table 7 Summary table of geohazard susceptibility for three models
易发性等级 CF AHP CF-AHP 栅格数 百分比/% 栅格数 百分比/% 栅格数 百分比/% 极低易发区 4482 19.4278 4156 18.0147 4826 20.9189 低易发区 6934 30.0564 7105 30.7976 8028 34.7984 中易发区 8409 36.4499 7853 34.0399 7029 30.4681 高易发区 3245 14.0659 3956 17.1478 3187 13.8145 表 8 地质灾害易发性评价结果检验
Table 8 Verification of geohazards susceptibility assessment results
易发性等级 灾害点百分比/% CF AHP CF-AHP 极低易发区 0 0 0 低易发区 0 5 0 中易发区 25 25 15 高易发区 75 70 85 -
[1] 覃乙根,杨根兰,鲁鲲鹏,等. 贵州寨子危岩崩塌风险定量评价研究[J]. 人民长江,2019,50(10):113 − 119. [QIN Yigen,YANG Genlan,LU Kunpeng,et al. Quantitative risk assessment for Zhaizi rockfall in Guizhou Province[J]. Yangtze River,2019,50(10):113 − 119. (in Chinese with English abstract) QIN Yigen, YANG Genlan, LU Kunpeng, et al. Quantitative risk assessment for Zhaizi rockfall in Guizhou Province[J]. Yangtze River, 2019, 50(10): 113-119. (in Chinese with English abstract)
[2] 谈树成,刘雪斌,谢亚亚,等. 某拟建高速公路地质灾害易发性评价[J]. 水土保持研究,2019,26(3):373 − 380. [TAN Shucheng,LIU Xuebin,XIE Yaya,et al. Assessment on susceptibility of geohazard for a proposed expressway[J]. Research of Soil and Water Conservation,2019,26(3):373 − 380. (in Chinese with English abstract) TAN Shucheng, LIU Xuebin, XIE Yaya, et al. Assessment on susceptibility of geohazard for a proposed expressway[J]. Research of Soil and Water Conservation, 2019, 26(3)373-380(in Chinese with English abstract)
[3] 崔志超,王俊豪,崔传峰,等. 基于层次分析法和模糊数学相结合的甘肃东乡八丹沟泥石流易发性评价[J]. 中国地质灾害与防治学报,2020,31(1):44 − 50. [CUI Zhichao,WANG Junhao,CUI Chuanfeng,et al. Evaluation of the susceptibility of debris flow in Badan Gully of Dongxiang County of Gansu based on AHP and Fuzzy mathematics[J]. The Chinese Journal of Geological Hazard and Control,2020,31(1):44 − 50. (in Chinese with English abstract) CUI Zhichao, WANG Junhao, CUI Chuanfeng, et al. Evaluation of the susceptibility of debris flow in Badan Gully of Dongxiang County of Gansu based on AHP and Fuzzy mathematics[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(1)44-50(in Chinese with English abstract)
[4] 刘宇恒,邓辉,熊倩莹. 基于层次分析法的茂县斜坡地质灾害易发性评价[J]. 长江科学院院报,2017,34(5):31 − 35. [LIU Yuheng,DENG Hui,XIONG Qianying. AHP-based evaluation of slope geo-hazard susceptibility of Maoxian County,Sichuan,China[J]. Journal of Yangtze River Scientific Research Institute,2017,34(5):31 − 35. (in Chinese with English abstract) DOI: 10.11988/ckyyb.20160155 LIU Yuheng, DENG Hui, XIONG Qianying. AHP-based evaluation of slope geo-hazard susceptibility ofMaoxian County, Sichuan, China[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(5)31-35(in Chinese with English abstract) DOI: 10.11988/ckyyb.20160155
[5] 尚敏,马锐,张英莹,等. 基于GIS的证据权重法的崩塌敏感性分析研究[J]. 工程地质学报,2018,26(5):1211 − 1218. [SHANG Min,MA Rui,ZHANG Yingying,et al. GIS based weights of evidence method for rock fall susceptibility[J]. Journal of Engineering Geology,2018,26(5):1211 − 1218. (in Chinese with English abstract) SHANG Min, MA Rui, ZHANG Yingying, et al. GIS based weights of evidence method for rock fall susceptibility[J]. Journal of Engineering Geology, 2018, 26(5)1211-1218(in Chinese with English abstract)
[6] 谭玉敏,郭栋,白冰心,等. 基于信息量模型的涪陵区地质灾害易发性评价[J]. 地球信息科学学报,2015,17(12):1554 − 1562. [TAN Yumin,GUO Dong,BAI Bingxin,et al. Geological hazard risk assessment based on information quantity model in Fuling District,Chongqing City,China[J]. Journal of Geo-Information Science,2015,17(12):1554 − 1562. (in Chinese with English abstract) TAN Yumin, GUO Dong, BAI Bingxin, et al. Geological hazard risk assessment based on information quantity model in Fuling district, Chongqing city, China[J]. Journal of Geo-Information Science, 2015, 17(12)1554-1562(in Chinese with English abstract)
[7] 覃乙根,杨根兰,江兴元,等. 基于确定性系数模型与逻辑回归模型耦合的地质灾害易发性评价—以贵州省开阳县为例[J]. 科学技术与工程,2020,20(1):96 − 103. [QIN Yigen,YANG Genlan,JIANG Xingyuan,et al. Geohazard susceptibility assessment based on integrated certainty factor model and logistic regression model for Kaiyang,China[J]. Science Technology and Engineering,2020,20(1):96 − 103. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2020.01.015 QIN Yigen, YANG Genlan, JIANG Xingyuan, et al. Geohazard susceptibility assessment based on integrated certainty factor model and logistic regression model for Kaiyang, China[J]. Science Technology and Engineering, 2020, 20(1)96-103(in Chinese with English abstract)) DOI: 10.3969/j.issn.1671-1815.2020.01.015
[8] 向喜琼,黄润秋. 基于GIS的人工神经网络模型在地质灾害危险性区划中的应用[J]. 中国地质灾害与防治学报,2000,11(3):23 − 27. [XIANG Xiqiong,HUANG Runqiu. Application of GIS-based artificial Neural Networks on assessment of geohazards risk[J]. The Chinese Journal of Geological Hazard and Control,2000,11(3):23 − 27. (in Chinese with English abstract) Xiang Xiqiong, Huang Runqiu. Application of GIS-based artificial Neural Networks on assessment of geohazards risk[J]. The Chinese Journal of Geological Hazard and Control, 2000, 11(3): 23-27. (in Chinese with English abstract))
[9] 黄发明,殷坤龙,蒋水华,等. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报,2018,37(1):156 − 167. [HUANG Faming,Yin Kunlong,Jiang Shuihua,et al. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(1):156 − 167. (in Chinese with English abstract) Huang Faming, Yin Kunlong, Jiang Shuihua, et al. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 156-167. (in Chinese with English abstract))
[10] 吴润泽,胡旭东,梅红波,等. 基于随机森林的滑坡空间易发性评价—以三峡库区湖北段为例[J]. 地球科学,2021(1):321 − 330. [WU Runze,HU Xudong,MEI Hongbo,et al. Spatial susceptibility assessment of landslides based on random forest:A case study from Hubei section in the Three Gorges Reservoir area[J]. Earth Science,2021(1):321 − 330. (in Chinese with English abstract) WU Runze, HU Xudong, MEI Hongbo, et al. Spatial susceptibility assessment of landslides based on random forest: a case study from Hubei section in the Three Gorges Reservoir area[J]. Earth Science, 2021(1): 321-330. (in Chinese with English abstract)
[11] 胡涛,樊鑫,王硕,等. 基于逻辑回归模型和3S技术的思南县滑坡易发性评价[J]. 地质科技通报,2020(2):113 − 121. [HU Tao,FAN Xin,WANG Shuo,et al. Landslide susceptibility evaluation of Sinan County using logistics regression model and 3S technology[J]. Geological Science and Technology Information,2020(2):113 − 121. (in Chinese with English abstract) HU Tao, FAN Xin, WANG Shuo, et al. Landslide susceptibility evaluation of Sinan County using logistics regression model and 3S technology[J]. Geological Science and Technology Information, 2020(2): 113-121. (in Chinese with English abstract)
[12] 覃乙根,杨根兰,谢金,等. 贵州省开阳县斜坡地质灾害孕灾因子敏感性分析[J]. 煤田地质与勘探,2020,48(4):190 − 198. [QIN Yigen,YANG Genlan,XIE Jin,et al. Sensitivity analysis of disaster-pregnant environmental factors for slope geological hazards in Kaiyang County,Guizhou Province[J]. Coal Geology & Exploration,2020,48(4):190 − 198. (in Chinese with English abstract) Qin Yigen, Yang Genlan, Xie Jin, et al. Sensitivity analysis of disaster-pregnant environmental factors for slope geological hazards in Kaiyang County, Guizhou Province[J]. Coal Geology & Exploration, 2020, 48(4): 190-198. (in Chinese with English abstract)
[13] 刘光辉,刘汉湖,姚昆,等. 基于证据权法与确定系数法的滑坡危险区划对比分析—以虹口乡为例[J]. 物探化探计算技术,2016,38(6):848 − 853. [LIU Guanghui,LIU Hanhu,YAO Kun,et al. Based on the weights of evidence method and certainty factor method of landslide danger division comparative analysis:A case study in Hongkou,China[J]. Computing Techniques for Geophysical and Geochemical Exploration,2016,38(6):848 − 853. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-1749.2016.06.21 LIU Guanghui, LIU Hanhu, YAO Kun, et al. Based on the weights of evidence method and certainty factor method of landslide danger division comparative analysis: -a case study in Hongkou, chine[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2016, 38(6)848-853(in Chinese with English abstract) DOI: 10.3969/j.issn.1001-1749.2016.06.21
[14] 李益敏,李驭豪,赵志芳. 基于确定性系数模型的泸水市泥石流易发性评价[J]. 水土保持研究,2019,26(4):336 − 342. [LI Yimin,LI Yuhao,ZHAO Zhifang. Assessment on susceptibility of debris flow in Lushui based on the certain factor model[J]. Research of Soil and Water Conservation,2019,26(4):336 − 342. (in Chinese with English abstract) LI Yimin, LI Yuhao, ZHAO Zhifang. Assessment on susceptibility of debris flow in Lushui based on the certain factor model[J]. Research of Soil and Water Conservation, 2019, 26(4)336-342(in Chinese with English abstract)
[15] 杨栓成,王运生. 基于GIS的涪江上游南坝-水晶流域滑坡危险性评价[J]. 中国地质灾害与防治学报,2018,29(6):15 − 22. [YANG Shuancheng,WANG Yunsheng. GIS-based landslide risk assessment along the Nanba-Shuijing reaches in the Fujiang River[J]. The Chinese Journal of Geological Hazard and Control,2018,29(6):15 − 22. (in Chinese with English abstract) YANG Shuancheng, WANG Yunsheng. GIS-based landslide risk assessment along the Nanba-Shuijing reaches in the Fujiang River[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(6): 15-22. (in Chinese with English abstract)
[16] 李益敏,袁静,蒋德明,等. 基于GIS的高山峡谷区滑坡灾害危险性评价—以泸水市为例[J]. 水土保持研究,2021,28(3):355 − 363. [LI Yimin,YUAN Jing,JIANG Deming,et al. GIS-based risk assessment of landslide disaster in high mountain valley:Taking Lushui City as an example[J]. Research of Soil and Water Conservation,2021,28(3):355 − 363. (in Chinese with English abstract) LI Yimin, YUAN Jing, JIANG Deming, et al. GIS-based risk assessment of landslide disaster in high mountain valley—taking Lushui city as an example[J]. Research of Soil and Water Conservation, 2021, 28(3): 355-363. (in Chinese with English abstract)
[17] 李萍,叶辉,谈树成. 基于层次分析法的永德县地质灾害易发性评价[J]. 水土保持研究,2021,28(5):394 − 399. [LI Ping,YE Hui,TAN Shucheng. Evaluation of geological hazards in Yongde County based on analytic hierarchy process[J]. Research of Soil and Water Conservation,2021,28(5):394 − 399. (in Chinese with English abstract) LI Ping, YE Hui, TAN Shucheng. Evaluation of geological hazards in Yongde County based on analytic hierarchy process[J]. Research of Soil and Water Conservation, 2021, 28(5): 394-399. (in Chinese with English abstract)
[18] 刘建强,许强,郑光,等. 贵州省鸡场滑坡地下水化学特征反映的水-岩(土)作用[J]. 水文地质工程地质,2023,50(2):132 − 140. [LIU Jianqiang,XU Qiang,ZHENG Guang,et al. Water-rock/soil interaction reflected by the chemical characteristics of groundwater of Jichang landslide in Guizhou Province[J]. Hydrogeology & Engineering Geology,2023,50(2):132 − 140. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202103009 LIU Jianqiang, XU Qiang, ZHENG Guang, et al. Water-rock/soil interaction reflected by the chemical characteristics of groundwater of Jichang landslide in Guizhou Province[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 132-140. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202103009
[19] 黄煜,谢婉丽,刘琦琦,等. 基于GIS与MaxEnt模型的滑坡易发性评价—以铜川市中部城区为例[J]. 西北地质,2023,56(1):266 − 275. [HUANG Yu,XIE Wanli,LIU Qiqi,et al. Landslide susceptibility assessment based on GIS and MaxEnt model:Example from central districts in Tongchuan city[J]. Northwestern Geology,2023,56(1):266 − 275. (in Chinese with English abstract) DOI: 10.12401/j.nwg.2022001 HUANG Yu, XIE Wanli, LIU Qiqi, et al. Landslide susceptibility assessment based on GIS and MaxEnt model: example from central districts in Tongchuan city[J]. Northwestern Geology, 2023, 56(1): 266-275. (in Chinese with English abstract) DOI: 10.12401/j.nwg.2022001
[20] 唐军峰,唐雪梅,周基,等. 滑坡堆积体变形失稳机制—以贵州剑河县东岭信滑坡为例[J]. 吉林大学学报(地球科学版),2022,52(2):503 − 516. [TANG Junfeng,TANG Xuemei,ZHOU Ji,et al. Deformation and instability mechanism of landslide accumulation:A case study of Donglingxin landslide accumulation in Jianhe County,Guizhou Province[J]. Journal of Jilin University (Earth Science Edition),2022,52(2):503 − 516. (in Chinese with English abstract) TANG Junfeng, TANG Xuemei, ZHOU Ji, et al. Deformation and instability mechanism of landslide accumulation: a case study of donglingxin landslide accumulation in Jianhe County, Guizhou Province[J]. Journal of Jilin University (Earth Science Edition), 2022, 52(2): 503-516. (in Chinese with English abstract)
[21] 赵无忌,殷志强,马吉福,等. 黄河上游贵德盆地席芨滩巨型滑坡发育特征及地貌演化[J]. 地质论评,2016,62(3):709 − 721. [ZHAO Wuji,YIN Zhiqiang,MA Jifu,et al. Multi-stage development characteristics and geomorphic evolution process of the Xijitan super large landslide in the Guide basin,upper reaches of Yellow River[J]. Geological Review,2016,62(3):709 − 721. (in Chinese with English abstract) Zhao Wuji, Yin Zhiqiang, Ma Jifu, et al. Multi-stage development characteristics and geomorphic evolution process of the xijitan super large landslide in the guide basin, upper reaches of Yellow River[J]. Geological Review, 2016, 62(3): 709-721. (in Chinese with English abstract)
-
期刊类型引用(5)
1. 贺伟明,石胜伟,蔡强,梁炯. 基于上下限解的膨胀土边坡首次滑动区域分析. 水文地质工程地质. 2025(01): 104-112 . 百度学术
2. 孙银磊,余川,廖磊,李志妃. 钢渣粉固化改良膨胀性黏土机理研究进展. 水文地质工程地质. 2025(01): 113-129 . 百度学术
3. 张锐,周豫,兰天,郑健龙,刘昭京,李彬. 高速铁路土工格栅加筋膨胀土边坡作用机制. 铁道科学与工程学报. 2024(01): 1-12 . 百度学术
4. 纪佑军,熊军,蒋国斌,王泽根. 考虑应变软化的鸡场镇降雨型滑坡数值分析. 水文地质工程地质. 2024(04): 178-188 . 百度学术
5. 张再江. 基于改进极限平衡原理的膨胀土边坡稳定性计算分析. 水利科技与经济. 2024(07): 48-51 . 百度学术
其他类型引用(8)