ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

缓倾红层地区岩质崩塌基本特征及成因机理初步分析以四川洪雅铁匠湾崩塌为例

刘文, 余天彬, 王猛, 宋班, 黄细超, 董继红, 江煜, 孙渝江

刘文,余天彬,王猛,等. 缓倾红层地区岩质崩塌基本特征及成因机理初步分析−以四川洪雅铁匠湾崩塌为例[J]. 中国地质灾害与防治学报,2023,34(5): 54-63. DOI: 10.16031/j.cnki.issn.1003-8035.202206027
引用本文: 刘文,余天彬,王猛,等. 缓倾红层地区岩质崩塌基本特征及成因机理初步分析−以四川洪雅铁匠湾崩塌为例[J]. 中国地质灾害与防治学报,2023,34(5): 54-63. DOI: 10.16031/j.cnki.issn.1003-8035.202206027
LIU Wen,YU Tianbin,WANG Meng,et al. Preliminary analysis on basic characteristics and mechanism of rockfalls in layered red rocks with gentle dip angle: A case study of the Tiejiangwan rockfall in Hongya County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(5): 54-63. DOI: 10.16031/j.cnki.issn.1003-8035.202206027
Citation: LIU Wen,YU Tianbin,WANG Meng,et al. Preliminary analysis on basic characteristics and mechanism of rockfalls in layered red rocks with gentle dip angle: A case study of the Tiejiangwan rockfall in Hongya County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(5): 54-63. DOI: 10.16031/j.cnki.issn.1003-8035.202206027

缓倾红层地区岩质崩塌基本特征及成因机理初步分析——以四川洪雅铁匠湾崩塌为例

基金项目: 四川省地质灾害隐患遥感识别监测及高分遥感应用服务项目(N5100012022001470)
详细信息
    作者简介:

    刘 文(1990-),男,地质工程专业,硕士,工程师,主要从事遥感地质、地质灾害研究。E-mail:liuwen2009.hi@163.com

    通讯作者:

    余天彬(1988-),男,地质工程专业,硕士,工程师,主要从事地质灾害遥感应用研究。E-mail:251499051@qq.com

  • 中图分类号: P642.22

Preliminary analysis on basic characteristics and mechanism of rockfalls in layered red rocks with gentle dip angle: A case study of the Tiejiangwan rockfall in Hongya County, Sichuan Province

  • 摘要: 红层区常发育缓倾角岩质边坡,因其软硬相间的岩性组合,地质灾害频发,灾害严重。基于光学卫星遥感、无人机航空摄影测量、现场调查等天空地一体化的技术手段,以2021年4月5日发生的四川洪雅铁匠湾缓倾角红层岩质崩塌为研究对象,探讨了崩塌的基本特征和成因机理,分析了铁匠湾陡崖区崩塌灾害发展趋势,以期为红层区类似灾害的研究提供资料支撑。结果表明:铁匠湾崩塌可分为主崩塌区和崩塌影响区两个区域,其中主崩塌区包括崩源区1处、铲刮区1处、堆积区1处、流水二次搬运堆积区1处,崩塌影响区包括潜在崩源区1处、扰动变形区5处。崩塌源区具有“上硬下软”的岩石组合,岩体发育两组近于垂直的优势结构面,2013年已表现出变形迹象,在降雨、温差的持续作用下导致源区危岩体的最终失稳垮塌,巨大的冲击力作用于危岩体下方的老崩塌堆积体和基岩,引起崩塌-碎屑流灾害链。在光学遥感影像解译和野外调查的基础上,认为铁匠湾崩塌存在二次崩塌的风险,在崩塌邻区识别出类似崩塌隐患点6处,建议采用无人机、机载LiDAR等技术手段开展铁匠湾陡崖区崩塌隐患的早期识别与持续监测。
    Abstract: Gentle dip angle rock slopes are often developed in layered red rocks, which are prone to geological disasters due to the combination of soft and hard lithology. This paper discusses the Tiejiangwan rockfall that occurred on April 5, 2021, in Hongya County of Sichuan province, China, on a layered red rocks slope with a gentle dip angle. Using an air-space-ground integrated earth observation network, including optical remote sensing, UAV aerial photogrammetry, and on-site investigation, the study analyzes the basic characteristics and mechanism of rockfall and predicts the development trend of similar disasters in the steep cliff area of layered red rocks. The results show that the Tiejiangwan rockfall can be divided into two areas, namely the main rockfall area and the rockfall influence area. The main rockfall area comprises one rockfall source area, one shoveling area, one accumulation area, and one water secondary transportation accumulation area. The rockfall influence area includes one potential rockfall source area and five disturbance deformation areas. The rockfall source area has a combination of hard rocks at the top and soft rocks at the bottom, and the rock mass develops two groups of nearly vertical dominant structural planes. In 2013, the source area showed signs of deformation, which eventually lead to the instability of the dangerous rock mass due to the continuous effect of rainfall and temperature differences. The huge impact force caused the rockfall debris flow disaster chain, affecting the old rockfall accumulation body and bedrock under the dangerous rock mass. Optical remote sensing images and field investigation indicate the risk of secondary collapse in Tiejiangwan rockfall. Additionally, six similar potential rockfalls were identified in the adjacent area. To prevent similar disasters, it is recommended to use UAV aerial photogrammetry and airborne LiDAR for early identification and continuous monitoring of potential rockfalls in the steep cliff area of the Tiejianwan. The findings of this study provide valuable data support for the study of similar disasters in layered red rocks.
  • 我国地形地貌复杂多样,地质条件复杂,山地丘陵约占国土面积的65%,崩塌、滑坡、泥石流等地质灾害点多、面广,防范难度大,每年都会造成严重的经济损失和人员伤亡。截至2021年底,全国已登记在册的地灾灾害隐患点28.8万余处,其中滑坡14.8万余处、泥石流3.5万余处,其他灾害10.5万余处,共威胁1300余万人和6300多亿元财产的安全[13]。据历史灾情统计,局地短时集中强降雨是泥石流的最主要诱发因素,同时降雨诱发型滑坡数量也约占滑坡总数的70%。近年来极端天气气候事件增多,降雨时空分布不均匀性凸显,高强度地震活动频繁,预计未来一段时期内地质灾害仍呈高发、频发态势,地质灾害防治工作面临的形势依然严峻[46]。加强地质灾害监测预警,逐步提升“灾害何时发生”的预警预报能力显得尤为重要。气象因素是诱发地质灾害的主要因素之一,开展雨量监测对滑坡、泥石流预警预报具有十分重要的意义[78]。而气象预报雨量一般反映区域的降雨情况,但山区往往受小气候和地形影响,在沟头和沟口、山脚、山腰和山顶的雨量存在一定差异性,因而建议突发地质灾害监测方案设计中将雨量作为必测项,故雨量监测设备的精度、灵敏性和稳定性是精准预警预报的前提。据统计,2021—2022年度自然资源部组织实施地质灾害普适型监测预警试验中,累计安装雨量计2.7万余台[910]

    自2000年以来,全国气象台站已基本普及地面自动采集气象站,逐渐用自动站采集代替以往的人工观测方式,但是基于不同原理采集降雨量之间直接存在差异。谭川东等 [11]认为采用标定的线性关系修正测量值能有效降低翻斗式雨量计测量误差。李耀宁等 [12]研究发现相同工作原理的仪器由于仪器本身的性能差异和不可预见的故障会造成较大测量误差。蔺潇[13]提出基于压电效应的雨量感知方法,并且设计了一种低成本、低功耗的压电式雨量传感器。翻斗式雨量计因其原理简单、功耗小,性能较为稳定,长期以来一直作为主流观测降雨强度和累计降雨量的监测设备,广泛运用于地质灾害监测。翻斗式雨量计通常要求安装在地势平坦且空旷的场地,且承雨器口至山顶的仰角不大于30°。但在地质灾害监测场景中,难以寻求安装的绝佳位置,特别是西南和东南部地区植被茂密,落叶或者其他一些杂物容易落到集雨器中,造成集雨通道不通畅,导致监测数据出现偏差。近年来研发的压电式雨量计相对于翻斗式雨量计具有野外安装便捷、集成度高、量程大、易维护等特点,更适用于在野外地质灾害监测复杂场景中。

    翻斗式雨量计工作原理是雨水从上承座进入贮水器,落入水漏斗,再通过漏斗口流入翻斗桶。当蓄水量达到一定高度(如 0.1mm)时,翻斗会失去平衡而翻倒。每次铲斗被翻倒时,开关就连接到电路上,向记录器发送一个脉冲信号。通过控制记录器来记录降雨,因此降雨过程可以持续测量。

    压电式雨量计工作原理是雨滴落在传感器表面上,监测面板会产生微小的机械振动。压电陶瓷板在振动的机械应力作用下,电极之间产生电压差,并将电信号输出到外界。通过采集每个压电元件输出信号的峰值电压,来计算对应雨滴的粒径和体积,从而记录降雨量数值[1416]

    通过技术参数、安装方法和运维方式对比发现,压电式雨量计在数据分辨率、上传数据实时性、安装准备、便携性、数据校准和运维方式上均优于翻斗式雨量计(表1)。

    表  1  压电式雨量计和翻斗式雨量计指标对比
    Table  1.  Comparison of indicators between piezoelectric rain gauges and tipping bucket rain gauges
    序号 雨量计类型
    比较项目
    压电式雨量计翻斗式雨量计
    1技术参数降雨量:测量范围0~8 mm/min;
    分辨率:0.01 mm;
    精度:±4%(日累计降雨量);
    测量降雨时长范围:监测到降雨后,
    以10 s步进累计计算时长。
    降雨量:测量范围0~4 mm/min;
    分辨率0.1 mm;
    精度:±4%(日累计降雨量);
    测量范围:根据配置的数据采集器确定雨量累计计算时长,
    步进时长不统一。
    2安装方式安装准备:即到即装,无需预制基座;
    便携性:一体化整机,组件数量少、材质轻、质量小;
    拆除、移位操作简便;
    水平校正:电子自动校正;
    安装阶段数据校准:出厂配置,无需校准;
    安装用时:15 min。
    安装准备:预制水泥基座(约重0.3 t);
    便携性:由感应器和记录器构成,组件数量多,体积大,
    质量大。废弃、拆除、移位费时费力;
    水平校正:人工现场调整;
    安装阶段数据校准:人工现场校准;
    安装用时:3 d。
    3运维方式清洁清理:承雨面板采用弧面设计;特氟龙抗污防黏涂层;
    不堵不黏、降雨过程即清洁过程;
    水平校正:隐患点随机出现倾斜,电子自动校正;
    运维阶段数据校准:无机械老化、无需校准。
    清洁清理:定期现场清理下水过滤网;
    秋、冬季适当提高维护频次;
    水平校正:隐患点随机出现倾斜,需人工现场校正;
    运维阶段数据校准:易出现翻斗轴承进灰、翻转不灵敏等
    机械老化现象,导致采集数据偏小,需定期人工现场校准。
    下载: 导出CSV 
    | 显示表格

    为了验证压电式雨量计在降雨中的实测效果,分别在人工降雨大厅模拟全降雨过程及野外真实降雨条件下,对压电式雨量计采集数值与承雨器采集雨量作对比,并计算压电式雨量计的测量精度[1718]

    首先在模拟降雨环境下进行测试试验,选择在中国科学院水利部水土保持研究所人工模拟降雨大厅完成压电式雨量计的数据采集工作,降雨面积大于 4 m2,降雨高度大于 10 m,雨滴直径大小在 1~5 mm,雨滴终点速度在 1~8 m/s。监测的基准设备为标准化量筒口径为Φ200 mm,标尺高度 280 mm,分辨率 1 mm。2台压电式雨量计的有效受雨面积 Φ200 mm,分辨率0.01 mm。2台翻斗式雨量计分辨率均为0.1 mm(图1)。

    图  1  试验过程照片
    Figure  1.  Experimental process photo

    根据实验室条件,设置 2 次稳定为70 mm/h的模拟降雨过程,每次降雨持续90 min,2 次人工降雨的喷头压力设置和开度分别是18 kPa,48%;26 kPa,40%。在降雨大厅中央选择并十字标记 2 个测试点,每个测试点对应一组测试设备,分别是量桶、压电式雨量计和翻斗式雨量计。 压电式雨量计设置为 5 min上报一次累计雨量,每次上报后清零。在室内无风的模拟降雨环境下,对比标准化量筒、压电式雨量计、翻斗式雨量计采集上报数据。测试点1、2数据对比分别如表23所示。

    表  2  测试点1数据
    Table  2.  Test point 1
    降雨
    场次
    量筒1实测
    /mm
    监测设备上报数据1
    /mm
    上报数据2
    /mm
    上报数据3
    /mm
    上报数据4
    /mm
    上报数据5
    /mm
    累计雨量数据与
    量筒实测误差
    上报数据离散系数
    (标准差/平均值)/%
    124压电式雨量计15.014.784.874.854.9024.40 (+1.7%)1.6
    翻斗式雨量计16.306.406.406.506.4032 (+33.3%)1.0
    228压电雨量计15.535.785.535.535.7128.08 (+0.2%)1.9
    翻斗式雨量计16.206.206.406.206.2031.2 (+11.4%)1.3
    下载: 导出CSV 
    | 显示表格
    表  3  测试点2数据
    Table  3.  Test point 2
    降雨
    场次
    量筒2实测
    /mm
    监测设备上报数据1
    /mm
    上报数据2
    /mm
    上报数据3
    /mm
    上报数据4
    /mm
    上报数据5
    /mm
    累计雨量数据与
    量筒实测误差
    上报数据离散系数
    (标准差/平均值)/%
    127压电雨量计25.525.705.655.515.7028.08(+3.9%)1.5
    翻斗式雨量计25.305.305.005.005.0026.70(−1.1%)6.3
    227压电雨量计25.655.465.405.325.35.27.18(+0.6%)2.2
    翻斗式雨量计26.206.306.206.006.0030.07(+11.1%)2.0
    下载: 导出CSV 
    | 显示表格

    从压电式雨量计与翻斗雨量计采集数据结果对比来看,可以看见两者测量的雨量值相近,对比标准化量筒测量结果,压电式雨量计表现更为精确,误差范围可控制在4%以内,且离散系数可达2.5%以内。

    选择2021年6月5日16:00—6月15日9:00 和6月28日21:00—6月29日11:00之间两个降雨时间段,对云南省德宏州盈江县苏典乡政府驻地泥石流沟内安装的压电式雨量计进行真实降雨环境试验,并将输出结果与标准量筒结果进行对比。如试验照片所示(图2)。6月5日14:00—6月15日9:00的降雨过程中,量筒测值为225 mm,压电式雨量计采集数值为230.48 mm,相对误差为2.4%。6月28日21:00—6月29日11:00的降雨,量筒测值为178 mm,压电式雨量计采集数值为178.65 mm,降雨时长14 h,相对误差为0.4%(表4)。

    图  2  量测25 cm集水器集水深度
    Figure  2.  Measure water collection depth of 25 cm water collector
    表  4  采集记录表
    Table  4.  Data collection record table
    序号采集时间量筒雨量
    /mm
    压电式雨量
    计雨量/mm
    相对
    误差/%
    16月5日14:00—6月15日9:00225230.482.4
    26月28日21:00—6月29日11:00178178.650.4
    下载: 导出CSV 
    | 显示表格

    在模拟降雨环境和实际降雨中分别进行了压电式雨量计精度测定,在模拟降雨环境下监测精度分别为1.7%、0.2%、3.9%和0.6%,在实际降雨中监测精度分别为2.4%和0.4%。误差来源分析如下:

    (1)室内试验过程中,4组测试结果压电式雨量计测定均高于量筒标定值,是由于雨滴降落有可能对监测盘产生2次冲击,2次冲击会使测得雨量值偏大。4组测试数据中3组测试结果翻斗式雨量计采集值均高于量筒标定值,且误差范围大于压电式雨量计。分析原因可能是翻斗在翻转过程中,雨水未流尽时,又有雨水流入计量翻斗,造成测量值大于量筒标定值。

    (2)受室内试验场降雨试验设计参数制约,目前只对70 mm/h,雨滴直径大小在 1~5 mm,雨滴终点速度在 1~8 m/s的降雨过程进行了模拟,测量精度小于4%,后期将尽可能覆盖各级降雨做更完整的对比。实际在使用过程中,压电式雨量计观测的雨量存在小雨测量偏小的情况,这种是由于压电式雨量计设计原理所导致的,若雨滴小于0.1 mm,压电式雨量计垂直动量趋近于0,会导致测量结果无雨。

    (3)真实环境试验中,第一次降雨测试结果误差较大,原因可能是由于监测时长达235 h,考虑野外试验存在雨水蒸发等因素,导致量筒内雨量与实际降雨量会有偏差,误差相对较大,另外风速、气温等气象因素对雨量测量都会有影响,也会造成测量误差。

    (1)在雨强和雨滴直径可控的实验室环境,增加试验次数,测量不同雨强下的压电式雨量计与标准量筒的测量值误差,分析不同雨强下,雨滴动能、振幅、频率与电压波形的细微变化关系,进一步优化雨量算法。

    (2)探索野外复杂场景下基于嵌入约束法和证据组合法的多源信息融合技术的质量控制方法,在雨量数据的基础上综合其他传感器设备获取的数据,比如温度、湿度、风速、风向等作为判定约束条件,进一步提高雨量测量的精准度。

    精准的降雨量测量在地质灾害监测预警中意义重大[1920]。在地灾监测复杂场景下,压电式雨量计相对于翻斗式雨量计无论是安装方式、量程大小、测量精度和后期维护上更具有普适性。

    (1)相对于翻斗式雨量计,压电式雨量计为一体化整机,组件数量少,能够实现电子自动校正,减免了现场安装校准环节,在安装使用上更为便捷。

    (2)压电式雨量计量程大于翻斗式雨量计,能够更加精准测量短时集中强降雨,根据雨滴下落最终动能识别降雨量,间接计算最大冲击压强、雨滴直径及降雨时长,瞬间雨量实时输出,数据采集实时性更好。

    (3)相对于翻斗式雨量计每月定期清理雨量筒内的杂物,压电式雨量计顶面设计为弧面,且为特氟龙涂层,即使有鸟粪,灰尘等污物,在雨水的冲刷下,会自然脱落运行,后期运维简单。

  • 图  1   铁匠湾崩塌区域地质简图

    Figure  1.   Regional geological map of the Tiejiangwan rockfall

    图  2   铁匠湾崩塌分区特征及野外照片

    Figure  2.   Subarea features and field photos of the Tiejiangwan rockfall

    图  3   剖面图和进度分布图

    Figure  3.   Geological cross-section diagram of the rockfall and velocity distribution of the debris flow movement

    图  4   铁匠湾崩塌源区多期遥感影像对比图

    Figure  4.   Multi-period remote sensing images comparison of the source area of the Tiejiangwan rockfall

    图  5   崩塌前降雨过程和温差变化柱状图

    Figure  5.   Histogram of rainfall process and temperature variation before rockfall

    图  6   铁匠湾陡崖区及潜在崩塌隐患分布图

    注:a为陡崖区WorldView-2光学卫星影像;b—d为陡崖区野外照片;e—j为潜在崩塌隐患WorldView-2光学卫星影像。

    Figure  6.   Distribution map of the steep cliff area and potential rockfalls in the Tiejiangwan area

    表  1   铁匠湾崩塌光学遥感精细解译统计表

    Table  1   Statistical table of optical remote sensing interpretation in Tiejiangwan rockfall

    名称编号面积/m2厚度/m估算体积/(104 m3
    潜在崩源区231111025.42
    崩源区9578110105.36
    铲刮区305731545.86
    堆积区14629610146.30
    流水二次搬运堆积区885232.66
    扰动变形区A4836157.25
    B2874102.87
    C919054.60
    D310451.55
    E200451.00
    下载: 导出CSV
  • [1] 徐瑞春, 周建军. 红层与大坝[M]. 2版. 武汉: 中国地质大学出版社, 2010

    XU Ruichun, ZHOU Jianjun. Red beds and dams[M]. 2nd ed. Wuhan: China University of Geosciences Press, 2010. (in Chinese with English abstract)

    [2] 黄绍槟,程强,胡厚田. 四川红层分布及工程环境特征研究[J]. 公路,2005,50(5):81 − 85. [HUANG Shaobin,CHENG Qiang,HU Houtian. A study on distribution of Sichuan red beds and engineering environment characteristics[J]. Highway,2005,50(5):81 − 85. (in Chinese with English abstract) DOI: 10.3969/j.issn.0451-0712.2005.05.019

    HUANG Shaobin, CHENG Qiang, HU Houtian. A study on distribution of Sichuan red beds and engineering environment characteristics[J]. Highway, 2005, 50(5): 81-85. (in Chinese with English abstract) DOI: 10.3969/j.issn.0451-0712.2005.05.019

    [3] 彭华,吴志才. 关于红层特点及分布规律的初步探讨[J]. 中山大学学报(自然科学版),2003,42(5):109 − 113. [PENG Hua,WU Zhicai. A preliminary study on the characteristics and the distribution of red beds[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2003,42(5):109 − 113. (in Chinese with English abstract)

    Peng Hua, Wu Zhicai. A preliminary study on the characteristics and the distribution of red beds[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2003, 42(5)109-113(in Chinese with English abstract)

    [4] 曹先康,温智,陈海兰. 四川巴中市红层地区滑坡发育特征与防范措施[J]. 中国地质灾害与防治学报,2019,30(6):20 − 24. [CAO Xiankang,WEN Zhi,CHEN Hailan. Landslide development characteristics and preventive measures in the area with red beds in Bazhong City,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2019,30(6):20 − 24. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2019.06.03

    CAO Xiankang, WEN Zhi, CHEN Hailan. Landslide development characteristics and preventive measures in the area with red beds in Bazhong City, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(6)20-24(in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2019.06.03

    [5] 马贤杰,张玉芳,侯李杰,等. 红层地区滑坡的分类及形成机制[J]. 铁道建筑,2021,51(2):75 − 78. [MA Xianjie,ZHANG Yufang,HOU Lijie,et al. Study on classification and formation mechanism of landslide in red bed area[J]. Railway Engineering,2021,51(2):75 − 78. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-1995.2021.02.18

    MA Xianjie, ZHANG Yufang, HOU Lijie, et al. Study on classification and formation mechanism of landslide in red bed area[J]. Railway Engineering, 2021, 51(2): 75-78. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-1995.2021.02.18

    [6] 张涛,谢忠胜,石胜伟,等. 川东红层缓倾岩质滑坡的演化过程及其识别标志探讨[J]. 工程地质学报,2017,25(2):496 − 503. [ZHANG Tao,XIE Zhongsheng,SHI Shengwei,et al. Discussion on evolution process of flat rock landslide and its identification in red strata at eastern Sichuan[J]. Journal of Engineering Geology,2017,25(2):496 − 503. (in Chinese with English abstract) DOI: 10.13544/j.cnki.jeg.2017.02.029

    ZHANG Tao, XIE Zhongsheng, SHI Shengwei, et al. Discussion on evolution process of flat rock landslide and its identification in red strata at eastern Sichuan[J]. Journal of Engineering Geology, 2017, 25(2): 496-503. (in Chinese with English abstract) DOI: 10.13544/j.cnki.jeg.2017.02.029

    [7] 王家柱,葛华,高延超,等. 川南红层区黄子树滑坡形成过程与运动特征[J]. 中国地质灾害与防治学报,2020,31(2):9 − 17. [WANG Jiazhu,GE Hua,GAO Yanchao,et al. Mechanism and kinematic characteristics of Huangzishu Landslide in the red mudstone of southern Sichuan[J]. The Chinese Journal of Geological Hazard and Control,2020,31(2):9 − 17. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2020.02.02

    WANG Jiazhu, GE Hua, GAO Yanchao, et al. Mechanism and kinematic characteristics of Huangzishu Landslide in the red mudstone of southern Sichuan[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(2): 9-17. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2020.02.02

    [8] 徐伟,冉涛,田凯. 西南红层地区地质灾害发育规律与成灾模式—以云南彝良县为例[J]. 中国地质灾害与防治学报,2021,32(6):127 − 133. [XU Wei, RAN Tao,TIAN Kai. Developing law and disaster modes of geohazards in red bed region of southwestern China:A case study of Yiliang County of Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):127 − 133. (in Chinese with English abstract)

    WEI Xu, TAO Ran, KAI Tian. Developing law and disaster modes of geohazards in red bed region of southwestern China: a case study of Yiliang County of Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 127-133. (in Chinese with English abstract)

    [9] 王军朝,孙金辉. 川东红层缓倾角岩质崩塌特征与稳定性分析[J]. 地质力学学报,2019,25(6):1091 − 1098. [WANG Junchao,SUN Jinhui. Characteristics and stability analysis of rock collapse of low-angled red-bed slope in east Sichuan[J]. Journal of Geomechanics,2019,25(6):1091 − 1098. (in Chinese with English abstract) DOI: 10.12090/j.issn.1006-6616.2019.25.06.092

    WANG Junchao, SUN Jinhui. Characteristics and stability analysis of rock collapse of low-angled red-bed slope in east Sichuan[J]. Journal of Geomechanics, 2019, 25(6): 1091-1098. (in Chinese with English abstract) DOI: 10.12090/j.issn.1006-6616.2019.25.06.092

    [10] 胡斌,黄润秋. 软硬岩互层边坡崩塌机理及治理对策研究[J]. 工程地质学报,2009,17(2):200 − 205. [HU Bin,HUANG Runqiu. Collapse mechanism and treatment measures of slopes with interbeddings of soft and hard rocks[J]. Journal of Engineering Geology,2009,17(2):200 − 205. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2009.02.008

    HU Bin, HUANG Runqiu. Collapse mechanism and treatment measures of slopes with interbeddings of soft and hard rocks[J]. Journal of Engineering Geology, 2009, 17(2): 200-205. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2009.02.008

    [11] 郭永春,谢强,文江泉. 我国红层分布特征及主要工程地质问题[J]. 水文地质工程地质,2007,34(6):67 − 71. [GUO Yongchun,XIE Qiang,WEN Jiangquan. Red beds distribution and engineering geological problem in China[J]. Hydrogeology & Engineering Geology,2007,34(6):67 − 71. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3665.2007.06.016

    GUO Yongchun, XIE Qiang, WEN Jiangquan. Red beds distribution and engineering geological problem in China[J]. Hydrogeology & Engineering Geology, 2007, 34(6): 67-71. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3665.2007.06.016

    [12] 李江,许强,胡泽铭,等. 红层缓倾角土质滑坡发育环境、分布规律及影响因素研究[J]. 科学技术与工程,2014,14(12):88 − 93. [LI Jiang,XU Qiang,HU Zeming,et al. Study on development environment,distribution characteristics and factors of soil landslides on low-angled rock formation of red bed[J]. Science Technology and Engineering,2014,14(12):88 − 93. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2014.12.017

    LI Jiang, XU Qiang, HU Zeming, et al. Study on development environment, distribution characteristics and factors of soil landslides on low-angled rock formation of red bed[J]. Science Technology and Engineering, 2014, 14(12)88-93(in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2014.12.017

    [13] 张群,许强,易靖松,等. 南江红层地区缓倾角浅层土质滑坡降雨入渗深度与成因机理研究[J]. 岩土工程学报,2016,38(8):1447 − 1455. [ZHANG Qun,XU Qiang,YI Jingsong,et al. Rainfall infiltration depthand formation mechanism ofslow-inclination soillandslides in Nanjiang[J]. Chinese Journal of Geotechnical Engineering,2016,38(8):1447 − 1455. (in Chinese with English abstract) DOI: 10.11779/CJGE201608012

    ZHANG Qun, XU Qiang, YI Jingsong, et al. Rainfall infiltration depthand formation mechanism ofslow-inclination soillandslides in Nanjiang[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1447-1455. (in Chinese with English abstract) DOI: 10.11779/CJGE201608012

    [14] 廖勇,乐建,胡力,等. 基于Fredlund & Xing模型的渗流分析在川东红层梯田滑坡中的应用[J]. 水文地质工程地质,2023,50(3):104 − 114. [LIAO Yong, LE Jian, HU Li, et al. Application of seepage analyses based on Fredlund & Xing model in red beds terrace landslides in eastern Sichuan[J]. Hydrogeology & Engineering Geology,2023,50(3):104 − 114. (in Chinese with English abstract)

    [LIAO Yong, LE Jian, HU Li, et al. Application of seepage analyses based on Fredlund & Xing model in red beds terrace landslides in eastern Sichuan[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 104-114.(in Chinese with English abstract)

    [15] 郭永春,赵峰先,闫圣龙,等. 红层泥岩三轴膨胀力的试验研究[J]. 水文地质工程地质,2022,49(3):87 − 93. [GUO Yongchun, ZHAO Fengxian, YAN Shenglong, et al. An experimental study of the triaxial expansion force of red-bed mudstone[J]. Hydrogeology & Engineering Geology,2022,49(3):87 − 93. (in Chinese with English abstract)

    GUO Yongchun, ZHAO Fengxian, YAN Shenglong, et al. An experimental study of the triaxial expansion force of red-bed mudstone[J]. Hydrogeology & Engineering Geology, 2022, 49(3): 87-93.(in Chinese with English abstract)

    [16] 杨成忠,杨鹏,王威,等.红层泥质砂岩隧道进口段注浆加固及效果评价[J]. 水文地质工程地质,2018,45(3):98 − 105. [YANG Chengzhong, YANG Peng, WANG Wei, et al. Grouting reinforcement and effect evaluation of the inlet section of a red-layer shaly sandstone tunnel[J]. Hydrogeology & Engineering Geology,2018,45(3):98 − 105. (in Chinese with English abstract)

    [YANG Chengzhong, YANG Peng, WANG Wei, et al. Grouting reinforcement and effect evaluation of the inlet section of a red-layer shaly sandstone tunnel[J]. Hydrogeology & Engineering Geology, 2018, 45(3): 98-105.(in Chinese with English abstract)

    [17] 四川省地质局第二区域地质测量队. 峨眉幅1∶20万区域地质测量报[R]. 1971

    The second regional geological survey team of Sichuan Geological Bureau. Emei 1 ∶ 200000 regional geological survey report[R]. 1971. (in Chinese)

    [18]

    SCHEIDEGGER A E. On the prediction of the reach and velocity of catastrophic landslides[J]. Rock Mechanics,1973,5(4):231 − 236. DOI: 10.1007/BF01301796

图(6)  /  表(1)
计量
  • 文章访问数:  1854
  • HTML全文浏览量:  2063
  • PDF下载量:  297
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-22
  • 修回日期:  2023-02-02
  • 录用日期:  2023-04-16
  • 网络出版日期:  2023-04-24
  • 刊出日期:  2023-10-30

目录

/

返回文章
返回