ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

基于证据权法的昆明五华区地质灾害易发性评价

白光顺, 杨雪梅, 朱杰勇, 张世涛, 祝传兵, 康晓波, 孙滨, 周琰嵩

白光顺,杨雪梅,朱杰勇,等. 基于证据权法的昆明五华区地质灾害易发性评价[J]. 中国地质灾害与防治学报,2022,33(5): 128-138. DOI: 10.16031/j.cnki.issn.1003-8035.202203037
引用本文: 白光顺,杨雪梅,朱杰勇,等. 基于证据权法的昆明五华区地质灾害易发性评价[J]. 中国地质灾害与防治学报,2022,33(5): 128-138. DOI: 10.16031/j.cnki.issn.1003-8035.202203037
BAI Guangshun, YANG Xuemei, ZHU Jieyong, et al. Susceptibility assessment of geological hazards in Wuhua District of Kuming, China using the weight evidence method[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 128-138. DOI: 10.16031/j.cnki.issn.1003-8035.202203037
Citation: BAI Guangshun, YANG Xuemei, ZHU Jieyong, et al. Susceptibility assessment of geological hazards in Wuhua District of Kuming, China using the weight evidence method[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 128-138. DOI: 10.16031/j.cnki.issn.1003-8035.202203037

基于证据权法的昆明五华区地质灾害易发性评价

详细信息
    作者简介:

    白光顺(1986-),男,山东巨野人,博士研究生,主要从事工程地质理论和应用研究。E-mail:baiguangshun@foxmail.com

    通讯作者:

    杨雪梅(1989-),女,云南丽江人,工程师,主要从事工程地质、测绘等工作和应用研究。E-mail:yangxuemeilj@foxmail.com

  • 中图分类号: P208;P694

Susceptibility assessment of geological hazards in Wuhua District of Kuming, China using the weight evidence method

  • 摘要: 地质灾害易发性评价是国土空间规划和区域地质灾害防灾减灾的重要依据。为探索适合云南高原低山丘陵区地质灾害易发性评价方法,论文选择云南省昆明市五华区为典型研究区,选择工程地质岩组、距断裂构造线距离、高程、坡度、坡向、坡面曲率、距公路线距离和土地利用类型等8个因素,应用基于贝叶斯理论的证据权法进行地质灾害易发性评价,通过对各因素各分级(分类)综合证据权重的近似学生化检验(Student-T)优化了各因素的分级(分类)方案。采用文中所构建模型评价得出的易发性分区结果表明,89.9%和9.1%的地灾点落入高和中易发区,对比分析显示建模结果与地质灾害发育情况吻合度高,较好地揭示了研究区地质灾害易发性特征,可为昆明市五华区及云南高原其它低山丘陵区地质灾害防治规划提供参考。
    Abstract: Geological hazard susceptibility assessment is an important basis for territorial space planning and geological hazard prevention and mitigation. In order to explore the evaluation method suitable for the geological hazard susceptibility of low hills and gullies in Yunnan plateau, Wuhua District of Kunming, Yunnan Province, China was selected as a typical study area. Eight factors including the engineering geology groups, distance from faults, elevation, slope, direction, curvature, distance from roads and land use covers were selected, and the weight evidence method based on Bayesian theory was applied to evaluate the susceptibility of geological hazards. After performing the Student-T test of the comprehensive evidence weight of each factor, the classification scheme of factors were optimized. The results of vulnerability zoning based on the evaluation of the model established in this paper showed that 89.9% and 9.1% of the geological hazard points fall into high and medium susceptibility areas. The comparative analysis showed that the modeling results are highly consistent with the geological hazards distribution, which better reveals the characteristics of geological hazards susceptibility in the study area. It can provide reference for the planning of geological hazards prevention in Wuhua District and other low hills and gullies areas of Yunnan plateau.
  • 近年来,中国建设开发了数十座软岩露天煤矿,在开采过程中采场及排土场均发生过一定规模的滑坡,对于采场底帮顺倾软岩边坡与顺倾软基底内排土场边坡滑坡灾害尤为严重。滑坡灾害直接影响剥采排工程的发展,造成人员伤害和设备损毁及地貌景观破坏,严重制约着露天矿的安全高效生产[1-2],边坡稳定性治理问题已成为边坡工程领域亟待解决的难题之一。

    目前国内外学者们应用不同理论对其展开大量有意义的研究,成果丰硕。王东等[3]综合运用极限平衡法及数值模拟法,分析了不同压帮高度下边坡稳定性变化规律,提出了逆倾软岩边坡变形的治理措施;刘子春等[4]以扎尼河露天矿为背景,通过分析扩帮、内排压角等治理措施的基础上,提出了一种条带式开采技术的边坡治理方案;陈毓等[5]采用ANSYS对黑山露天矿内排土场边坡稳定性和破坏机理进行了分析,揭示了内排土场滑坡模式为“坐落滑移式”滑动,运用削坡治理技术来保证内排土场稳定性;唐文亮等[6]系统分析了露天矿内排土场滑坡影响因素,提出了预留煤柱的滑坡治理方法;李伟[7]揭示了阴湾排土场边坡变形破坏机理并结合数值模拟法和极限平衡法,分析了内排不同压脚方案下边坡稳定性,提出了阴湾排土场滑坡治理措施;王刚等[8]基于有限元数值模拟法和极限平衡法,分析了边坡破坏机理并对边坡进行了稳定性计算,提出了削坡减载的治理措施。软岩露天煤矿采场边坡稳定性治理最经济有效的方式是内排追踪压帮,内排土场稳定是前提,但现有方法均是单一针对采场或排土场边坡稳定性分析和治理,未能同时兼顾采场与内排土场边坡的稳定性,对工程实际的指导性不强。

    本文以贺斯格乌拉南露天煤矿首采区南帮为工程背景,在兼顾采场与内排土场边坡稳定性的基础上,提出了露天煤矿顺倾软岩边坡内排追踪压帮治理工程,为深入研究顺倾软岩露天煤矿边坡稳定性治理方法提供新的参考。

    贺斯格乌拉南露天煤矿设计生产能力为15 Mt/a,首采区南帮地层自上而下主要发育第四系、2煤组、2煤组与3煤组间夹石、3煤组、3煤组底板和盆地基底火山岩,含煤岩系主要以泥岩为主,全区可采的有2-1、3-1煤层,第四系以粉砂质黏土为主,局部夹黄-浅灰色细砂及含砾粗砂层,岩性较差,首采区土层赋存较薄,且其地层中多赋存软弱夹层,主要以3-1、3-4煤底板弱层主,属于典型的顺倾软岩边坡,岩土体物理力学指标如表1所示,典型工程地质剖面如图1所示。

    表  1  岩土体物理力学指标
    Table  1.  Physical and mechanical parameters of rock mass
    岩体名称内摩擦角/(°)黏聚力/kPa容重/(kN·m−3弹性模量/MPa泊松比
    砂岩26.006519.6350.42
    粉质黏土14.062219.8460.38
    29.008512.1400.35
    泥岩20.004019.4750.36
    排弃物14.492019.0600.40
    弱层6.00019.1200.42
    回填岩石20.004019.0
    下载: 导出CSV 
    | 显示表格
    图  1  典型工程地质剖面图
    Figure  1.  Typical geological cross-section profile of the sliding area

    影响顺倾软岩露天煤矿采场边坡稳定性的主控因素是弱层及其暴露长度,采用追踪压帮方式治理该类边坡稳定性时,可忽略软弱夹层为底界面的切层-顺层组合滑动模式[9-10],仅考虑剪胀破坏模式。由于贺斯格乌拉南露天矿边坡体内赋存软弱夹层,主要以3-1、3-4煤底板弱层为主,顺倾角度大,岩质松软,对于此类边坡,浅部可通过平盘参数进行重新设计,深部必须利用三维效应,实现稳定性控制。可采用刚体极限平衡法中的剩余推力法对浅层边坡进行稳定性计算[11-12]。该方法的优点是可以用来计算求解给定任意边坡潜在滑面的稳定系数,并且可以考虑在复杂外力作用下的不同抗剪参数滑动岩体对边坡稳定性的影响。稳定系数求解公式为:

    $$ {P_i} = \frac{{{W_i}\sin {\alpha _i}({W_i}\sin {\alpha _i}\tan {\varphi _i}) + {C_i}{L_i}}}{{{F_{\rm{s}}}}} + {\phi _i}{p_{i - 1}} $$ (1)
    $$ {\phi _i} = \frac{{\cos ({\alpha _{i - 1}} - {\alpha _i})\tan {\varphi _i}\sin ({\alpha _{i - 1}} - {\alpha _i})}}{{{F_{\rm{s}}}}} $$ (2)

    式中:${P_i}$——第$i$条块的剩余推力/kN;

    $ {W_i} $——第$i$条块的重量/(N·m−3);

    $\alpha_i$——第$i$条块的滑面倾角/(°);

    ${\varphi _i}$——第$i$条块的推力传递系数;

    ${C_i}$——第$i$条块的滑面黏聚力/kPa;

    ${L_i}$——第$i$条块的底面长度/m;

    ${\phi _i}$——第$i$条块的滑面摩擦角/(°);

    ${F_{\rm{s}}}$——稳定性系数。

    依据《煤炭工业露天矿设计规范》(GB 50197―2015)[13]综合考虑贺斯格乌拉南露天煤矿首采区南帮边坡服务年限、地质条件与力学参数的可靠性、潜在滑坡危害程度等,确定安全储备系数为1.2。

    由于南帮压覆大量煤层,在保证安全前提下,为实现最大限度回采压覆的煤炭资源,需要对边坡形态重新设计。本文选取典型剖面为研究对象,浅层边坡形态按照40 m运输平盘、15 m保安平盘进行设计,深部利用横采内排三维支挡效应回采采场底帮深部压覆煤炭资源。通过上述情况对浅层边坡进行了分析,边坡稳定性计算结果如图2所示。

    图  2  浅层边二维坡稳定性计算结果
    Figure  2.  Calculation results of two-dimensional slope stability of the shallow side

    分析图2可知,浅部边坡形态可按照40 m运输平盘、15 m保安平盘进行设计,由于弱层上部存在煤岩支挡,边坡潜在滑坡模式为以圆弧为侧界面、3-1煤底板弱层为底界面、沿边坡坡脚处剪出,此时,浅层边坡能满足安全储备系数1.2的要求。

    基于浅层边坡二维稳定性分析结果可知,实现深部稳定性控制,必须借助横采工作帮与内排土场的双重支挡作用进行压煤回采,因此提出了利用横采内排三维支挡效应回采采场深部压覆煤炭资源[14]。本文借助FLAC3D数值模拟软件,分析不同降深角度和不同追踪距离条件下的边坡三维稳定性,以期获得最优的边坡空间形态参数。

    (1) 模型的建立

    考虑到FLAC3D建模较为复杂,采用CAD与Rhino相结合的方法,首先在CAD中对剖面进行整理,然后在Rhino软件中进行模型成体与网格划分的处理,并用Griddle将网格导出,生成精细的六面体网格模型[1517],最后导入采用于FLAC3D进行数值模拟计算。为尽可能凸显边坡稳定性的三维效应,以南帮断面形态设计边坡为数值模拟对象,共计建立15种工况模型,模型如图3,追踪距离分别为50,100,200,300,400 m。为避免边界效应,在模型的底部和两侧分别施加水平和垂直位移约束,加载方式为重力加载[18]

    图  3  三维数值模拟模型
    Figure  3.  Three-dimensional numerical simulation model

    (2) 计算结果分析

    由于计算结果过多,本文仅列举降深角度α=29°,追踪距离50,200,400 m工况下边坡位移云图(切割位置为沿模型走向中间处),如图4所示。南帮边坡三维稳定性计算结果如图5所示。

    图  4  数值模拟结果
    Figure  4.  Numerical simulation results at different tracking distance
    图  5  追踪距离与边坡稳定系数的关系曲线
    Figure  5.  Relationship curve between tracking distance and slope stability coefficient

    分析图4图5可知,追踪距离50 m时,三维支挡效应显著,边坡深部位移明显小于上部,发生以圆弧为侧界面、3-1煤底板弱层为底界面的切层-顺层-剪出滑动,稳定系数大于1.2。当追踪距离大于50 m时,通过对比分析不同深部边坡角(α)条件下的数值模拟结果可知,深部边坡角对边坡稳定性系数影响较小,随着追踪距离的增加,边坡的破坏模式过渡为以圆弧为侧界面、3-1煤底板弱层为底界面的切层-顺层滑动,并且此时边坡的稳定性不满足安全储备系数1.2要求。因此,内排土场追踪距离需控制在50 m以内,深部边坡角设计为29°。

    露天矿内排土场边坡稳定的主控因素是软弱基底,软弱基底分为自身软弱岩土层和受外界条影响转变为软弱岩土层2种类型。排土场下沉是软弱基底内排土场失稳的特征,主要现象是含有纵向强烈挤压区,基底上部岩层隆起,地面出现滑坡等[1921]。在保证采场南帮安全的前提下降深至3-1煤底板,须借助横采工作帮与内排土场的双重支挡作用,内排土场稳定是前提[22]。由于内排土场基底为3-1、3-4煤底板弱层,顺倾角度较大,按照内排土场设计参数,其稳定性无法满足安全储备系数的要求[23]。从提供基底强度角度出发,采用破坏弱层回填岩石的方式提高内排土场边坡稳定性。按照排土台阶高度24 m、平盘宽度60 m、坡面角33°对不同内排压帮标高边坡稳定性进行试算,确定内排最小压帮标高为+844水平,因此本文分析了内排基于+844水平的压帮高度下内排土场基底不同的处理方式时的边坡稳定性计算结果如图67所示,边坡稳定性与破坏弱层回填岩石范围关系曲线如图8所示。

    图  6  3-1煤层内排基底不同处理方式下边坡稳定性计算结果
    Figure  6.  Calculation results of slope stability under different treatment methods of inner row basement (3-1)

    分析图6图8可知,当内排基于+844的压帮高度,内排基底3-1底板弱层完全破坏并回填岩石,破坏3-4底板弱层并回填岩石倾向长度达60 m时,内排土场及其与采场南帮复合边坡稳定性均可满足安全系数1.2要求。边坡稳定性随破坏底板弱层回填岩石范围的增大呈正指数函数规律提高,随着回填岩石范围长度的不断增加,边坡稳定性系数不断提高。采用破坏弱层回填岩石的基底处理方法,既保证了边坡的稳定又规避了过渡处理基底的生产成本。

    图  7  3-4煤层内排基底不同处理方式下边坡稳定性计算结果
    Figure  7.  Calculation results of slope stability under different treatment methods of inner row basement (3-4)
    图  8  边坡稳定性与破坏弱层回填岩石范围关系曲线
    Figure  8.  Relationship curve between slope stability and the extent of backfill rocks in the weak layer

    (1) 弱层暴露长度是露天矿顺倾软岩边坡稳定性的主控因素,据此提出了露天矿顺倾软岩边坡内排追踪压帮治理工程,可最大限度的安全回收边坡压覆煤炭资源。

    (2) 控制采场与内排土场间的追踪距离是改善边坡稳定性的有效途径。随着追踪距离的增加,边坡破坏模式从以圆弧为侧界面、弱层为底界面的切层-顺层-剪出滑动逐渐过渡为以圆弧为侧界面、弱层为底界面的切层-顺层滑动。

    (3) 内排土场及其与采场构成的复合边坡稳定性随破坏底板弱层回填岩石范围的增大呈指数函数规律提高,随着回填岩石范围长度的不断增加,边坡稳定性系数不断提高。

    (4) 贺斯格乌拉南露天煤矿首采区南帮浅部边坡留设40 m运输平盘、15 m保安平盘,底帮深部边坡角29°,追踪距离控制在50 m之内时可满足安全要求;内排基底弱层完全破坏并回填岩石倾向长度60 m时可满足安全需求。

  • 图  1   因素基础数据图

    Figure  1.   Basic data charts of factors

    图  2   地质灾害分布图(底图为高程和山体阴影渲染)

    Figure  2.   Map of geological hazard distribution (The bottom was rendered by elevation and hillshade)

    图  3   各因素分级分区和地灾点数量相关性统计图

    Figure  3.   Statistical charts of correlation between the factors and the number of geological hazard points

    图  4   因素证据权重计算结果图

    Figure  4.   Calculation results charts of factor evidence weights

    图  5   模型预测性能ROC曲线图

    Figure  5.   ROC curve of model prediction performance

    图  6   地质灾害易发性栅格图

    Figure  6.   Grid map of geological hazard susceptibility

    图  7   典型区因素和地质灾害分布图

    Figure  7.   Factors and geological hazards in typical zone

    表  1   数据简介

    Table  1   Data introduction

    数据灾点及
    致灾要素
    类型来源
    地灾地灾点矢量点地质灾害风险普查
    地质工程地质岩组矢量面云南省地质局
    距断裂
    距离
    矢量线和缓冲区云南省地质局
    地形地貌高程栅格12.5 m DEM,
    https://asf.alaska.edu/
    坡度栅格根据DEM,应用ArcGIS提取
    坡向栅格根据DEM,应用ArcGIS提取
    坡面曲率栅格根据DEM,应用ArcGIS提取
    道路距公路
    距离
    矢量线缓冲区http://www.openstreetmap.org
    根据矢量线用ArcGIS制作
    土地利用
    类型
    土地利用
    类型
    栅格ESA WorldCover 10 m 2020,https://esa-worldcover.org/en
    下载: 导出CSV

    表  2   因素证据权重计算结果表

    Table  2   Calculation results of factor evidence weights

    因素因素分级因素面积
    百分比/%
    地灾数
    百分比/%
    正权重
    W+
    W+
    标准差${\sigma }_{{W}^{+}}^{} $
    负权重WW
    标准差${\sigma }_{{W}^{-}}^{} $
    综合权重
    $ {W}_{{\rm{f}}} $
    $ {W}_{{\rm{f}}} $的
    标准差${\sigma }_{{W}_{{\rm{f}}}} $
    StudentT分类
    归并
    归并后
    权重
    权重
    标准差
    高程/m<17350.010.000.00000.00000.00000.00000.00000.00000.0000合并−0.27440.1607
    1735~18000.360.000.00000.00000.00000.00000.00000.00000.0000合并−0.27440.1607
    1 800~1 8500.651.120.55501.0082−0.00480.10710.55981.01380.5522合并−0.27440.1607
    1 850~1 9009.5510.110.05740.3350−0.00630.11230.06360.35330.1801合并−0.27440.1607
    1 900~1 9206.814.49−0.41860.50150.02480.1090−0.44340.5133−0.8639合并−0.27440.1607
    1 920~1 9506.7321.351.17580.2329−0.17200.12001.34780.26205.144441.17580.2329
    1 950~2 00012.5023.600.64390.2202−0.13680.12180.78070.25163.103250.64390.2202
    2 000~2 10023.2511.24−0.73180.31690.14680.1131−0.87870.3365−2.611013−0.73180.3169
    2 100~2 20018.8620.220.07080.2369−0.01720.11920.08790.26520.3315合并−0.27440.1607
    2 200~2 30011.484.49−0.94360.50090.07670.1090−1.02030.5126−1.9903合并−0.27440.1607
    2 300~2 4007.023.37−0.73830.57860.03890.1084−0.77720.5887−1.3201合并−0.27440.1607
    2 400~2 5002.610.000.00000.00000.00000.00000.00000.00000.0000合并−0.27440.1607
    >2 5000.190.000.00000.00000.00000.00000.00000.00000.0000合并−0.27440.1607
    坡度/(°)<518.724.49−1.42970.50060.16200.1091−1.59160.5123−3.10685−1.42970.5006
    5~1538.3237.08−0.02880.17490.01740.1343−0.04620.2205−0.2093合并0.02210.1450
    15~2528.7241.570.37850.16550.20230.13920.58080.21632.685330.37850.1655
    25~3511.6012.360.06880.3030−0.00930.11380.07820.32370.2416合并0.02210.1450
    >352.644.490.54360.5040−0.01950.10900.56320.51571.0921合并0.02210.1450
    坡向北东9.7211.240.14600.3179−0.01710.11300.16310.33740.4833合并−0.00010.1065
    12.7715.730.21070.2688−0.03490.11600.24560.29280.8388合并−0.00010.1065
    南东16.9219.100.12220.2438−0.02680.11840.14900.27100.5496合并−0.00010.1065
    13.1611.24−0.15920.31750.02210.1130−0.18130.3370−0.5379合并−0.00010.1065
    南西10.5710.11−0.04480.33480.00520.1123−0.05000.3532−0.1415合并−0.00010.1065
    西13.456.74−0.69540.40920.07540.1103−0.77070.4238−1.8186合并−0.00010.1065
    北西14.5812.36−0.16670.30270.02590.1138−0.19260.3234−0.5955合并−0.00010.1065
    8.8213.480.42900.2908−0.05290.11450.48190.31251.5423合并−0.00010.1065
    坡面
    曲率
    −0.75~−0.28(凹形)3.205.620.56900.4509−0.02550.10960.59450.46401.2812合并0.09600.1367
    −0.28~−0.15(凹形)10.6422.470.75770.2258−0.14320.12090.90090.25623.517110.75770.2258
    −0.15~−0.05(凹形)19.6626.970.31970.2054−0.09620.12460.41590.24031.7311合并0.09600.1367
    −0.05~0.05(平坦)34.1816.85−0.71190.25880.23620.1169−0.94820.2840−3.33886−0.71190.2588
    0.05~0.15(凸形)17.5321.350.19900.2307−0.04780.12010.24680.26010.9489合并0.09600.1367
    0.15~0.28(凸形)11.005.62−0.67660.44830.05930.1097−0.73590.4615−1.5945合并0.09600.1367
    0.28~0.69(凸形)3.781.12−1.21941.00140.02750.1071−1.24691.0071−1.2381合并0.09600.1367
    工程
    地质
    岩组
    松散碎石土体13.156.74−0.67360.40920.07200.1103−0.74560.4238−1.7592合并−0.18440.1329
    石英砂岩7.5510.110.29470.3354−0.02830.11230.32300.35370.9131合并−0.18440.1329
    砂岩、泥岩、页岩23.0835.960.44740.1781−0.18440.13300.63180.22222.843030.44740.1781
    白云岩、灰岩38.8837.08−0.04910.17490.03010.1343−0.07930.2205−0.3596合并−0.18440.1329
    玄武岩16.9410.11−0.52060.33430.08000.1124−0.60050.3526−1.7029合并−0.18440.1329
    侵入岩脉0.290.000.00000.00000.00000.00000.00000.00000.0000合并−0.18440.1329
    距断层
    距离/m
    0~505.6312.360.79730.3046−0.07460.11370.87190.32522.681430.79730.3046
    50~1005.865.62−0.04290.44920.00260.1096−0.04550.4624−0.0985合并−0.07460.1137
    100~30019.8719.10−0.03970.24360.00960.1184−0.04930.2709−0.1822合并−0.07460.1137
    300~50016.1120.220.22990.2371−0.05080.11920.28060.26541.0574合并−0.07460.1137
    500~100026.1217.98−0.37640.25080.10560.1177−0.48200.2770−1.7397合并−0.07460.1137
    1000~2 00022.7524.720.08400.2143−0.02610.12270.11010.24690.4457合并−0.07460.1137
    >20003.660.000.00000.00000.00000.00000.00000.00000.0000合并−0.07460.1137
    距主要
    公路
    距离/m
    0~5011.1129.210.98200.1986−0.22960.12651.21160.23545.146930.98200.1986
    50~1008.1413.480.51110.2909−0.06050.11450.57160.31261.8284合并−0.12570.1296
    100~30020.6220.22−0.01960.23680.00500.1192−0.02470.2651−0.0931合并−0.12570.1296
    300~50012.533.37−1.31950.57810.10050.1084−1.42010.5882−2.41444−1.31950.5781
    500~100017.2116.85−0.02100.25940.00430.1168−0.02530.2845−0.0889合并−0.12570.1296
    1000~2 00016.6710.11−0.50380.33430.07650.1124−0.58030.3527−1.6455合并−0.12570.1296
    >200013.726.74−0.71530.40920.07850.1103−0.79390.4238−1.8733合并−0.12570.1296
    土地
    利用
    类型
    林地54.7028.09−0.07940.14970.08830.1515−0.16760.2130−0.7870合并−0.12870.1183
    灌木0.140.000.00000.00000.00000.00000.00000.00000.0000合并−0.12870.1183
    草地7.398.990.19790.3556−0.01760.11160.21550.37270.5783合并−0.12870.1183
    耕地16.5410.11−0.49550.33430.07490.1124−0.57040.3527−1.6174合并−0.12870.1183
    建筑12.8211.24−0.13320.31750.01820.1130−0.15140.3370−0.4492合并−0.12870.1183
    裸地或稀疏植被8.0941.570.87190.2452−0.12870.11831.00060.27233.674640.87190.2452
    开阔水域0.320.000.00000.00000.00000.00000.00000.00000.0000合并−0.12870.1183
    下载: 导出CSV

    表  3   地质灾害易发性分区表

    Table  3   Form of geological hazard susceptibility zoning

    易发性
    分区
    面积/
    km2
    占总面积/
    %
    编号面积/
    km2
    占大区/
    面积%
    灾点数灾点密度/
    (个·km−2)
    地质灾害
    高易发区(Ⅰ)
    188.5549.411152.3280.79640.41
    217.939.5190.50
    316.118.5480.94
    42.191.1610.46
    地质灾害
    中易发区(Ⅱ)
    152.2139.8811.300.85
    218.8212.3620.11
    315.039.8710.07
    412.928.49
    518.5112.1620.11
    69.125.99
    744.6629.34
    812.348.1110.08
    911.737.71
    107.785.11
    低易发区(Ⅲ)47.4012.42147.4010010.02
    下载: 导出CSV
  • [1]

    REGMI N R,GIARDINO J R,VITEK J D. Modeling susceptibility to landslides using the weight of evidence approach:western Colorado,USA[J]. Geomorphology,2010,115(1/2):172 − 187. DOI: 10.1016/j.geomorph.2009.10.002

    [2]

    DU J,GLADE T,WOLDAI T,et al. Landslide susceptibility assessment based on an incomplete landslide inventory in the Jilong Valley,Tibet,Chinese Himalayas[J]. Engineering Geology,2020,270:105572. DOI: 10.1016/j.enggeo.2020.105572

    [3]

    GOYES-PEÑAFIEL P,HERNANDEZ-ROJAS A. Landslide susceptibility index based on the integration of logistic regression and weights of evidence:A case study in Popayan,Colombia[J]. Engineering Geology,2021,280:105958. DOI: 10.1016/j.enggeo.2020.105958

    [4]

    BĂLTEANU D,MICU Mihai,JURCHESCU M,et al. National-scale landslide susceptibility map of Romania in a European methodological framework[J]. Geomorphology,2020,371:107432. DOI: 10.1016/j.geomorph.2020.107432

    [5]

    SMITH H G,SPIEKERMANN R,BETTS H,et al. Comparing methods of landslide data acquisition and susceptibility modelling:examples from New Zealand[J]. Geomorphology,2021,381:107660. DOI: 10.1016/j.geomorph.2021.107660

    [6] 黄立鑫,郝君明,李旺平,等. 基于RBF神经网络-信息量耦合模型的滑坡易发性评价—以甘肃岷县为例[J]. 中国地质灾害与防治学报,2021,32(6):116 − 126. [HUANG Lixin,HAO Junming,LI Wangping,et al. Landslide susceptibility assessment by the coupling method of RBF neural network and information value:A case study in Min Xian,Gansu Province[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):116 − 126. (in Chinese with English abstract)
    [7] 廖小平,徐风光,蔡旭东,等. 香丽高速公路边坡地质灾害发育特征与易发性区划[J]. 中国地质灾害与防治学报,2021,32(5):121 − 129. [LIAO Xiaoping,XU Fengguang,CAI Xudong,et al. Development characteristics and susceptibality zoning of slope geological hazards in Xiangli expressway[J]. The Chinese Journal of Geological Hazard and Control,2021,32(5):121 − 129. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2021.05-15
    [8] 罗守敬,王珊珊,付德荃. 北京山区突发性地质灾害易发性评价[J]. 中国地质灾害与防治学报,2021,32(4):126 − 133. [LUO Shoujing,WANG Shanshan,FU Dequan. Assessment on the susceptibility of sudden geological hazards in mountainous areas of Beijing[J]. The Chinese Journal of Geological Hazard and Control,2021,32(4):126 − 133. (in Chinese with English abstract)
    [9] 吴赛男,田毅. 我国单体滑坡模拟和区域滑坡易发性评价研究进展[J]. 中国地质灾害与防治学报,2019,30(3):113 − 119. [WU Sainan,TIAN Yi. Review on progress of individual landslide simulation and assessment of reginal landslide susceptibility in China[J]. The Chinese Journal of Geological Hazard and Control,2019,30(3):113 − 119. (in Chinese with English abstract)
    [10] 闫怡秋,杨志华,张绪教,等. 基于加权证据权模型的青藏高原东部巴塘断裂带滑坡易发性评价[J]. 现代地质,2021,35(1):26 − 37. [YAN Yiqiu,YANG Zhihua,ZHANG Xujiao,et al. Landslide susceptibility assessment based on weight-of-evidence modeling of the Batang fault zone,eastern Tibetan Plateau[J]. Geoscience,2021,35(1):26 − 37. (in Chinese with English abstract)
    [11]

    LUSTED L B. An introduction to medical decision making[J]. American Journal of Physical Medicine & Rehabilitation,1970,49(5):322.

    [12]

    SPIEGELHALTER D J,KNILL-JONES R P. Statistical and knowledge-based approaches to clinical decision-support systems,with an application in gastroenterology[J]. Journal of the Royal Statistical Society Series A (General),1984,147(1):35. DOI: 10.2307/2981737

    [13]

    BONHAM-CARTER G F, AGTERBERG F P, WRIGHT D F. Weights of evidence modelling: A new approach to mapping mineral potential[R]. Natural Resources Canada/CMSS/Information Management, 1990.

    [14]

    AGTERBERG F P. Combining indicator patterns in weights of evidence modeling for resource evaluation[J]. Nonrenewable Resources,1992,1(1):39 − 50. DOI: 10.1007/BF01782111

    [15]

    AGTERBERG F P, BONHARN-CARTER G F. Weights of evidence modeling and weighted logistic regression for mineral potential mapping[M]. Computers in Geology - 25 Years of Progress. 13 − 32: Oxford University Press, 1994.

    [16]

    CARRANZA E,HALE M. Spatial association of mineral occurrences and curvilinear geological features[J]. Mathematical Geology,2002,34:203 − 221. DOI: 10.1023/A%3A1014416319335

    [17] 孙琳,任娜娜,李云安,等. 基于证据权法的公路路基岩溶塌陷危险性评价[J]. 中国地质灾害与防治学报,2019,30(3):94 − 100. [SUN Lin,REN Nana,LI Yunan,et al. Risk assessment on karst collapse of the highway subgrade based on weights of evidence method[J]. The Chinese Journal of Geological Hazard and Control,2019,30(3):94 − 100. (in Chinese with English abstract)
    [18] 刘璐瑶, 高惠瑛. 基于证据权与Logistic回归模型耦合的滑坡易发性评价[J/OL]. 工程地质学报. https://doi.org/10.13544/j.cnki.jeg.2020-482.

    LIU Luyao, GAO Huiying. Landslide susceptibility assessment based on coupling of woe model and logistic regression model[J/OL]. Journal of Engineering Geology. https://doi.org/10.13544/j.cnki.jeg.2020-482. (in Chinese with English abstract)

    [19]

    CHEN L F,GUO H X,GONG P S,et al. Landslide susceptibility assessment using weights-of-evidence model and cluster analysis along the highways in the Hubei section of the Three Gorges Reservoir Area[J]. Computers & Geosciences,2021,156:104899. DOI: 10.1016/j.cageo.2021.104899

    [20]

    ALSABHAN A H,SINGH K,SHARMA A,et al. Landslide susceptibility assessment in the Himalayan range based along Kasauli - Parwanoo Road corridor using weight of evidence,information value,and frequency ratio[J]. Journal of King Saud University - Science,2022,34(2):101759. DOI: 10.1016/j.jksus.2021.101759

    [21]

    SAHA A,SAHA S. Comparing the efficiency of weight of evidence,support vector machine and their ensemble approaches in landslide susceptibility modelling:a study on Kurseong region of Darjeeling Himalaya,India[J]. Remote Sensing Applications:Society and Environment,2020,19:100323. DOI: 10.1016/j.rsase.2020.100323

    [22] 黄发明,石雨,欧阳慰平,等. 基于证据权和卡方自动交互检测决策树的滑坡易发性预测[J]. 土木与环境工程学报(中英文),2022,44(5):1 − 15. [HUANG Faming,SHI Yu,OUYANG Weiping,et al. Landslide susceptibility prediction modeling based on weight of evidence and Chi-square automatic interactive detection[J]. Journal of Civil and Environmental Engineering,2022,44(5):1 − 15. (in Chinese with English abstract)
    [23] 杨华阳,许向宁,杨鸿发. 基于证据权法的九寨沟地震滑坡危险性评价[J]. 中国地质灾害与防治学报,2020,31(3):20 − 29. [YANG Huayang,XU Xiangning,YANG Hongfa. The Jiuzhaigou co-seismic landslide hazard assessment based on weight of evidence method[J]. The Chinese Journal of Geological Hazard and Control,2020,31(3):20 − 29. (in Chinese with English abstract)
    [24] 云南省地质局第二区测队. 昆明幅G-48-25 1/20万地质调查报告[R]. 昆明: 云南省地质局, 1971

    The Second Regional Survey Bureau. Kunming G-48-25 1/200000 Geological survey report[R]. Kunming: Yunnan Geological Bureau, 1971. (in Chinese with English abstract)

    [25] 云南省地质局第二区测大队. 武定幅G-48-19 1/20万地质图, 矿产图及其说明书[R]. 昆明: 云南省地质局, 1969

    The Second Regional Survey Bureau. Wuding G-48-19 1/200000 geological map, mineral map and description[R]. Kunming: Yunnan Geological Bureau, 1969. (in Chinese)

    [26]

    BONHAM-CARTER G F. Geographic information systems for geoscientists: Modelling with GIS[M]. Canada: Pergamon, 1994.

    [27]

    CARTER GF B,AGTERBERG F P,WRIGHT D F. Integration of geological datasets for gold exploration in Nova Scotia[J]. photogrammetric Engineering & Remote Sensing,1990,54(11):1585 − 1592.

    [28]

    AGTERBERG F P, BONHAM-CARTER G F, WRIGHT D F. Statistical pattern integration for mineral exploration[M].Computer Applications in Resource Estimation Amsterdam: Elsevier, 1990: 1 − 21.

    [29]

    HOYER A,KUSS O. Meta-analysis of full ROC curves with flexible parametric distributions of diagnostic test values[J]. Research Synthesis Methods,2020,11(2):301 − 313. DOI: 10.1002/jrsm.1395

    [30]

    WALKER S P. The ROC curve redefined - optimizing sensitivity (and specificity) to the lived reality of cancer[J]. The New England Journal of Medicine,2019,380(17):1594 − 1595. DOI: 10.1056/NEJMp1814951

    [31]

    OMAR L,IVRISSIMTZIS I. Using theoretical ROC curves for analysing machine learning binary classifiers[J]. Pattern Recognition Letters,2019,128:447 − 451. DOI: 10.1016/j.patrec.2019.10.004

    [32] 王高峰, 郭宁, 邓兵, 等. 不同组合模型区域滑坡易发性及精度分析[J]. 西北地质,2021,54(2):259 − 272. [WANG Gaofeng, GUO Ning, DENG Bing, et al. Analysis of landslide susceptibility and accuracy in different combination models[J]. Northwestern Geology,2021,54(2):259 − 272. (in Chinese with English abstract)
  • 期刊类型引用(1)

    1. 管少杰,吕进国,王康,张砚力. 露天矿下伏采空区距坡脚水平距离对边坡稳定性的影响. 工矿自动化. 2025(02): 113-120 . 百度学术

    其他类型引用(0)

图(7)  /  表(3)
计量
  • 文章访问数:  443
  • HTML全文浏览量:  217
  • PDF下载量:  186
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-03-23
  • 修回日期:  2022-05-11
  • 录用日期:  2022-05-12
  • 网络出版日期:  2022-08-24
  • 刊出日期:  2022-10-19

目录

/

返回文章
返回