Susceptibility assessment of colluvium landslides along the Changyang section of Qingjiang River using Logistic regression and random forest methods
-
摘要: 清江流域地质环境背景条件复杂,特别是沿清江库岸地质灾害频发;而过往的地质灾害易发性评价多针对行政区域范围,鲜有针对库岸带的专门评价,并且所用评价指标体系的针对性以及评价方法的可靠性仍有进一步提升的空间。为构建一套更加符合清江流域库岸带地质灾害发育特征的易发性评价指标体系,获得更加准确、适用性强的易发性区划成果,以清江流域渔峡口—资丘段为研究区,以两岸涉水斜坡体为研究对象,以斜坡单元为评价单元,构建坡度、坡向、高差、坡型、归一化植被指数、地形湿度指数、斜坡结构类型、工程地质岩组、堆积层厚度、河谷演化类型等10个指标组成的易发性评价体系;采用基于归一化确定性系数的Logistic回归和随机森林方法构建评价模型并得到不同易发性区划成果。评价结果显示:高易发区主要分布于清江干流渔峡口东—资丘东段左岸顺向斜坡体的中−下部涉水区域,且Logistic回归模型在地形地貌复杂的库岸段的适用性要优于随机森林模型。研究表明:所选堆积层厚度及河谷演化类型指标很好地代表了清江库岸段的独特地质背景条件特点;在非行政区划范围的特定研究区且当历史滑坡样本数量有限的情况下,Logistic回归模型能够较好地学习灾害发育规律并具备可靠的易发性预测能力。
-
关键词:
- 堆积层滑坡 /
- Logistic回归 /
- 随机森林 /
- 易发性评价
Abstract: The geological and environmental background conditions of the Qingjiang River Basin are highly complex, particularly with frequent geological disasters along the Qingjiang reservoir bank. Previous susceptibility assessment for geological disasters was mostly focused on administrative areas and seldom specialized evaluations for the reservoir bank zone. Furthermore, there is still room for improvement in the evaluation index system, as well as in the pertinence and reliability of the evaluation method. To address these shortcomings, a more suitable susceptibility evaluation index system was constructed to obtain accurate and applicable susceptibility zoning results. The Yuxiakou to Ziqiu section of the Qingjiang River Basin was chosen as the research area, with the wading slope body on both sides of the river selected as the research object and the slope unit chosen as the evaluation unit. A susceptibility evaluation system composed of ten indicators, including slope, aspect, elevation range, slope type, NDVI, TWI, slope structure type, engineering geological rock formation, accumulation thickness, and valley evolution, was constructed.The logistic regression and random forest methods were used to construct the evaluation model based on the normalized certain factors, and different susceptibility zoning results were obtained. According to the evaluation results, the high-prone areas were mainly distributed in the middle to lower water wading areas of the left bank from the east of Yuxiakou to the east of Ziqiu, along the main stream of the Qingjiang River. The logistic regression model showed better applicability in the reservoir-bank section with complex topography and landforms. The research revealed that the accumulation thickness and valley evolution indicators were effective in representing the unique geological background conditions of the Qingjiang reservoir bank. The logistic regression model was able to learn the developmental law of disasters and has a reliable susceptibility prediction ability. -
0. 引 言
近年来,中国建设开发了数十座软岩露天煤矿,在开采过程中采场及排土场均发生过一定规模的滑坡,对于采场底帮顺倾软岩边坡与顺倾软基底内排土场边坡滑坡灾害尤为严重。滑坡灾害直接影响剥采排工程的发展,造成人员伤害和设备损毁及地貌景观破坏,严重制约着露天矿的安全高效生产[1-2],边坡稳定性治理问题已成为边坡工程领域亟待解决的难题之一。
目前国内外学者们应用不同理论对其展开大量有意义的研究,成果丰硕。王东等[3]综合运用极限平衡法及数值模拟法,分析了不同压帮高度下边坡稳定性变化规律,提出了逆倾软岩边坡变形的治理措施;刘子春等[4]以扎尼河露天矿为背景,通过分析扩帮、内排压角等治理措施的基础上,提出了一种条带式开采技术的边坡治理方案;陈毓等[5]采用ANSYS对黑山露天矿内排土场边坡稳定性和破坏机理进行了分析,揭示了内排土场滑坡模式为“坐落滑移式”滑动,运用削坡治理技术来保证内排土场稳定性;唐文亮等[6]系统分析了露天矿内排土场滑坡影响因素,提出了预留煤柱的滑坡治理方法;李伟[7]揭示了阴湾排土场边坡变形破坏机理并结合数值模拟法和极限平衡法,分析了内排不同压脚方案下边坡稳定性,提出了阴湾排土场滑坡治理措施;王刚等[8]基于有限元数值模拟法和极限平衡法,分析了边坡破坏机理并对边坡进行了稳定性计算,提出了削坡减载的治理措施。软岩露天煤矿采场边坡稳定性治理最经济有效的方式是内排追踪压帮,内排土场稳定是前提,但现有方法均是单一针对采场或排土场边坡稳定性分析和治理,未能同时兼顾采场与内排土场边坡的稳定性,对工程实际的指导性不强。
本文以贺斯格乌拉南露天煤矿首采区南帮为工程背景,在兼顾采场与内排土场边坡稳定性的基础上,提出了露天煤矿顺倾软岩边坡内排追踪压帮治理工程,为深入研究顺倾软岩露天煤矿边坡稳定性治理方法提供新的参考。
1. 边坡工程地质条件分析
贺斯格乌拉南露天煤矿设计生产能力为15 Mt/a,首采区南帮地层自上而下主要发育第四系、2煤组、2煤组与3煤组间夹石、3煤组、3煤组底板和盆地基底火山岩,含煤岩系主要以泥岩为主,全区可采的有2-1、3-1煤层,第四系以粉砂质黏土为主,局部夹黄-浅灰色细砂及含砾粗砂层,岩性较差,首采区土层赋存较薄,且其地层中多赋存软弱夹层,主要以3-1、3-4煤底板弱层主,属于典型的顺倾软岩边坡,岩土体物理力学指标如表1所示,典型工程地质剖面如图1所示。
表 1 岩土体物理力学指标Table 1. Physical and mechanical parameters of rock mass岩体名称 内摩擦角/(°) 黏聚力/kPa 容重/(kN·m−3) 弹性模量/MPa 泊松比 砂岩 26.00 65 19.6 35 0.42 粉质黏土 14.06 22 19.8 46 0.38 煤 29.00 85 12.1 40 0.35 泥岩 20.00 40 19.4 75 0.36 排弃物 14.49 20 19.0 60 0.40 弱层 6.00 0 19.1 20 0.42 回填岩石 20.00 40 19.0 − − 2. 采场底帮浅层边坡二维稳定性分析
影响顺倾软岩露天煤矿采场边坡稳定性的主控因素是弱层及其暴露长度,采用追踪压帮方式治理该类边坡稳定性时,可忽略软弱夹层为底界面的切层-顺层组合滑动模式[9-10],仅考虑剪胀破坏模式。由于贺斯格乌拉南露天矿边坡体内赋存软弱夹层,主要以3-1、3-4煤底板弱层为主,顺倾角度大,岩质松软,对于此类边坡,浅部可通过平盘参数进行重新设计,深部必须利用三维效应,实现稳定性控制。可采用刚体极限平衡法中的剩余推力法对浅层边坡进行稳定性计算[11-12]。该方法的优点是可以用来计算求解给定任意边坡潜在滑面的稳定系数,并且可以考虑在复杂外力作用下的不同抗剪参数滑动岩体对边坡稳定性的影响。稳定系数求解公式为:
$$ {P_i} = \frac{{{W_i}\sin {\alpha _i}({W_i}\sin {\alpha _i}\tan {\varphi _i}) + {C_i}{L_i}}}{{{F_{\rm{s}}}}} + {\phi _i}{p_{i - 1}} $$ (1) $$ {\phi _i} = \frac{{\cos ({\alpha _{i - 1}} - {\alpha _i})\tan {\varphi _i}\sin ({\alpha _{i - 1}} - {\alpha _i})}}{{{F_{\rm{s}}}}} $$ (2) 式中:
${P_i}$ ——第$i$ 条块的剩余推力/kN;$ {W_i} $ ——第$i$ 条块的重量/(N·m−3);$\alpha_i$ ——第$i$ 条块的滑面倾角/(°);${\varphi _i}$ ——第$i$ 条块的推力传递系数;${C_i}$ ——第$i$ 条块的滑面黏聚力/kPa;${L_i}$ ——第$i$ 条块的底面长度/m;${\phi _i}$ ——第$i$ 条块的滑面摩擦角/(°);${F_{\rm{s}}}$ ——稳定性系数。依据《煤炭工业露天矿设计规范》(GB 50197―2015)[13]综合考虑贺斯格乌拉南露天煤矿首采区南帮边坡服务年限、地质条件与力学参数的可靠性、潜在滑坡危害程度等,确定安全储备系数为1.2。
由于南帮压覆大量煤层,在保证安全前提下,为实现最大限度回采压覆的煤炭资源,需要对边坡形态重新设计。本文选取典型剖面为研究对象,浅层边坡形态按照40 m运输平盘、15 m保安平盘进行设计,深部利用横采内排三维支挡效应回采采场底帮深部压覆煤炭资源。通过上述情况对浅层边坡进行了分析,边坡稳定性计算结果如图2所示。
分析图2可知,浅部边坡形态可按照40 m运输平盘、15 m保安平盘进行设计,由于弱层上部存在煤岩支挡,边坡潜在滑坡模式为以圆弧为侧界面、3-1煤底板弱层为底界面、沿边坡坡脚处剪出,此时,浅层边坡能满足安全储备系数1.2的要求。
3. 采场底帮深部边坡稳定性三维效应分析
基于浅层边坡二维稳定性分析结果可知,实现深部稳定性控制,必须借助横采工作帮与内排土场的双重支挡作用进行压煤回采,因此提出了利用横采内排三维支挡效应回采采场深部压覆煤炭资源[14]。本文借助FLAC3D数值模拟软件,分析不同降深角度和不同追踪距离条件下的边坡三维稳定性,以期获得最优的边坡空间形态参数。
(1) 模型的建立
考虑到FLAC3D建模较为复杂,采用CAD与Rhino相结合的方法,首先在CAD中对剖面进行整理,然后在Rhino软件中进行模型成体与网格划分的处理,并用Griddle将网格导出,生成精细的六面体网格模型[15 − 17],最后导入采用于FLAC3D进行数值模拟计算。为尽可能凸显边坡稳定性的三维效应,以南帮断面形态设计边坡为数值模拟对象,共计建立15种工况模型,模型如图3,追踪距离分别为50,100,200,300,400 m。为避免边界效应,在模型的底部和两侧分别施加水平和垂直位移约束,加载方式为重力加载[18]。
(2) 计算结果分析
由于计算结果过多,本文仅列举降深角度α=29°,追踪距离50,200,400 m工况下边坡位移云图(切割位置为沿模型走向中间处),如图4所示。南帮边坡三维稳定性计算结果如图5所示。
分析图4、图5可知,追踪距离50 m时,三维支挡效应显著,边坡深部位移明显小于上部,发生以圆弧为侧界面、3-1煤底板弱层为底界面的切层-顺层-剪出滑动,稳定系数大于1.2。当追踪距离大于50 m时,通过对比分析不同深部边坡角(α)条件下的数值模拟结果可知,深部边坡角对边坡稳定性系数影响较小,随着追踪距离的增加,边坡的破坏模式过渡为以圆弧为侧界面、3-1煤底板弱层为底界面的切层-顺层滑动,并且此时边坡的稳定性不满足安全储备系数1.2要求。因此,内排土场追踪距离需控制在50 m以内,深部边坡角设计为29°。
4. 内排土场压帮边坡稳定性分析与治理
露天矿内排土场边坡稳定的主控因素是软弱基底,软弱基底分为自身软弱岩土层和受外界条影响转变为软弱岩土层2种类型。排土场下沉是软弱基底内排土场失稳的特征,主要现象是含有纵向强烈挤压区,基底上部岩层隆起,地面出现滑坡等[19 − 21]。在保证采场南帮安全的前提下降深至3-1煤底板,须借助横采工作帮与内排土场的双重支挡作用,内排土场稳定是前提[22]。由于内排土场基底为3-1、3-4煤底板弱层,顺倾角度较大,按照内排土场设计参数,其稳定性无法满足安全储备系数的要求[23]。从提供基底强度角度出发,采用破坏弱层回填岩石的方式提高内排土场边坡稳定性。按照排土台阶高度24 m、平盘宽度60 m、坡面角33°对不同内排压帮标高边坡稳定性进行试算,确定内排最小压帮标高为+844水平,因此本文分析了内排基于+844水平的压帮高度下内排土场基底不同的处理方式时的边坡稳定性计算结果如图6—7所示,边坡稳定性与破坏弱层回填岩石范围关系曲线如图8所示。
分析图6—图8可知,当内排基于+844的压帮高度,内排基底3-1底板弱层完全破坏并回填岩石,破坏3-4底板弱层并回填岩石倾向长度达60 m时,内排土场及其与采场南帮复合边坡稳定性均可满足安全系数1.2要求。边坡稳定性随破坏底板弱层回填岩石范围的增大呈正指数函数规律提高,随着回填岩石范围长度的不断增加,边坡稳定性系数不断提高。采用破坏弱层回填岩石的基底处理方法,既保证了边坡的稳定又规避了过渡处理基底的生产成本。
5. 结 论
(1) 弱层暴露长度是露天矿顺倾软岩边坡稳定性的主控因素,据此提出了露天矿顺倾软岩边坡内排追踪压帮治理工程,可最大限度的安全回收边坡压覆煤炭资源。
(2) 控制采场与内排土场间的追踪距离是改善边坡稳定性的有效途径。随着追踪距离的增加,边坡破坏模式从以圆弧为侧界面、弱层为底界面的切层-顺层-剪出滑动逐渐过渡为以圆弧为侧界面、弱层为底界面的切层-顺层滑动。
(3) 内排土场及其与采场构成的复合边坡稳定性随破坏底板弱层回填岩石范围的增大呈指数函数规律提高,随着回填岩石范围长度的不断增加,边坡稳定性系数不断提高。
(4) 贺斯格乌拉南露天煤矿首采区南帮浅部边坡留设40 m运输平盘、15 m保安平盘,底帮深部边坡角29°,追踪距离控制在50 m之内时可满足安全要求;内排基底弱层完全破坏并回填岩石倾向长度60 m时可满足安全需求。
-
表 1 评价指标来源及处理方式
Table 1 Sources and processing methods of the evaluation indicators
评价指标 来源 数据类型 子类划分方式说明 坡度 5mDEM(栅格) 连续型 (1)归一化植被指数、地形湿度指数:用K-means聚类法将指标分为5个子类区间
(2)堆积层厚度:由野外实测堆积层点数据通过经验贝叶斯克里金法插值为面数据,用K-means聚类法分为5个子类区间
(3)工程地质岩组分为6个子类区间:Ⅱ-1(坚硬−较坚硬碎屑岩)、Ⅱ-4(较坚硬碎屑岩)、Ⅲ-1(坚硬碳酸盐岩)、Ⅲ-2(坚硬碳酸盐岩夹碎屑岩)、Ⅲ-3(较坚硬碳酸盐岩)、Ⅲ-4(较坚硬碳酸盐岩夹碎屑岩)
(4)斜坡结构类型分为4个:顺向坡、斜向坡、横向坡、逆向坡
(5)河谷演化类型分为2个:迁移性河谷、持续性河谷
(6)坡向分为8个:北-东北-东-东南-南-西南-西-西北
(7)坡型分为3个:凸形坡、平直坡、凹形坡高差 5mDEM(栅格) 连续型 归一化植被指数 Landsat8-OLT(栅格) 连续型 地形湿度指数 5mDEM(栅格) 连续型 距断层距离 线数据(矢量) 连续型 堆积层厚度 点数据(矢量) 连续型 工程地质岩组 面数据(矢量) 分类型 斜坡结构类型 面数据(矢量) 分类型 河谷演化类型 面数据(矢量) 分类型 坡向 5mDEM(栅格) 分类型 坡型 5mDEM(栅格) 分类型 -
[1] 雷深涵,华骐,郭峰,等. 长阳县地质灾害发育特征[J]. 地质灾害与环境保护,2013,24(1):30 − 35. [LEI Shenhan,HUA Qi,GUO Feng,et al. Characteristics of the geological hazards in Changyang[J]. Journal of Geological Hazards and Environment Preservation,2013,24(1):30 − 35. (in Chinese with English abstract) LEI Shenhan, HUA Qi, GUO Feng, et al. Characteristics of the geological hazards in Changyang[J]. Journal of Geological Hazards and Environment Preservation, 2013, 24(1)30-35(in Chinese with English abstract)
[2] 肖尚德,李智民,刘云彪,等. 湖北省清江流域滑坡分布规律与减灾对策研究[J]. 工程地质学报,2012,20(4):514 − 521. [XIAO Shangde,LI Zhimin,LIU Yunbiao,et al. Distribution law and hazard mitigation strategies of landliides in Qingjing River valley,Hubei[J]. Journal of Engineering Geology,2012,20(4):514 − 521. (in Chinese with English abstract) XIAO Shangde, LI Zhimin, LIU Yunbiao, et al. Distribution law and hazard mitigation strategies of landliides in Qingjing River valley, Hubei[J]. Journal of Engineering Geology, 2012, 20(4): 514-521. (in Chinese with English abstract)
[3] 王凯,张少杰,韦方强. 斜坡单元提取方法研究进展和展望[J]. 长江科学院院报,2020,37(6):85 − 93. [WANG Kai,ZHANG Shaojie,WEI Fangqiang. Slope unit extraction methods:advances and prospects[J]. Journal of Yangtze River Scientific Research Institute,2020,37(6):85 − 93. (in Chinese with English abstract) Wang Kai, Zhang Shaojie, Wei Fangqiang. Slope unit extraction methods: advances and prospects[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(6): 85-93. (in Chinese with English abstract)
[4] ALVIOLI M,MARCHESINI I,REICHENBACH P,et al. Automatic delineation of geomorphological slope units with r. slopeunits v1.0 and their optimization for landslide susceptibility modeling[J]. Geoscientific Model Development,2016,9(11):3975 − 3991. DOI: 10.5194/gmd-9-3975-2016
[5] SUN Xiaohui,CHEN Jianping,HAN Xudong,et al. Landslide susceptibility mapping along the upper Jinsha River,south-western China:A comparison of hydrological and curvature watershed methods for slope unit classification[J]. Bulletin of Engineering Geology and the Environment,2020,79(9):4657 − 4670. DOI: 10.1007/s10064-020-01849-0
[6] 黄立鑫,郝君明,李旺平,等. 基于RBF神经网络−信息量耦合模型的滑坡易发性评价—以甘肃岷县为例[J]. 中国地质灾害与防治学报,2021,32(6):116 − 126. [HUANG Lixin,HAO Junming,LI Wangping,et al. Landslide susceptibility assessment by the coupling method of RBF neural network and information value:A case study in Min Xian,Gansu Province[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):116 − 126. (in Chinese with English abstract) HUANG Lixin, HAO Junming, LI Wangping, et al. Landslide susceptibility assessment by the coupling method of RBF neural network and information value: a case study in Min Xian, Gansu Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6)116-126(in Chinese with English abstract)
[7] 白光顺,杨雪梅,朱杰勇,等. 基于证据权法的昆明五华区地质灾害易发性评价[J]. 中国地质灾害与防治学报,2022,33(5):128 − 138. [BAI Guangshun,YANG Xuemei,ZHU Jieyong,et al. Susceptibility assessment of geological hazards in Wuhua District of Kuming, China using the weight evidence method[J]. The Chinese Journal of Geological Hazard and Control,2022,33(5):128 − 138. (in Chinese with English abstract) [BAI Guangshun, YANG Xuemei, ZHU Jieyong, et al. Susceptibility assessment of geological hazards in Wuhua District of Kuming, China using the weight evidence method[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 128-138.(in Chinese with English abstract)
[8] 李光辉,铁永波,白永建,等. 则木河断裂带(普格段)地质灾害发育规律及易发性评价[J]. 中国地质灾害与防治学报,2022,33(3):51. [LI Guanghui,TIE Yongbo,BAI Yongjian,et al. Distribution and susceptibility assessment of geological hazards in Zemuhe fault zone(Puge section)[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):51. (in Chinese with English abstract) LI Guanghui, TIE Yongbo, BAI Yongjian, et al. Distribution and susceptibility assessment of geological hazards in Zemuhe fault zone(Puge section)[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 51. (in Chinese with English abstract)
[9] 王涛,刘甲美,栗泽桐,等. 中国地震滑坡危险性评估及其对国土空间规划的影响研究[J]. 中国地质,2021,48(1):21 − 39. [WANG Tao,LIU Jiamei,LI Zetong,et al. Seismic landslide hazard assessment of China and its impact on national territory spatial planning[J]. Geology in China,2021,48(1):21 − 39. (in Chinese with English abstract) [WANG Tao, LIU Jiamei, LI Zetong, et al. Seismic landslide hazard assessment of China and its impact on national territory spatial planning[J]. Geology in China, 2021, 48(1): 21-39.(in Chinese with English abstract)
[10] ZHAO Shuai,ZHAO Zhou. A comparative study of landslide susceptibility mapping using SVM and PSO-SVM models based on grid and slope units[J]. Mathematical Problems in Engineering,2021,2021:1 − 15.
[11] XIAO Ting,YIN Kunlong,YAO Tianlu,et al. Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning models in Wanzhou County,Three Gorges Reservoir,China[J]. Acta Geochimica,2019,38(5):654 − 669. DOI: 10.1007/s11631-019-00341-1
[12] YU Chenglong,CHEN Jianping. Application of a GIS-based slope unit method for landslide susceptibility mapping in Helong city:comparative assessment of ICM,AHP,and RF model[J]. Symmetry,2020,12(11):1848. DOI: 10.3390/sym12111848
[13] 常宏,金维群,王世昌,等. 清江中下游岸坡稳定性对河流地貌过程的响应[J]. 工程地质学报,2011,19(5):756 − 763. [CHANG Hong,JIN Weiqun,WANG Shichang,et al. Slope stability response to river geomorphic process in middle and lower reaches of Qingjiang River[J]. Journal of Engineering Geology,2011,19(5):756 − 763. (in Chinese with English abstract) CHANG Hong, JIN Weiqun, WANG Shichang, et al. Slope stability response to river geomorphic process in middle and lower reaches of Qingjiang River[J]. Journal of Engineering Geology, 2011, 19(5): 756-763. (in Chinese with English abstract)
[14] 常宏, 谭建民, 李明. 清江河道变迁与滑坡崩塌[M]. 武汉: 中国地质大学出版社, 2018 CHANG Hong, TAN Jianmin, LI Ming. Changes of Qingjiang River and landslide collapse[M]. Wuhan: China University of Geosciences Press, 2018. (in Chinese)
[15] 陈伟. 山区村镇滑坡灾害风险评估研究[D]. 武汉: 武汉大学 CHEN Wei. Study on risk assessment of landslide disaster in mountainous villages and towns[D]. Wuhan: Wuhan University. (in Chinese with English abstract)
[16] GUO Zizheng. Landslide susceptibility zonation method based on C5.0 decision tree and K-means cluster algorithms to improve the efficiency of risk management[J]. Geoscience Frontiers,2021,12(6):101249. DOI: 10.1016/j.gsf.2021.101249
[17] 王峰. 四川省南江县地质灾害易发性区划研究[D]. 成都: 成都理工大学 WANG Feng. Study on regionalization of geological disaster susceptibility in Nanjiang County, Sichuan Province[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract)
[18] 罗路广, 裴向军, 崔圣华, 等. 九寨沟地震滑坡易发性评价因子组合选取研究[J]. 岩石力学与工程学报, 2021, 40(11): 2306 − 2319. LUO Luguang, PEI Xiangjun, CUI Shenghua, et al. Combined selection of susceptibility assessment factors for Jiuzhaigou earthquake-induced landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(11): 2306 − 2319. (in Chinese with English abstract).
[19] 王锐. 基于GIS和Logistic回归模型的降雨型滑坡易发性研究[D]. 杭州: 浙江大学 WANG Rui. Study on the susceptibility of rainfall landslide based on GIS and Logistic regression model[D]. Hangzhou: Zhejiang University. (in Chinese with English abstract)
[20] 吴润泽,胡旭东,梅红波,等. 基于随机森林的滑坡空间易发性评价—以三峡库区湖北段为例[J]. 地球科学,2021(1):321 − 330. [WU Runze,HU Xudong,MEI Hongbo,et al. Spatial susceptibility assessment of landslides based on random forest:A case study from Hubei section in the Three Gorges Reservoir area[J]. Earth Science,2021(1):321 − 330. (in Chinese with English abstract) WU Runze, HU Xudong, MEI Hongbo, et al. Spatial susceptibility assessment of landslides based on random forest: a case study from Hubei section in the Three Gorges Reservoir area[J]. Earth Science, 2021(1): 321-330. (in Chinese with English abstract)
[21] 郝国栋. 基于随机森林模型的商南县滑坡易发性评价[D]. 西安: 西安科技大学, 2020 HAO Guodong. Evaluation of landslide susceptibility in Shangnan County based on random forest model[D]. Xi’an: Xi’an University of Science and Technology, 2020. (in Chinese with English abstract)
-
期刊类型引用(1)
1. 管少杰,吕进国,王康,张砚力. 露天矿下伏采空区距坡脚水平距离对边坡稳定性的影响. 工矿自动化. 2025(02): 113-120 . 百度学术
其他类型引用(0)