ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

豫西某金矿矿渣转化为泥石流物源的危险性评价

刘星宇, 刘向东, 赵浩, 周永红, 李强, 冯宇婷

刘星宇,刘向东,赵浩,等. 豫西某金矿矿渣转化为泥石流物源的危险性评价[J]. 中国地质灾害与防治学报,2022,33(5): 29-39. DOI: 10.16031/j.cnki.issn.1003-8035.202203041
引用本文: 刘星宇,刘向东,赵浩,等. 豫西某金矿矿渣转化为泥石流物源的危险性评价[J]. 中国地质灾害与防治学报,2022,33(5): 29-39. DOI: 10.16031/j.cnki.issn.1003-8035.202203041
LIU Xingyu, LIU Xiangdong, ZHAO Hao, et al. Risk assessment of debris flow source from a gold slag heap in western Henan[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 29-39. DOI: 10.16031/j.cnki.issn.1003-8035.202203041
Citation: LIU Xingyu, LIU Xiangdong, ZHAO Hao, et al. Risk assessment of debris flow source from a gold slag heap in western Henan[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 29-39. DOI: 10.16031/j.cnki.issn.1003-8035.202203041

豫西某金矿矿渣转化为泥石流物源的危险性评价

基金项目: 中国地质调查局地质调查项目(ZD20220218)
详细信息
    作者简介:

    刘星宇(1987-),男,甘肃灵台人,硕士,工程师,主要从事地质灾害方面工作。E-mail:1538311361@qq.com

    通讯作者:

    刘向东(1982-),男,陕西延安人,硕士,高级工程师,主要从事矿山生态修复工作。E-mail:lxiangdong@mail.cgs.gov.cn

  • 中图分类号: P642.23

Risk assessment of debris flow source from a gold slag heap in western Henan

  • 摘要: 矿渣在沟谷的堆积形态、压占比例影响其在特定降雨概率下的稳定性。文中以豫西某金矿2条主沟16个渣堆为研究对象,提出在不同降雨概率雨力条件下单个渣堆稳定性计算方法。即近10年来最大观测雨强、25年一遇(P=4%)雨强、50年一遇雨强(P=2%)、100年一遇雨强(P=1%)条件下的启动流速(Uc)以及泄洪流速(Us),令稳定系数Fs=Uc/Us,计算出渣堆的稳定系数,研究成果对于不同特定雨力工况下渣堆的危险性评价及分类防治有一定意义。
    Abstract: The slag accumulation form and the proportion of slag in the valley affect its stability under a specific rainfall probability. This paper takes 16 slag piles in two main trenches of a gold mine in western Henan as the research object and proposes a calculation method for the stability of a single slag pile under different rainfall probability conditions. That is, the start-up under the conditions of maximum observed rain intensity in recent years,rain intensity once in 25 years (P=4%), rain intensity once in 50 years (P=2%), and rain intensity once in 100 years (P=1%). The flow rate and the flow rate of the flood discharge, the ratio of which is calculated to analyze the stability of the slag pile. The research results have certain significance for the risk assessment of specific slag piles and the classification and prevention of slag piles.
  • 河南某金矿属全国16个重点成矿带中的豫西成矿带。已探明矿种钼、钨、铅、金、铁等40多种,矿产种类多,开采价值大,矿业活动带来巨大经济价值,也引发矿渣型泥石流等地质灾害问题[1-7],2010年7月24日当地普降暴雨,境内共发生矿渣型泥石流29次,死亡68人,失踪21人,经济损失19.8亿,教训非常惨重。

    目前对矿渣型泥石流的研究主要体现在成灾模式、启动机理、危险评价等方面,邓龙胜等[8]通过计算洪峰流量,评价了矿渣型泥石流的泥沙携带力、冲击力以及揭底深度;李荣等[9]、陈媛儿[10]、谢鉴衡[11]、秦荣昱[12]、彭润译等[13]从沙粒启动的水动力条件入手得出非均匀沙的起动流速公式,与实际情况吻合;林玫玲等[14]采用PFC2D仿真软件,揭示矿渣颗粒转化为泥石流时的内部力学特征与降雨强度的大小关系;李建林等[15]通过研究矿渣泥石流的沟谷形态得出沟道比降、汇水面积和沟道长度三个因素中汇水面积对其发育和行成的影响最为显著;唐亚明等[16]模拟了特定雨力下,泥石流的冲击范围,并引入泥石流危险因子做了危险程度的分区评价,提出了在渣堆处修建挡墙等工程治理措施;杨敏等[17]、徐友宁等[18]对潼关金矿区矿渣堆数目、体积、稳定性进行实地调研,并提出对废渣堆进行资源化利用等防治措施。前人研究成果均提到了矿渣泥石流是由废弃渣堆引起,并提出治理渣堆的必要性,但并没有对渣堆危险性高低进行分类评价,也没有提出精准合理的防治措施。

    文中在以豫西某金矿区大南沟、后木寺沟16个渣堆为研究对象进行分析阐述,和前人相同之处是借鉴了启动流速(Uc[9-13]以及《桥涵水文》第五版[19]中洪峰流量(Q)的计算公式,不同之处在于①考虑渣堆阻塞行洪通道等因素,进一步计算出渣堆断面处的泄洪流速(Us),并结合启动流速(Uc)计算稳定性大小即Fs=Uc/Us;②考虑渣堆之间的相互影响,分析不同重现期雨力条件下,单个计算渣堆失稳转化成泥石流时的危险系数;③将渣堆的危险高低进行精细计算,科学归类。以期达到精准分类,科学防治、经济节约等目的。

    豫西某金矿地处秦岭山脉东段,熊耳山西南部,伏牛山西段北部(图1),气候属暖温带半湿润大陆性季风气候,降雨量大且集中。海拨最高1671.4 m,最低1000 m,坡度较陡,区内地形切割强烈,沟谷呈“V”字型;植被覆盖度高,草木茂盛,基岩裸露较差。

    图  1  豫西某金矿区域位置图
    Figure  1.  The gold mine location in the western Henan

    该区域出露岩性主要为安山岩、流纹斑岩、片麻岩、冲洪积物。马超营断裂发育演化,共经历6期次地质活动,7次构造事件[19],其间热液侵入成矿,该金矿床位于马超营区域性断裂带与北东向上宫—星星印断裂带的交汇部位,从1979年建矿开采至今已有40余年历史。开采规模25×104 t/a,地下开采,开采规模大,废石渣、矿渣多且堆放不合理,严重阻塞沟道,在降雨条件下极易失稳形成泥石流。

    因马超营断裂(图1)6期次的构造活动(嵩阳发展—中远古形成—后期改造)[19],在强烈复杂的构造活动过程中形成有利于沟谷型泥石流发育的“哑铃状”特殊地形(图2):即两头(形成区、堆积区)呈“喇叭状”,中间(流通区)狭窄,该区域西高东低,相对高差670 m,沟谷总长度14 km,物源区平均纵坡降170‰,最大纵坡降377‰。

    图  2  豫西某金矿泥石流形态特征图
    Figure  2.  Morphological characteristic map of the debris flow in western Henan

    豫西某金矿矿区岩石力学性质分别为安山岩、流纹斑岩抗压强度64~97 MPa,片麻岩抗压强度659 MPa,为坚硬块状岩体,不易风化,岩层层面、贯通的断裂结构面倾向与坡面反向,不具备发生大规模崩塌滑坡的可能性,且在现场调查过程中山坡的风化层较薄,仅在山麓、沟谷中下游可见坡积物、冲洪积物,未见大范围的崩积物,因此自然条件下发生泥石流的可能性较小。现场测量图2中的1-1′剖面,得出剖面图如图3所示。

    图  3  豫西某金矿工程地质剖面图
    1—安山岩;2—冲积物;3—流纹斑岩;4—破碎带;5—金矿脉;6—正长斑岩;7—断层;8—砂岩; 9—片麻岩;10—不整合接触
    Figure  3.  Engineering geological plan of the gold mine in western Henan

    豫西某金矿常期以民采为主,大量的围岩因不具加工价值而沿坡面、沟道随意堆弃,这些堆积物自身稳定性差,在降雨等条件下容易失稳。据现场调查统计了渣堆16处,总计体积12.05×104 m3,均有可能失稳致灾。各渣堆的分布位置及其他参数如图24表1所示。

    图  4  豫西某金矿渣堆分布图
    Figure  4.  Distribution map of the gold slag heaps in western Henan
    表  1  豫西某金矿渣堆体积及压占沟谷比例统计表
    Table  1.  Statistical table of volume and proportion of the slag in a gold slag pile in western Henan
    矿渣ZD1ZD2ZD3ZD4ZD5ZD6ZD7ZD8
    体积/(104 m31.20.090.120.070.140.50.051.4
    压占沟谷比例/%5043836972717448
    矿渣ZD9ZD10ZD11ZD12ZD13ZD14ZD15ZD16
    体积/(104 m322.51.20.290.40.30.251.54
    压占沟谷比例/%7455777160674988
    下载: 导出CSV 
    | 显示表格

    豫西某金矿区渣堆厚度一般在2~7 m,平均厚度4.3 m,少数可达12 m,渣堆均不同程度堵塞沟道,有的在沿山坡呈阶梯状堆积,部分位于沟谷左侧,部分位于沟谷右侧,密实度差,渣堆顶部颗粒较细,底部颗粒较粗,分选差,棱角明显。渣堆不同程度堵塞沟道,有的在沿山坡呈阶梯状堆积,在沟谷底部部分占压行洪通道(图5),有的沿沟谷底部堆积,几乎全部占压行洪通道(图6);现场量测各渣堆体积以及压占沟谷比例结果见表1

    图  5  后木寺ZD2渣堆堵塞沟道示意图
    Figure  5.  Schematic diagram of Houmusi ZD2 slag pile blocking the channel
    图  6  大南沟渣堆ZD16堵塞沟道示意图
    Figure  6.  Schematic diagram of Danangouslag ZD16 pile blocking the channel

    豫西某金矿区降雨多集中在7—9月,年降水量最高1386.6 mm,最少403.3 mm,月最大降水量423.4 mm,24 h最大降水量159.2 mm。根据当地气象局实际观测近10a最大降水量49 mm/h,查阅资料《桥涵水文》[19]可知当地100 a一遇降雨量90 mm/h、50 a一遇降雨量为80 mm/h,25 a一遇降雨量为60 mm/h,充沛的降雨为泥石流的启动提供了水动力条件,历年7—9月实测降雨量变化曲线见图7

    图  7  豫西某金矿历年降雨量
    Figure  7.  Rainfall in western Henan gold mine over the years

    文中先不考虑渣堆之间的相互影响,计算分析16处渣堆的稳定性大小,然后在根据计算出的稳定性大小分析其相互影响关系,对渣堆稳定性进行修正,最终计算出考虑相互影响后的稳定性大小。

    豫西某金矿的主要诱发条件为短时强降雨、所以降雨引发洪峰流量可按下式计算[20]

    $$ Q = 0.278\left(\frac{{{S _{\rm{P}}}}}{{{\tau ^n}}} - \mu \right)F $$ (1)
    $$ \tau = {{{K}}_{\text{3}}}{\left(\frac{L}{{\sqrt I }}\right)^{\alpha _1^{}}} $$ (2)
    $$ \mu ={K}_{\text{1}}({S} _{{\rm{P}}})^{{\beta }_{1}} $$ (3)

    式中:$ Q $——洪峰流量/(m3·s−1);

    Sp——雨力/(mm·h−1);

    τ——汇流时间/s;

    n——暴雨递减指数,取0.45;

    µ——损失参数,取15.85 mm/h;

    F——汇流面积/km2

    K3——地区参数,取0.63;

    L——主河道长度/km;

    I——主河道平均比降/‰;

    α1——汇流参数,取0.15;

    $ {K}_{1} $——地区参数,取1;

    β1——指数,取−1。

    根据现场测量结果行洪宽度以及水深,因为沟谷呈“V”字形,所以设计平均宽度取测量渣堆顶端处长度的一半,则泄洪流速($U_{\rm{s}} $)计算公式如下:

    $$ U_{\rm{s}} = \frac{Q}{{h b}} \text{;} $$ (4)

    式中:$ U_{\rm{s}}$——泄洪流速/(m·s−1);

    Q——洪峰流量/(m3·s−1);

    h——设计水深/m;

    b——设计行洪宽度/m,其余参数同前文一致。

    根据泥沙启动临界流速公式[9-13]

    $$ {U_{\rm{c}}} = 3.91{d^{\tfrac{1}{3}}}{h^{\tfrac{1}{6}}}\sqrt {\sqrt {\frac{{{m^2} + m_0^2{{\cos }^2}\theta }}{{1 + {m^2}}}} - \frac{{{m_0}\sin \theta }}{{\sqrt {1 + {m^2}} }}} \text{;} $$ (5)

    式中:${U_{\rm{c}}} $——启动流速/(m·s−1);

    d——粒径/m;

    h——设计水深/m;

    α——斜坡倾角/(°),m=cotα

    φ——渣堆摩擦角/(°),m0=tanφ

    θ—流向与沙粒所在坡脚水平线的交角/(°)。取 θ=90°。

    文中将某个渣堆断面处的泄洪流速及启动流速理论计算值作为计算稳定性的依据,计算公式如下:

    $$ F_{\rm{s}} = \frac{{U_{\rm{c}}}}{{U_{\rm{s}}}} \text{;} $$ (6)

    式中:$U_{\rm{c}}$$U_{\rm{s}}$——与前文意义一致。

    因为目前对于渣堆在洪水冲击下的稳定性判定没有权威的标准,所以文中引入《建筑边坡工程规范》的判定标准,即假设稳定性系数$F_{\rm{s}} $<1为高危险(失稳),1≤$F_{\rm{s}} $≤1.15为中危险(临界),$F_{\rm{s}} $>1.15为低危险(稳定)。

    通过实地调查测量每个渣堆所对应的对应的汇水面积(F)、沟谷长度(L),纵坡降(I),设计水深(h),行洪宽度(b)等参数作为计算Us的依据,参数值如表2所示。

    表  2  渣堆泄洪流速Us计算参数测量结果表
    Table  2.  The measurement result of calculation parameters of flood discharge velocity of the slag pile
    渣堆编号ZD1ZD2ZD3ZD4ZD5ZD6ZD7ZD8
    F/km20.1760.1760.270.270.4690.4690.6160.176
    L/km0.470.470.610.610.720.790.791.01
    I/‰462462418418387373373314
    h/m222.52.52.5222
    b/m1.53.52.53.353.051111.51.5
    渣堆编号ZD9ZD10ZD11ZD12ZD13ZD14ZD15ZD16
    F/km20.851.681.821.820.2320.2830.4310.511
    L/km1.521.521.660.520.660.840.971.13
    I/‰283283269514456400374332
    h/m2.52222.52.522
    b/m2.79.526.518.54.3524.54
    下载: 导出CSV 
    | 显示表格

    现场调查各渣堆的摩擦角($\varphi $)、其底部沟谷的坡度($\alpha $),并通过筛分试验,得到渣堆的平均粒径(d50=0.0123 m)等参数作为计算$U_{\rm{c}} $的依据,坡度($\alpha $)及摩擦角($\varphi$)测量值如表3所示。

    表  3  渣堆启动流速(Uc)计算参数测量结果表
    Table  3.  The measurement result of calculation parameters of startup flow rate of the slag pile
    渣堆编号ZD1ZD2ZD3ZD4ZD5ZD6ZD7ZD8
    α/(°)1414910.8414.1610.456.766
    φ/(°)3432202241231833
    渣堆编号ZD9ZD10ZD11ZD12ZD13ZD14ZD15ZD16
    α/(°)74412.8412.958.3811.146
    φ/(°)3034293033241729
    下载: 导出CSV 
    | 显示表格

    分别带入Sp=49 mm/h,Sp=60 mm/h,Sp=80 mm/h,Sp=90 mm/h,计算4种雨力条件下的稳定性系数其计算过程如图8所示,结果如表4所示。

    图  8  渣堆稳定性系数计算过程图
    Figure  8.  Calculation process diagram of stability coefficient of slag heap

    通过计算可知UsSpFLIhb决定,FLI均由渣堆所处沟谷的地形地貌决定,对于堆积形态、堆积位置已定的渣堆,其值是定值,对于确定的渣堆断面,hb也是定值,只有Sp是变量,因此Us也只与Sp有关。因此只要给定Sp就可计算出Us

    表  4  不同雨力工况下渣堆稳定性计算结果表
    Table  4.  The calculation result of slag pile stability under different rain conditions
    近10 a最大值计算
    结果(49 mm/h)
    渣堆编号ZD1ZD2ZD3ZD4ZD5ZD6ZD7ZD8
    Fs0.902.111.401.850.902.762.260.51
    渣堆编号ZD9ZD10ZD11ZD12ZD13ZD14ZD15ZD16
    Fs0.721.881.332.641.011.250.950.68
    25 a一遇计算
    结果(60 mm/h)
    渣堆编号ZD1ZD2ZD3ZD4ZD5ZD6ZD7ZD8
    Fs0.721.701.121.490.722.221.810.41
    渣堆编号ZD9ZD10ZD11ZD12ZD13ZD14ZD15ZD16
    Fs0.581.511.072.120.811.000.760.54
    50 a一遇计算
    结果(80 mm/h)
    渣堆编号ZD1ZD2ZD3ZD4ZD5ZD6ZD7ZD8
    Fs0.531.250.831.090.531.631.330.30
    渣堆编号ZD9ZD10ZD11ZD12ZD13ZD14ZD15ZD16
    Fs0.421.110.791.560.600.740.560.40
    100 a一遇计算
    结果(90 mm/h)
    渣堆编号ZD1ZD2ZD3ZD4ZD5ZD6ZD7ZD8
    Fs0.471.100.730.960.471.441.180.26
    渣堆编号ZD9ZD10ZD11ZD12ZD13ZD14ZD15ZD16
    Fs0.370.980.691.380.530.650.490.35
    下载: 导出CSV 
    | 显示表格

    通过计算可知Uc由渣堆堆积形态以及渣堆的粒径级配所决定,与Sp大小无关。对于堆积形态确定的渣堆,其Uc是定值,不随Sp的变化而改变。经过计算得到以上4种雨力条件下的稳定性系数后,采用3.1.5的判定标准,对其稳定性高低进行判断,结果如表4所示。

    通过分析表5可知高危渣堆在雨力Sp=49 mm/h、Sp=60 mm/h、Sp=80 mm/h、Sp=90 mm/h条件下占比分别为38%、44%、63%、75%,中低危渣堆分别为6%、19%、12%、6%,低危渣堆占比56%、38%、25%、19%,随着雨力不断增大,高危渣堆占比不断增大,低危渣堆不断减少;不考虑渣堆相互影响的情况下,各种雨力大小工况下,各渣堆危险高低排序不变。不考虑渣堆相互影响的各雨力条件下渣堆的危险程度分布如图9所示。

    表  5  不同雨力下渣堆危险性以及稳定性系数
    Table  5.  Ranking table of slag pile stability under different rain conditions
    渣堆
    编号
    ZD
    8
    ZD
    16
    ZD
    9
    ZD
    1
    ZD
    5
    ZD
    15
    ZD
    13
    ZD
    14
    ZD
    11
    ZD
    3
    ZD
    4
    ZD
    10
    ZD
    2
    ZD
    7
    ZD
    12
    ZD
    6
    49 mm/hFs0.510.680.720.900.900.951.011.251.331.401.851.882.112.262.642.76
    60 mm/hFs0.410.540.580.720.720.760.811.001.071.121.491.511.701.812.122.22
    80 mm/hFs0.300.400.420.530.530.560.600.740.790.831.091.111.251.331.561.63
    90 mm/hFs0.260.350.370.470.470.490.530.650.690.730.960.981.101.181.381.44
    下载: 导出CSV 
    | 显示表格
    图  9  不同雨强工况下渣堆危险程度图
    Figure  9.  Dangerous degree map of slag heap under different rain intensities

    结合表5图9可以看出这4种雨力计算过程中均存在同一条沟上游渣堆失稳后会对下游渣堆稳定性造成影响,例如图9(a)中ZD1在Sp=49 mm/h时首先失稳汇入主沟,会对ZD2以及下游渣堆产生影响,因此要在不考虑渣堆相互影响的计算基础上对渣堆的稳定性系数做出修正。

    为了分析渣堆之间的相互影响,考虑到同一条沟上游渣堆失稳后主要是增加洪水重度,增大洪峰流量,进而增加下游泄洪流速,降低了下游的渣堆的稳定性,因此采用《中国泥石流》[21]中式(7)以及《工程地质手册》[22]式(8)进行修正。

    $$ {\gamma _{\rm{c}}} = \tan J + {k_0} \cdot {k_r} \cdot {k_1} \cdot {A^{0.11}} \text{;} $$ (7)

    式中:γc——泥石流容重/(kN·m−3);

    J——物源区平均坡度;

    k0——补给系数;

    kr——岩性系数;

    k1——稀释系数;

    A——物源区储备体积与汇水面积比。

    (按照文献[21]k0取1,kr取1,k1取0.9)。

    $$ {Q_{\rm{c}}} = Q\left(1 + \frac{{{\gamma _{\rm{c}}} - 1}}{{{\gamma _{\rm{s}}} - {\gamma _{\rm{c}}}}}\right) $$ (8)

    式中:Qc——修正后洪峰流量/(m3·s−1);

    γs——沙粒的密度/(kg·m−3),取2.72 kg·m−3;其余参数同前文一致。

    考虑渣堆相互影响后的修正过程如图10所示。

    图  10  渣堆稳定性系数修正过程图
    Figure  10.  Correction process diagram of slag pile stability coefficient

    用3.3.2的过程,将4种雨力的稳定性系数进行修正后,其计算结果见表6

    表  6  不同雨力工况下渣堆稳定性修正计算结果表
    Table  6.  The calculation result of slag pile stability correction under different rain conditions
    近10年最大观测雨强
    修正结果(49 mm/h)
    渣堆编号ZD1ZD2ZD3ZD4ZD5ZD6ZD7ZD8
    Fs0.901.411.011.330.702.261.800.43
    渣堆编号ZD9ZD10ZD11ZD12ZD13ZD14ZD15ZD16
    Fs0.621.481.122.641.011.250.950.62
    25年一遇雨强修正
    结果(60 mm/h)
    渣堆编号ZD1ZD2ZD3ZD4ZD5ZD6ZD7ZD8
    Fs0.721.130.811.060.561.701.440.34
    渣堆编号ZD9ZD10ZD11ZD12ZD13ZD14ZD15ZD16
    Fs0.471.220.872.120.810.840.630.45
    50年一遇雨强修正
    结果(80 mm/h)
    渣堆编号ZD1ZD2ZD3ZD4ZD5ZD6ZD7ZD8
    Fs0.530.830.590.780.411.241.050.25
    渣堆编号ZD9ZD10ZD11ZD12ZD13ZD14ZD15ZD16
    Fs0.350.880.621.560.600.620.460.33
    100年一遇雨强修正
    结果(90 mm/h)
    渣堆编号ZD1ZD2ZD3ZD4ZD5ZD6ZD7ZD8
    Fs0.470.730.520.680.361.100.930.22
    渣堆编号ZD9ZD10ZD11ZD12ZD13ZD14ZD15ZD16
    Fs0.310.780.551.380.530.540.410.29
    下载: 导出CSV 
    | 显示表格

    采用3.1.5条的判定方法,即假设稳定性系数Fs<1为高危险(失稳),1≤Fs≤1.15为中危险(临界),Fs>1.15为低危险(稳定)。

    通过表7计算结果可知高危渣堆在雨力Sp=49 mm/h、Sp=60 mm/h、Sp=80 mm/h、Sp=90 mm/h条件下占比分别为38%、63%、81%、88%,中危渣堆分别为19%、12%、6%、6%,低危渣堆占比44%、25%、13%、6%,对比表5计算结果,可知考虑渣堆相互影响后,相同雨力条件下,高位渣堆在增加,低危渣堆在减少,这是由于上游渣堆失稳后增大了下有渣堆的致灾风险,不同雨力条件下,各渣堆危险高低排序不同。这是考虑了相似沟道渣堆相互影响的结果,说明考虑渣堆相互影响更符合实际。考虑渣堆相互影响后各雨力条件下的渣堆危险性分布如图11所示。

    表  7  修正后不同雨力下渣堆危险性以及稳定性系数
    Table  7.  Ranking table of slag pile stability under different rain conditions after correction
    49 mm/h渣堆编号ZD
    8
    ZD
    9
    ZD
    16
    ZD
    5
    ZD
    1
    ZD
    15
    ZD
    3
    ZD
    13
    ZD
    11
    ZD
    14
    ZD
    4
    ZD
    2
    ZD
    10
    ZD
    7
    ZD
    6
    ZD
    12
    Fs0.430.620.620.700.900.951.011.011.121.251.331.411.481.802.262.64
    60 mm/h渣堆编号ZD
    8
    ZD
    16
    ZD
    9
    ZD
    5
    ZD
    15
    ZD
    1
    ZD
    3
    ZD
    13
    ZD
    14
    ZD
    11
    ZD
    4
    ZD
    2
    ZD
    10
    ZD
    7
    ZD
    6
    ZD
    12
    Fs0.340.450.470.560.630.720.810.810.840.871.061.131.221.441.702.12
    80 mm/h渣堆编号ZD
    8
    ZD
    16
    ZD
    9
    ZD
    5
    ZD
    15
    ZD
    1
    ZD
    3
    ZD
    13
    ZD
    11
    ZD
    14
    ZD
    4
    ZD
    2
    ZD
    10
    ZD
    7
    ZD
    6
    ZD
    12
    Fs0.250.330.350.410.460.530.590.600.620.620.780.830.881.051.241.56
    90 mm/h渣堆编号ZD
    8
    ZD
    16
    ZD
    9
    ZD
    5
    ZD
    15
    ZD
    1
    ZD
    3
    ZD
    13
    ZD
    14
    ZD
    11
    ZD
    4
    ZD
    2
    ZD
    10
    ZD
    7
    ZD
    6
    ZD
    12
    Fs0.220.290.310.360.410.470.520.530.540.550.680.730.780.931.101.38
    下载: 导出CSV 
    | 显示表格
    图  11  修正后不同雨强工况下渣堆危险程度图
    Figure  11.  Dangerous degree map of slag heap under different rain intensities

    (1)该区泥石流隐患是人为原因,虽然马超营断裂演化形成有利于泥石流发生的地形条件,但废弃矿渣压占行洪通道才是主因。

    (2)渣堆泄洪流速(Us)计算需SpFLIhb等6个参数,启动流速(Uc)需αφd等3个参数;同一雨力条件下,渣堆失稳转化为泥石流的风险大小不同,取决于UsUc的比值;不同雨力条件下,对于特定堆弃场地、特定堆积形态,Us仅随Sp赋值而改变,而Uc是定值,稳定性系数(Fs)与Sp赋值有关。

    (3)渣堆的稳定性可通过不考虑相互影响算出初步结果,在分析相互影响关系进行修正等两个步骤进行;随着雨力增强,失稳渣堆增多,泥石流危害程度增大。

    结合金矿区降水及矿渣堆放现状,防灾的关键在于防渣,结合文中分析提出建议如下:

    (1)废渣堆放场地要提前规划,做好选址,避免因挤压行洪通道而增加泄洪流速,增大致灾风险。

    (2)渣堆防治要根据雨力大小,危险性高低做到分类防治、科学精准、经济节约。

    致谢:该项研究得到长安大学曹琰波副教授,中国地质调查局西安地质调查中心徐友宁研究员、朱立峰高工的悉心指导和栾川县自然资源局、栾川县金兴矿业有限责任公司的大力支持,在此一并表示感谢。

  • 图  1   豫西某金矿区域位置图

    Figure  1.   The gold mine location in the western Henan

    图  2   豫西某金矿泥石流形态特征图

    Figure  2.   Morphological characteristic map of the debris flow in western Henan

    图  3   豫西某金矿工程地质剖面图

    1—安山岩;2—冲积物;3—流纹斑岩;4—破碎带;5—金矿脉;6—正长斑岩;7—断层;8—砂岩; 9—片麻岩;10—不整合接触

    Figure  3.   Engineering geological plan of the gold mine in western Henan

    图  4   豫西某金矿渣堆分布图

    Figure  4.   Distribution map of the gold slag heaps in western Henan

    图  5   后木寺ZD2渣堆堵塞沟道示意图

    Figure  5.   Schematic diagram of Houmusi ZD2 slag pile blocking the channel

    图  6   大南沟渣堆ZD16堵塞沟道示意图

    Figure  6.   Schematic diagram of Danangouslag ZD16 pile blocking the channel

    图  7   豫西某金矿历年降雨量

    Figure  7.   Rainfall in western Henan gold mine over the years

    图  8   渣堆稳定性系数计算过程图

    Figure  8.   Calculation process diagram of stability coefficient of slag heap

    图  9   不同雨强工况下渣堆危险程度图

    Figure  9.   Dangerous degree map of slag heap under different rain intensities

    图  10   渣堆稳定性系数修正过程图

    Figure  10.   Correction process diagram of slag pile stability coefficient

    图  11   修正后不同雨强工况下渣堆危险程度图

    Figure  11.   Dangerous degree map of slag heap under different rain intensities

    表  1   豫西某金矿渣堆体积及压占沟谷比例统计表

    Table  1   Statistical table of volume and proportion of the slag in a gold slag pile in western Henan

    矿渣ZD1ZD2ZD3ZD4ZD5ZD6ZD7ZD8
    体积/(104 m31.20.090.120.070.140.50.051.4
    压占沟谷比例/%5043836972717448
    矿渣ZD9ZD10ZD11ZD12ZD13ZD14ZD15ZD16
    体积/(104 m322.51.20.290.40.30.251.54
    压占沟谷比例/%7455777160674988
    下载: 导出CSV

    表  2   渣堆泄洪流速Us计算参数测量结果表

    Table  2   The measurement result of calculation parameters of flood discharge velocity of the slag pile

    渣堆编号ZD1ZD2ZD3ZD4ZD5ZD6ZD7ZD8
    F/km20.1760.1760.270.270.4690.4690.6160.176
    L/km0.470.470.610.610.720.790.791.01
    I/‰462462418418387373373314
    h/m222.52.52.5222
    b/m1.53.52.53.353.051111.51.5
    渣堆编号ZD9ZD10ZD11ZD12ZD13ZD14ZD15ZD16
    F/km20.851.681.821.820.2320.2830.4310.511
    L/km1.521.521.660.520.660.840.971.13
    I/‰283283269514456400374332
    h/m2.52222.52.522
    b/m2.79.526.518.54.3524.54
    下载: 导出CSV

    表  3   渣堆启动流速(Uc)计算参数测量结果表

    Table  3   The measurement result of calculation parameters of startup flow rate of the slag pile

    渣堆编号ZD1ZD2ZD3ZD4ZD5ZD6ZD7ZD8
    α/(°)1414910.8414.1610.456.766
    φ/(°)3432202241231833
    渣堆编号ZD9ZD10ZD11ZD12ZD13ZD14ZD15ZD16
    α/(°)74412.8412.958.3811.146
    φ/(°)3034293033241729
    下载: 导出CSV

    表  4   不同雨力工况下渣堆稳定性计算结果表

    Table  4   The calculation result of slag pile stability under different rain conditions

    近10 a最大值计算
    结果(49 mm/h)
    渣堆编号ZD1ZD2ZD3ZD4ZD5ZD6ZD7ZD8
    Fs0.902.111.401.850.902.762.260.51
    渣堆编号ZD9ZD10ZD11ZD12ZD13ZD14ZD15ZD16
    Fs0.721.881.332.641.011.250.950.68
    25 a一遇计算
    结果(60 mm/h)
    渣堆编号ZD1ZD2ZD3ZD4ZD5ZD6ZD7ZD8
    Fs0.721.701.121.490.722.221.810.41
    渣堆编号ZD9ZD10ZD11ZD12ZD13ZD14ZD15ZD16
    Fs0.581.511.072.120.811.000.760.54
    50 a一遇计算
    结果(80 mm/h)
    渣堆编号ZD1ZD2ZD3ZD4ZD5ZD6ZD7ZD8
    Fs0.531.250.831.090.531.631.330.30
    渣堆编号ZD9ZD10ZD11ZD12ZD13ZD14ZD15ZD16
    Fs0.421.110.791.560.600.740.560.40
    100 a一遇计算
    结果(90 mm/h)
    渣堆编号ZD1ZD2ZD3ZD4ZD5ZD6ZD7ZD8
    Fs0.471.100.730.960.471.441.180.26
    渣堆编号ZD9ZD10ZD11ZD12ZD13ZD14ZD15ZD16
    Fs0.370.980.691.380.530.650.490.35
    下载: 导出CSV

    表  5   不同雨力下渣堆危险性以及稳定性系数

    Table  5   Ranking table of slag pile stability under different rain conditions

    渣堆
    编号
    ZD
    8
    ZD
    16
    ZD
    9
    ZD
    1
    ZD
    5
    ZD
    15
    ZD
    13
    ZD
    14
    ZD
    11
    ZD
    3
    ZD
    4
    ZD
    10
    ZD
    2
    ZD
    7
    ZD
    12
    ZD
    6
    49 mm/hFs0.510.680.720.900.900.951.011.251.331.401.851.882.112.262.642.76
    60 mm/hFs0.410.540.580.720.720.760.811.001.071.121.491.511.701.812.122.22
    80 mm/hFs0.300.400.420.530.530.560.600.740.790.831.091.111.251.331.561.63
    90 mm/hFs0.260.350.370.470.470.490.530.650.690.730.960.981.101.181.381.44
    下载: 导出CSV

    表  6   不同雨力工况下渣堆稳定性修正计算结果表

    Table  6   The calculation result of slag pile stability correction under different rain conditions

    近10年最大观测雨强
    修正结果(49 mm/h)
    渣堆编号ZD1ZD2ZD3ZD4ZD5ZD6ZD7ZD8
    Fs0.901.411.011.330.702.261.800.43
    渣堆编号ZD9ZD10ZD11ZD12ZD13ZD14ZD15ZD16
    Fs0.621.481.122.641.011.250.950.62
    25年一遇雨强修正
    结果(60 mm/h)
    渣堆编号ZD1ZD2ZD3ZD4ZD5ZD6ZD7ZD8
    Fs0.721.130.811.060.561.701.440.34
    渣堆编号ZD9ZD10ZD11ZD12ZD13ZD14ZD15ZD16
    Fs0.471.220.872.120.810.840.630.45
    50年一遇雨强修正
    结果(80 mm/h)
    渣堆编号ZD1ZD2ZD3ZD4ZD5ZD6ZD7ZD8
    Fs0.530.830.590.780.411.241.050.25
    渣堆编号ZD9ZD10ZD11ZD12ZD13ZD14ZD15ZD16
    Fs0.350.880.621.560.600.620.460.33
    100年一遇雨强修正
    结果(90 mm/h)
    渣堆编号ZD1ZD2ZD3ZD4ZD5ZD6ZD7ZD8
    Fs0.470.730.520.680.361.100.930.22
    渣堆编号ZD9ZD10ZD11ZD12ZD13ZD14ZD15ZD16
    Fs0.310.780.551.380.530.540.410.29
    下载: 导出CSV

    表  7   修正后不同雨力下渣堆危险性以及稳定性系数

    Table  7   Ranking table of slag pile stability under different rain conditions after correction

    49 mm/h渣堆编号ZD
    8
    ZD
    9
    ZD
    16
    ZD
    5
    ZD
    1
    ZD
    15
    ZD
    3
    ZD
    13
    ZD
    11
    ZD
    14
    ZD
    4
    ZD
    2
    ZD
    10
    ZD
    7
    ZD
    6
    ZD
    12
    Fs0.430.620.620.700.900.951.011.011.121.251.331.411.481.802.262.64
    60 mm/h渣堆编号ZD
    8
    ZD
    16
    ZD
    9
    ZD
    5
    ZD
    15
    ZD
    1
    ZD
    3
    ZD
    13
    ZD
    14
    ZD
    11
    ZD
    4
    ZD
    2
    ZD
    10
    ZD
    7
    ZD
    6
    ZD
    12
    Fs0.340.450.470.560.630.720.810.810.840.871.061.131.221.441.702.12
    80 mm/h渣堆编号ZD
    8
    ZD
    16
    ZD
    9
    ZD
    5
    ZD
    15
    ZD
    1
    ZD
    3
    ZD
    13
    ZD
    11
    ZD
    14
    ZD
    4
    ZD
    2
    ZD
    10
    ZD
    7
    ZD
    6
    ZD
    12
    Fs0.250.330.350.410.460.530.590.600.620.620.780.830.881.051.241.56
    90 mm/h渣堆编号ZD
    8
    ZD
    16
    ZD
    9
    ZD
    5
    ZD
    15
    ZD
    1
    ZD
    3
    ZD
    13
    ZD
    14
    ZD
    11
    ZD
    4
    ZD
    2
    ZD
    10
    ZD
    7
    ZD
    6
    ZD
    12
    Fs0.220.290.310.360.410.470.520.530.540.550.680.730.780.931.101.38
    下载: 导出CSV
  • [1] 徐友宁,陈华清,杨敏,等. 采矿废渣颗粒粒径对矿渣型泥石流起动的控制作用—以小秦岭金矿区为例[J]. 地质通报,2015,34(11):1993 − 2000. [XU Youning,CHEN Huaqing,YANG Min,et al. Controlling role of particle sizes of mining waste residues in the initiation of mine debris flow:A case study of the Xiaoqinling gold mining area[J]. Geological Bulletin of China,2015,34(11):1993 − 2000. (in Chinese with English abstract)
    [2] 徐友宁,何芳,张江华,等. 矿山泥石流特点及其防灾减灾对策[J]. 山地学报,2010,28(4):463 − 469. [XU Youning,HE Fang,ZHANG Jianghua,et al. Characteristics of mine debris flow and its disaster prevention and mitigation countermeasures[J]. Journal of Mountain Science,2010,28(4):463 − 469. (in Chinese with English abstract)
    [3] 徐友宁,何芳,陈华清. 西北地区矿山泥石流及分布特征[J]. 山地学报,2007,25(6):729 − 736. [XU Youning,HE Fang,CHEN Huaqing. Mine debris flow and its distribution in Northwestern China[J]. Journal of Mountain Science,2007,25(6):729 − 736. (in Chinese with English abstract)
    [4] 陈华清. 小秦岭金矿区“7·23”泥石流形成特征及其启示[C]//第八届海峡两岸山地灾害与环境保育学术研讨会论文集. 中国水土保持学会、台湾中华水土保持学会、中国水土保持学会泥石流滑坡防治专业委员会, 2011.

    CHEN Huaqing. Formation characteristics and enlightenment of "7·23" debris flow in Xiaoqinling gold mining area[C]//Proceedings of the 8th Cross-Strait Mountain Disaster and Environmental Conservation Symposium. Chinese Society of Soil and Water Conservation, Chinese Society of Soil and Water Conservation in Taiwan, Professional Committee of Debris Flow and Landslide Prevention of Chinese Society of Soil and Water Conservation, 2011. (in Chinese with English abstract)

    [5] 徐友宁,陈华清,张江华,等. 小秦岭金矿区 7·23蒿岔峪泥石流成灾模式及启示[J]. 地质通报,2015,34(11):2001 − 2008. [XU Youning,CHEN Huaqing,ZHANG Jianghua,et al. Hazard mode of the 7·23 mine debris flow in the Xiaoqinling gold mine area[J]. Geological Bulletin of China,2015,34(11):2001 − 2008. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-2552.2015.11.002
    [6] 徐友宁. 影响小秦岭金矿区矿山泥石流形成的物源特征分析[C]// 第八届海峡两岸山地灾害与环境保育学术研讨会论文集. 中国水土保持学会、台湾中华水土保持学会、中国水土保持学会泥石流滑坡防治专业委员会, 2011

    XU Youning. Analysis of Provenance Characteristics Affecting the Formation of Mine Debris Flow in Xiaoqinling Gold Mine Area[C]//Proceedings of the 8th Cross-Strait Mountain Disaster and Environmental Conservation Symposium. Chinese Society of Soil and Water Conservation, Chinese Society of Soil and Water Conservation in Taiwan, Professional Committee of Debris Flow and Landslide Prevention of Chinese Society of Soil and Water Conservation, 2011. (in Chinese with English abstract)

    [7] 何芳,徐友宁,乔冈,等. 中国矿山地质灾害分布特征[J]. 地质通报,2012,31(增刊 1):476 − 485. [HE Fang,XU Youning,QIAO Gang,et al. Distribution characteristics of mine geological hazards in China[J]. Geological Bulletin of China,2012,31(Sup 1):476 − 485. (in Chinese with English abstract)
    [8] 邓龙胜,范文,熊炜,等. 矿渣型泥石流发育特征及危险性评价[J]. 工程地质学报,2009,17(3):415 − 420. [DENG Longsheng,FAN Wen,XIONG Wei,et al. Development features and risk of inducing slag debris flow at Daxicha gully[J]. Journal of Engineering Geology,2009,17(3):415 − 420. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2009.03.022
    [9] 李荣,李义天,王迎春. 非均匀沙起动规律研究[J]. 泥沙研究,1999(1):27 − 32. [LI Rong,LI Yitian,WANG Yingchun. Study of non-uniform sand starting law[J]. Journal of Sediment research,1999(1):27 − 32. (in Chinese with English abstract) DOI: 10.16239/j.cnki.0468-155x.1999.01.005
    [10] 陈嫒儿, 谢鉴衡. 非均匀沙起动规律初探[J]. 武汉水利电力学院学报,1988,21(3):28 − 37. [CHEN Yuaner, XIE Jianheng. Preliminary research on the laws of threshold motion for non-uniform sediments[J]. Journal of Wuhan University of Hydraulic and Electric Engineering,1988,21(3):28 − 37. (in Chinese with English abstract)
    [11] 谢鉴衡. 河流泥沙动力学[M]. 北京: 中国水利水电出版社, 1989: 63 − 84

    XIE Jianheng. River sediment dynamics[M]. Beijing: China Water Conservancy and Hydropower Press, 1989: 63 − 84. (in Chinese)

    [12] 秦荣昱. 不均匀砂的启动规律[J]. 泥沙研究, 1980(复刊号): 83 − 91

    QIN Rongyu. Startup rule of uneven sand[J]. Sediment Research, 1980(Reissue number): 83 − 91. (in Chinese)

    [13] 彭润译, 吕秀贞. 长江寸滩站卵石推移质输沙规律[J]. 水利学报, 1990, 21(1): 38 − 43

    PENG Runyi, LYU Xiuzhen. The law of bedding and sediment transport of pebble at Cuntan station of the Yangtze River[J]. Journal of Hydraulic Engineering. 1990, 21(1): 38 − 43.(in Chinese)

    [14] 林玫玲,简文彬,胡海瑞,等. 基于离散元的矿渣泥石流运动过程研究[J]. 中国地质灾害与防治学报,2017,28(2):10 − 14. [LIN Meiling,JIAN Wenbin,HU Hairui,et al. The movement process of slag debris flow based on the discrete element method[J]. The Chinese Journal of Geological Hazard and Control,2017,28(2):10 − 14. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2017.02.02
    [15] 李建林,张洪云,李振林. 矿山泥石流沟谷形态的分形分维[J]. 中国地质灾害与防治学报,2012,23(1):1 − 5. [LI Jianlin,ZHANG Hongyun,LI Zhenlin. Fractal analysis on morphology of mine debris flow gully[J]. The Chinese Journal of Geological Hazard and Control,2012,23(1):1 − 5. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-8035.2012.01.001
    [16] 唐亚明,武立,冯凡,等. 泥石流风险减缓措施及经济决策—以山西吉县城北沟为例[J]. 西北地质,2021,54(4):227 − 238. [TANG Yaming,WU Li,FENG Fan,et al. Risk mitigation measures and economic decisions on debris flow:Taking Beigou of Jixian County,Shanxi Province as an example[J]. Northwestern Geology,2021,54(4):227 − 238. (in Chinese with English abstract) DOI: 10.19751/j.cnki.61-1149/p.2021.04.018
    [17] 杨敏, 徐友宁. 小秦岭金矿区矿渣泥石流成因机理及防治对策[M]. 北京: 冶金工业出版社, 2021

    YANG Min, XU Youning. Genesis mechanism and prevention countermeasures of slag and debris flow in Xiaoqinling gold mine area[M]. Beijing: Metallurgical Industry Press, 2021. (in Chinese)

    [18] 徐友宁,陈社斌,李育敬,等. 陕西潼关金矿区泥石流潜势度评价[J]. 水文地质工程地质,2006,33(2):89 − 92. [XU Youning,CHEN Shebin,LI Yujing,et al. Potentiality degree assessment of slag mudslide geo-hazard on the gold mine area in Tongguan, Shaanxi Province[J]. Hydrogeology & Engineering Geology,2006,33(2):89 − 92. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3665.2006.02.021
    [19] 高东光. 桥涵水文[M]. 北京: 人民交通出版社, 2005: 76 − 87

    GAO Dongguang. Hydrology and hydraulics for bridge engineering[M]. Beijing: China Communications Press, 2005: 76 − 87. (in Chinese)

    [20] 燕建设,王铭生,杨建朝,等. 豫西马超营断裂带的构造演化及其与金等成矿的关系[J]. 中国区域地质,2000,19(2):166 − 171. [YAN Jianshe,WANG Mingsheng,YANG Jianchao,et al. Tectonic evolution of the Machaoying fault zone in western Henan and its relationship with Au polymetallic mineralization[J]. The Regional Geology of China,2000,19(2):166 − 171. (in Chinese with English abstract)
    [21] 中国科学院水利部成都山地灾害与环境研究所. 中国泥石流[M]. 北京: 商务印书馆, 2000

    Institute of Mountain Hazards and Environment, CAS. China debris flow[M]. Beijing: The Ommercial Press, 2000. (in Chinese)

    [22] 常士骠, 张苏民. 工程地质手册(第五版)[M]. 北京: 中国建筑工业出版社, 2018: 691

    CHANG Shibiao, ZHANG Sumin. Geological engineering handbook(The fifth edition)[M]. Beijing: China Architecture & Building Press, 2018: 691. (in Chinese)

  • 期刊类型引用(1)

    1. 刘星宇,朱立峰,孙建伟,贾煦,刘向东,黄虹霖,程贤达,孙亚柯,胡超进,张晓龙. 沟谷型泥石流特征参数的等代面积递归精细求解. 西北地质. 2024(03): 272-284 . 百度学术

    其他类型引用(0)

图(11)  /  表(7)
计量
  • 文章访问数:  305
  • HTML全文浏览量:  171
  • PDF下载量:  126
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-03-26
  • 修回日期:  2022-05-11
  • 录用日期:  2022-05-29
  • 网络出版日期:  2022-08-24
  • 刊出日期:  2022-10-19

目录

/

返回文章
返回