ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

不同倾角软−硬组合岩体破裂演化过程分析

赵娜, 孟利新, 缪海宾, 张怡斌, 王来贵

赵娜,孟利新,缪海宾,等. 不同倾角软−硬组合岩体破裂演化过程分析[J]. 中国地质灾害与防治学报,2023,34(4): 58-67. DOI: 10.16031/j.cnki.issn.1003-8035.202203036
引用本文: 赵娜,孟利新,缪海宾,等. 不同倾角软−硬组合岩体破裂演化过程分析[J]. 中国地质灾害与防治学报,2023,34(4): 58-67. DOI: 10.16031/j.cnki.issn.1003-8035.202203036
ZHAO Na,MENG Lixin,MIAO Haibin,et al. Experimental analysis of failure process in soft-hard combined rock masses at different inclination angles[J]. The Chinese Journal of Geological Hazard and Control,2023,34(4): 58-67. DOI: 10.16031/j.cnki.issn.1003-8035.202203036
Citation: ZHAO Na,MENG Lixin,MIAO Haibin,et al. Experimental analysis of failure process in soft-hard combined rock masses at different inclination angles[J]. The Chinese Journal of Geological Hazard and Control,2023,34(4): 58-67. DOI: 10.16031/j.cnki.issn.1003-8035.202203036

不同倾角软−硬组合岩体破裂演化过程分析

基金项目: 国家重点研发计划项目(2017YFC1503101);辽宁省重点科技创新基地联合开放基金项目(2020-KF-13-06);辽宁省教育厅资助项目(LJ2020JCL013)
详细信息
    作者简介:

    赵 娜(1979-),女,河北衡水人,博士,副教授,主要从事岩体力学及岩层控制方面研究。E-mail:zhaona24@163.com

  • 中图分类号: TU45

Experimental analysis of failure process in soft-hard combined rock masses at different inclination angles

  • 摘要: 为探究软岩倾角对组合岩体破裂演化过程的影响,论文通过对不同软岩倾角组合岩体进行单轴压缩试验,采用数字散斑和声发射方法作为观测手段,探究含不同软岩倾角组合岩体的破裂演化过程,分析组合岩体力学性能随角度的变化规律,得出含不同倾角软硬组合岩体的破裂模式。结果表明:(1)软硬组合岩体破坏是岩体内部发生损伤,在软岩周围开始出现裂纹,并沿着软岩层及周围扩展、贯通破裂的动态演化过程。(2)组合岩体的变形破坏过程仍表现为原始裂隙压密、弹性变形、塑性变形及破坏四个阶段。(3)随着软岩倾角的增大,岩体的压密阶段逐渐增大,弹性模量逐渐减小,抗压强度越来越小;当软岩倾角θ=0°、15°时,岩体破裂表现为软硬组合岩体组合破裂;当软岩倾角θ=30°、45°时,岩体破裂主要发生在软岩区域,岩体的破坏形式由贯穿软岩层剪切破坏转变为沿软岩层滑移剪切破坏。可见软岩层倾角越大,岩体越容易发生失稳破坏。论文可为含软硬组合岩体工程的长期稳定性分析及复杂层状组合岩体的力学行为研究提供参考。
    Abstract: In order to investigate the influence of the inclination angle of soft rocks on the evolution process of composite rock mass rupture, this paper conducted uniaxial compression experiments on composite rock masses with different inclination angles of soft rock. Digital speckle and acoustic emission methods were used as observation tools to explore the combined effects of different soft rock dip angles. The fracture evolution process of the rock mass was analyzed, and the change in mechanical properties of the composite rock mass with angle was studied. The fracture mode of the soft and hard composite rock mass with different inclination angles was obtained. The results show that the deformation and failure of the composite rock mass is a dynamic evolution process in which damage occurs inside the rock mass, with cracks appearing around the soft rock, and extend along and around the soft rock layer, eventually penetrating through the fracture. The deformation and failure process of the combined rock mass is manifested in four stages: original fissure compaction, elastic deformation, plastic deformation and failure. With an increase of the inclination angle of soft rocks, the compaction stage of the rock mass gradually increased, and the elastic modulus gradually decreased. When the inclination angle of soft rock is θ=0° or 15°, the rock mass rupture appears as a combination of soft and hard rock mass failure. When the inclination angle of soft rock is θ=30° or 45°, the rock mass failure mainly occurs in the soft rock area, and the form of rock mass changes from shear failure penetrating the soft rock layer to sliding shear failure along the soft rock layer. The greater the inclination angle of the soft rock layer, the more likely the rock mass is to undergo unstable failure. This study provides a reference for the long-term stability analysis of rock mass engineering containing soft and hard composites and the mechanical behavior of complex layered composite rock mass.
  • 地震震动会导致地表裂缝、土壤疏松,在降水、人类活动等因素影响下,震后极易发生滑坡。通常情况下,震后滑坡数量显著增多的现象要延续相当长的一段时间,直到随着地震灾区生态和地质环境的逐渐恢复,才会显著降低并恢复到震前水平[12]。因此,对地震后滑坡的长时序时空分异特征进行分析,对于震后长期恢复、土地规划以及地震灾害防治可以起到一定的指示作用。

    众多学者对地震触发的同震滑坡进行了研究,如汶川地震[3]、鲁甸地震[46]、2015年尼泊尔地震[7]、九寨沟地震[89]、泸定地震[1012]等,研究多关注同震滑坡数据清单建立、同震滑坡空间分布、易发性预测、影响因子敏感性研究等。虽然同震滑坡相关研究取得了一定的进展,但不能全方位地描述震后滑坡的整体变化情况。受地震触发的滑坡会表现出不同的特征[13],如滑坡数量、强度、分布特征变化等,地震引起的岩体松动、地表破裂、植被破坏等都影响着滑坡的时空分布规律[14],因此,在关注同震滑坡灾害的同时更应该关注地震后滑坡的长期分异规律[15]。目前,震后滑坡的时空分异规律相关研究还不丰富,仍处于案例累计阶段且主要以强震滑坡案例为主,如1999年台湾集集地震[16],2005年克什米尔地震[17],2008年汶川地震[18]等。同时,由于历史强震典型案例的局限性以及滑坡数据清单的缺乏,导致地震后滑坡的长时序时空分异规律研究还未形成完整体系,因此,为了更深入地了解地震后滑坡随时间、空间的长期分异规律,探究地震及震后滑坡的时空分异特征,还需要积累更多的地震案例和研究经验。综上所述,加强震后滑坡的时空分异特征研究对进一步了解震后滑坡活动效应和稳定性具有重要意义。

    2014年8月3日,中国云南省鲁甸县发生Ms6.5级地震,地震以27.1°N,103.3°E为震源中心,造成617人死亡,112人失踪,3143人受伤,22.97万人紧急转移安置,同时,地震至少触发了1024处面积大于100 m2的滑坡。震级虽为6.5级,但其触发的大量滑坡造成的损伤甚至超过了很多大于7.0级的地震[19]。基于此,本文以鲁甸Ms6.5级地震为研究对象,以多时相高分遥感影像为数据源,首先构建长时序列的震后滑坡数据清单,在此基础上,从滑坡数量及规模对滑坡时空分布特征角度进行探索;再以2014年8月3日鲁甸Ms6.5级地震触发的同震滑坡为比较基线,以扩大滑坡、新增滑坡和恢复区域为研究指标进行震后滑坡时空面积变化的分析;最后,对震后8 a时间内震后滑坡的活动演化进行分析[2021]

    2014年8月3日的鲁甸Ms6.5级地震是近年来云南省危害较高的一次地震,不仅造成极大的人员伤亡,而且触发了大量的滑坡。鲁甸地震发生于包谷垴—小河断裂带(BXF)以及西鱼河—昭通断裂带(XZF),地震灾区最高烈度为Ⅸ度,涉及Ⅸ级、Ⅷ级、Ⅶ级、Ⅵ级共4个等级,等震线长轴总体呈北北西走向。根据地震烈度及以往研究成果,以鲁甸地震后长时序列滑坡为研究对象,选取共314 km2作为本次研究区范围(图1)。研究区涉及鲁甸县及巧家县的部分区域,包括玄武岩、白云岩、石灰岩等不同类型的岩石类型,海拔范围852~2812 m,震中位置海拔为2087 m,同时内有牛栏江、龙泉河、沙坝河3条河流,河谷地形突出,沿河流区域海拔较低。

    图  1  研究区示意图
    Figure  1.  Diagram of study area

    研究数据主要包括遥感影像数据、滑坡数据以及降水数据3类。

    (1)遥感影像数据:震前1期和震后14期的遥感影像如表1所示。影像均通过正射校正、图像配准、图像融合、地理配准等数据处理,将所有影像统一重采样为2 m。

    表  1  影像数据信息
    Table  1.  Image data information
    日期 2014年
    4月13日
    2014年
    10月26日
    2015年
    10月29日
    2016年
    7月11日
    2017年
    5月13日
    2018年
    8月24日
    2019年
    8月18日
    2020年
    8月27日
    2021年
    8月2日
    2022年
    7月16日
    数据
    来源
    资源3号
    (ZY3)
    高分1号
    (GF1)
    高分1号
    (GF1)
    高分2号
    (GF2)
    资源3号
    (ZY3)
    高分1号
    (GF1)
    高分2号
    (GF2)
    高分1号
    (GF1)
    高分2号
    (GF2)
    高分1号B卫星
    (GF1B)
    数量/景 1 1 1 2 1 1 1 1 4 2
    分辨率/m 2.1 2 2 0.8 2.1 2 0.8 2 0.8 2
    下载: 导出CSV 
    | 显示表格

    (2)震前滑坡清单。由于2014年8月3日鲁甸Ms6.5级地震震前影像缺乏,选择较为接近的2014年4月13日ZY3影像进行震前滑坡清单的建立。此时植被稀少,地物相似度极高,滑坡数量较少并且震前滑坡与裸地等较为相似,为有效排除震前滑坡,进行人工解译得到震前滑坡清单。

    (3)同震滑坡清单。文章使用许冲团队建立的滑坡清单,下载于USGS官网(https://www.sciencebase.gov/catalog/item/594428d4e4b062508e32319f),选择的研究区边界范围内,鲁甸Ms6.5级地震共造成1014个滑坡,面积达5.16 km2

    为探究鲁甸Ms6.5级地震震后滑坡的时空分异特征,首先基于ENVI深度学习模块构建多时期震后滑坡数据清单,在此基础上从地震后滑坡数量规模、同震滑坡面积变化类型、不同阶段滑坡活动期3个方面对震后滑坡时空分布特征、时空面积变化、活动期演化进行分析,具体技术路线如图2所示。

    图  2  技术路线图
    Figure  2.  Technology roadmap

    对不同时期高分辨率遥感影像进行滑坡识别,构建鲁甸Ms6.5级地震震后多时期滑坡数据清单。如图3所示,构建过程分为5个部分。(1)滑坡样本构建。选择GF1、ZY3、GF2影像中2014年10月26日、2017年5月13日、2019年8月18日3景影像共绘制了586个滑坡样本进行训练和验证。(2)震后滑坡粗提取。基于ENVI深度学习模块,以“模型训练-执行分类-分类后处理”为流程,进行震后滑坡粗提取。(3)滑坡精识别。利用地形坡度特征排除少部分低坡度区域的影响;基于几何特征中的长宽比和密度,排除道路、河流等长条形地物对滑坡识别结果的干扰;通过纹理对比度,排除建筑及人工地物对滑坡解译结果的影响;最后对精识别结果与震前滑坡进行差值得到最终的震后滑坡。(4)精度验证。对震后滑坡进行识别并进行精度验证与评估。(5)多时期震后滑坡数据清单。将整个滑坡识别流程应用于整个长时间序列,构建多时期震后滑坡数据清单。

    图  3  构建震后滑坡数据清单
    Figure  3.  Build post-earthquake landslide database

    为了分析鲁甸Ms6.5级地震触发滑坡后续的变化情况,以2014年8月3日地震触发的同震滑坡为基线,与后续年份做比较,根据滑坡的变化情况分为同震滑坡、扩大滑坡 、新增滑坡和恢复区4种不同类型。同震滑坡为2014年8月地震触发的滑坡;扩大滑坡是指原本存在同震滑坡且在现有同震滑坡面积基础上继续增大的区域;新增滑坡是指本来某区域内没有滑坡但后来出现了滑坡;恢复区即原来存在的同震滑坡区域表现为已恢复状态。为了对震后滑坡面积变化程度进行量化,理清同震滑坡后续时间的持续变化情况,将2014年8月的滑坡活动率设定为100%,作为研究滑坡活动变化的基线,通过滑坡活动率进行更有力的定量评价,计算方式如式(1)所示。

    $$ P = \frac{{S _{\mathrm{a}}}}{{S _{\text{c}}}} \times 100\% $$ (1)

    式中:P——活动滑坡活动率/%,表示同震滑坡的活动强 度,将扩大滑坡和新增滑坡定义为活动滑坡;

    Sa——滑坡活动面积/km2

    Sc——同震滑坡面积/km2

    地震后较长时间内,滑坡存在不同程度的复发新增阶段,有着较长时间的活动期,而地震后滑坡活动程度对评估震后滑坡时空演化评估至关重要。为了定量分析地震震后滑坡的活动过程,以地震触发滑坡变化类型即扩大滑坡、新增滑坡以及滑坡活动率为活动期的分类标准,若起始年份满足表2所示滑坡活动期分类标准中的规则,则以起始年份为分割节点,将包含起始年份及其范围内的所有年份归为3个活动期中的一个,将震后滑坡的整个活动过程分为3个时期,以此对滑坡活动过程进行分析。具体的分类标准如表2所示。

    表  2  滑坡活动期分类标准
    Table  2.  Classification standard of landslide activity period
    滑坡活动期 滑坡活动率/% 扩大滑坡面积/km2 新增滑坡面积/km2
    震后滑坡强活动期 P>50 >1.5 >1
    震后滑坡中等活动期 10<P≤50 >0.2且≤1.5 >0.2且≤1
    震后滑坡弱活动期 P≤10 ≤0.2 ≤0.2
    下载: 导出CSV 
    | 显示表格

    完成模型训练及试验后,对滑坡识别结果进行精度评估。考虑到研究区域滑坡数量和分布,选择地物相对复杂的4个子区域(区域1—4)对滑坡识别结果进行精度验证(图4)。精确率、召回率、F1、错分率(commission error,CE)、漏分率(omission error,OE)是滑坡提取中常用的精确度量标准,由于研究中的滑坡提取是一个二值分类问题,即对于每个像素,只有2种情况:滑坡或背景,因此,如图4(a)(b),验证基于4种提取结果,即TP(真阳性,表示被正确识别的滑坡,即预测为滑坡且识别为滑坡)、FP(假阳性,表示预测滑坡但实际为背景)、TN(真阴性,即预测为背景且识别为背景)和FN(假阴性,即预测为背景但识别为滑坡)进行5个指标计算完成精度验证,具体计算方程式如式(2)—(6)。

    图  4  精度验证
    Figure  4.  Accuracy verification

    精确率(Precision)评估的是作为滑坡被提取的区域有多少是真正的滑坡:

    $$Precision=\frac{TP}{TP+FP} $$ (2)

    式中:TP——真阳性滑坡面积/km2

    FP——假阳性滑坡面积/km2

    召回率(Recall)用于计算正确提取了多少滑坡:

    $$Recall=\frac{TP}{TP+FN}$$ (3)

    式中:FN——假阴性滑坡面积/km2

    F1则以更平衡的方式评估模型分类精度,其范围为[0, 1],越接近1,则代表效果越好:

    $$F1=2\times \frac{Precision \times Recall}{Precision+Recall}$$ (4)

    式中:Precision——精确率,评估的是作为滑坡被提取 的区域有多少是真正的滑坡;

    Recall——召回率,用于计算正确提取了多少滑坡。

    错分率(CE)是指实际为背景,但被分为了滑坡:

    $$CE=\frac{FP}{TP+FP}$$ (5)

    漏分率(OE)则是指实际为滑坡,但被分为背景的区域:

    $$OE=\frac{FN}{TP+FN}$$ (6)

    表3为子区域精度验证结果,滑坡识别精确率为85%以上,召回率74%以上, F1在80%以上,错分率(CE)在15%以下,而漏分率(OE)在25%以下,漏分现象主要发生于边界处,即有部分滑坡边界被分为了背景,但总体而言,滑坡识别流程可以识别出滑坡的主体和主要区域,具有较高的可靠性,可以应用于研究区域和整个研究时期(2014年10月—2022年7月)。

    表  3  精度验证结果
    Table  3.  Accuracy verification results
    区域影像类型PrecisionRecallCEOEF1
    验证区域1GF20.86140.82810.13860.17190.8444
    验证区域2ZY30.85730.84390.14270.15610.8506
    验证区域3ZY30.86500.74990.13500.24900.8034
    验证区域4GF20.86340.75610.13660.24390.8062
    下载: 导出CSV 
    | 显示表格

    根据2.1节滑坡识别流程得到震后多时期滑坡清单,将其进行可视化得到如图5(a)—(k)所示的分布图。总体上,2014年8月至2022年7月期间,地震后触发滑坡主要沿牛栏江、沙坝河以及龙泉河河谷两侧分布。距震中距离越近,越易触发滑坡,然而,此次距震中距离2000 m的范围内,滑坡分布较少,主要分布在大于2000 m范围的区域内,原因是此次震中区域在龙头山一个平坦的盆地。同震及震后滑坡主要分布于地震烈度为Ⅸ级的区域内,地震烈度Ⅷ级范围同样分布着一个滑坡严重区域,位于震源中心西侧。

    图  5  多时期震后滑坡数据清单
    Figure  5.  Multi-period post-earthquake landslide database

    图5表4,根据滑坡面积大小,以0.01 km2、0.02 km2为分隔点,将滑坡分为小、中、大滑坡3种规模。震后主要以面积小于0.01 km2的小型滑坡为主,其次为面积介于0.01 km2和0.02 km2的中型滑坡,数量相对较少的为大于0.02 km2的大型滑坡。2014年4月,地震前,小型滑坡和中型滑坡数量为36个和25个,无大型滑坡,小中型滑坡主要沿牛栏江分布,见图5(a);2014年8月地震初发后,小中大型滑坡数量骤增,大型滑坡数量达42个,主要沿沙坝河和牛栏江分布,见图5(b);2014年10月,震后2个月时间后,小型滑坡数量减少明显,中型滑坡数量变化较小,大型滑坡数量增多,见图5(c);震后8a时间,小中大型滑坡总体呈现逐期减少的趋势,截至2022年7月,小中大型滑坡数量为42,8,9,与震前相比,中型滑坡减少明显,而大型滑坡由0变为9,位于Ⅸ级地震烈度范围内,主要位于沿沙坝河分布的光明村滑坡群和沿牛栏江分布的红石岩滑坡,见图5(d)—(k)。

    表  4  地震震后滑坡规模分布情况统计
    Table  4.  Statistical distribution of landslide scale after earthquake
    2014年4月 2014年8月 2014年10月 2015年10月 2016年7月 2017年5月 2018年8月 2019年8月 2020年8月 2021年8月 2022年7月
    小型滑坡/个 36 908 408 300 367 307 179 107 153 85 42
    中型滑坡/个 25 64 56 37 54 37 27 25 24 9 8
    大型滑坡/个 0 42 49 37 45 42 16 15 11 13 9
    下载: 导出CSV 
    | 显示表格

    根据多时期震后滑坡数据清单得到的数量和面积,绘制如图6所示的分布情况统计图。鲁甸Ms6.5级地震震前滑坡数量较少,面积小于1 km2;2014年8月地震发生后,触发滑坡1014个,总面积5.16 km2,滑坡数量和面积急剧增加;震后2个多月时间内,滑坡数量急剧减少,但面积呈现略微增加趋势;震后8 a时间内,滑坡数量及面积总体呈下降趋势,但年份间存在波动,2016年7月、2020年8月较上一时期而言滑坡数量和面积略微上升。

    图  6  滑坡数量面积统计
    Figure  6.  Landslide number area statistics

    在地震后的2个月时间内,滑坡数量急剧减少,而滑坡总面积呈现略微增加趋势。原因是地震初期同震滑坡面积破碎,而在2个多月之后,由于人类紧急救援、降水等原因[22],破碎的小滑坡合并为成片的大面积滑坡,滑坡数量减少,面积则增加。在震后8a时间,滑坡数量和面积整体呈下降趋势。但2016年7月较2015年10月滑坡数量和面积均略微上升。根据鲁甸气象站降水数据可知(表5),2016年年降水总量超过1100 mm,远超过其他年份降水总量,而地震后较长一段时间内,土壤等受到长期影响,降水极有可能引发更多的滑坡。文中所使用影像由2016年7月11日和7月25日构成,统计2016年7月25日前日降水数据,发现日降水大于25 mm超过9次,而根据降水分级显示,日降水总量大于25 mm则为大雨,由此可见,大雨事件可能导致了滑坡的扩大和发生[23]。2020年8月滑坡数量和面积较2019年8月有所上升,这与2020年5月18日21时47分,在云南省昭通市巧家县发生5.0级地震具有一定相关性,此次地震震源深度8 km,可能引发周边区域发生滑坡[24]

    表  5  2014—2022年鲁甸地区降水统计
    Table  5.  Statistics of precipitation in Ludian area from 2014 to 2022
    年份 2014 2015 2016 2017 2018 2019 2020 2021 2022
    年降水量/mm 941.0 976.4 1107.1 955.4 879.7 721.9 794.5 742.2 861.4
    下载: 导出CSV 
    | 显示表格

    2014年8月,研究区内鲁甸Ms6.5级地震共触发同震滑坡1014个,总面积5.1577 km2。以2014年8月3日鲁甸Ms6.5级地震触发的同震滑坡为比较基线,与2014年10月滑坡进行相交擦除等操作,得到如图7所示的滑坡时空面积变化分析图。2014年10月,滑坡集中在J1—J3区域,在原有的同震滑坡基础上进一步恢复的同时出现扩张滑坡,同时区域内也出现新增的滑坡。表6总结了地震后不同时期同震滑坡恢复、扩张和新增的滑坡面积以及活动率。

    图  7  时空面积变化分析
    Figure  7.  Analysis of spatio-temporal area change
    表  6  滑坡活动面积变化及活动率统计
    Table  6.  Landslide activity area change and activity rate statistics
    年月 恢复区域
    /km2
    扩大面积
    /km2
    新增面积
    /km2
    活动面积
    /km2
    活动率
    /%
    2014年10月 2.81 2.08 0.80 2.88 55.78
    2015年10月 3.23 1.27 0.77 2.03 39.44
    2016年7月 3.41 1.52 1.10 2.63 50.98
    2017年5月 3.21 1.07 0.90 1.97 38.28
    2018年8月 4.20 0.73 0.50 1.23 23.79
    2019年8月 4.39 0.48 0.44 0.91 17.70
    2020年8月 4.27 0.36 0.44 0.80 15.48
    2021年8月 4.55 0.33 0.22 0.55 10.67
    2022年7月 4.50 0.20 0.11 0.31 6.08
    下载: 导出CSV 
    | 显示表格

    表6中可以看出,2014年10月、2015年10月、2016年7月、2017年5月、2018年8月、2019年8月、2020年8月、2021年8月、2022年7月,滑坡活动面积分别是2.88,2.03,2.63,1.97,1.23,0.91,0.80,0.55,0.31 km2,滑坡活动面积呈先减少后增加再持续减少的趋势。以2014年8月的同震滑坡活动率(P)为基线,滑坡活动性年衰减率分别为55.78%、39.44%、50.98%、38.28%、23.70%、17.70%、15.48%、10.67%、6.08%,年衰减率呈现与活动面积同样的规律。根据滑坡类型及活动率,发现2016年7月的滑坡扩大和新增面积较上一年有所增加,同时恢复区域较上一年也呈现增加的现象,表明此时期范围内活动性滑坡较多,扩大和新增滑坡明显。总体而言,随时间推移,同震滑坡逐渐恢复,扩大滑坡和新增滑坡面积总体呈现减少趋势,虽然仍有同震滑坡存在,但2022年只有6.08%的滑坡仍处于活动状态,这表明地震对滑坡的影响已经逐渐减弱。

    根据表6所示滑坡活动面积变化及活动率和2.3节滑坡活动期分类标准,对鲁甸Ms6.5级地震震后滑坡进行活动期分析。2016年7月的滑坡活动率大于50%,扩大面积大于1.5 km2且新增滑坡面积大于1 km2,则将2016年7月以前称为强活动期;而2021年8月的滑坡活动率10%~50%、扩大滑坡面积0.2~1.5 km2、新增滑坡面积为0.2~1 km2,则2016年7月—2021年8月之间的时期为中等活动期;2021年8月以后的时间活动率小于10%、扩大和新增滑坡面积少于0.2 km2则为滑坡低活动期。

    根据以上规则得出如图8所示的变化图。通过2014年8月―2022年7月不同阶段滑坡面积变化和活动率的定量分析,将鲁甸地震震后滑坡活动状态分为了强活动期、中等活动期和弱活动期。可见,随时间推移,同震滑坡面积逐渐减少,地震触发滑坡呈现逐渐恢复的趋势,扩滑坡表现出较为明显的扩张趋势,而滑坡新增面积相对较少。

    图  8  2014—2022年地震后滑坡面积及活动期变化图
    Figure  8.  The change map of landslide area and activity period after the 2014—2022 earthquake

    图8所示,2016年7月以前为滑坡强活动期,滑坡活动率先下降而后出现增长,滑坡扩张和新增趋势也较为明显,扩张明显的为震后两个月时间内,而新增明显的为2015年10月—2016年7月,主要原因是震后救灾致使滑坡扩张以及大量降雨导致了降雨型新滑坡的产生。

    2016年7月—2021年8月期间为滑坡中等活动期,随时间推移,滑坡扩张和新增程度逐渐下降,滑坡活动率也呈现持续下降趋势,由2016年7月的50.98%下降为2021年的10.67%。2016年8月—2017年5月期间,较上一期滑坡数据清单而言,同震滑坡面积增多,恢复区域减少,说明已经恢复的同震滑坡区域再次变为滑坡,这与2017年2月9日发生在鲁甸县的Ms4.9级地震以及2020年5月18日发生在巧家的Ms5.0级地震可能具有相关性[2425],2017年2月9日鲁甸Ms4.9级地震震中(27.07°N),位于2014年8月鲁甸地震震中的南东方向,二者相距约4 km。2019年9月至2020年8月期间,相较于上一期滑坡,已经恢复的同震滑坡再次变为滑坡,这与2020年5月18日巧家Ms5.0级地震具有相关性,此次地震震中为(27.18N,103.16E),震源深度8 km。这两次地震为2014年8月后鲁甸地震周边区域的二次冲击,会使已经恢复的同震滑坡区域再次被激活。

    2021年9月之后为滑坡弱活动期,此时大部分小型滑坡均已恢复,依然存在的同震滑坡主要为红石岩滑坡、光明村等大型滑坡残留的滑坡臂以及靠近道路河流的部分滑坡,如图9所示,存留的大型滑坡内部植被还未明显恢复。

    图  9  2022年现存滑坡
    注:a为红石岩滑坡;b为光明村滑坡群;c为靠近道路和河流的残留滑坡。
    Figure  9.  Existing landslides in 2022

    (1)建立了鲁甸地区多时期震后滑坡数据清单。历年来,震后滑坡数量面积呈现逐年下降趋势,2014年8月,研究区内滑坡数量1014个,面积为5.16 km2,截至2022年7月,滑坡数量为59个,面积不到1 km2,震后8a时间内,滑坡数量和面积呈现总体下降趋势。

    (2)震后滑坡主要分布于距断层距离2000 m以上范围,并且主要集中于河谷两侧,此外,地震触发滑坡以小型滑坡为主,中等型滑坡数量相对较少,而大型滑坡数量少,但面积多。

    (3)2014年8月3日鲁甸Ms6.5级地震触发的同震滑坡活动率为100%,以此为比较基线,2014年10月、2015年10月、2016年7月、2017年5月、2018年8月、2019年8月、2020年8月、2021年8月、2022年7月的滑坡活动性年衰减率分别为55.78%、39.44%、50.98%、38.28%、23.70%、17.70%、15.48%、10.67%、6.08%,总体呈现逐渐下降趋势。截至2022年7月,只有6.08%的滑坡仍处于活动状态,表明地震对滑坡的影响已经逐渐减弱。

    (4)震后滑坡存在强活动期(2014年8月—2016年7月)、中等活动期(2016年8月—2021年8月)、弱活动期(2021年9月—2022年7月),总体而言,截至2022年7月,地震造成的滑坡以及影响还未完全恢复。

  • 图  1   矿山边坡软硬层状岩体

    Figure  1.   Soft-hard layered combined rock mass at the mining slope

    图  2   不同倾角软硬组合岩体模型图

    Figure  2.   Model diagram of soft and hard combined rock masses with different inclination angles

    图  3   软硬组合岩体试件

    Figure  3.   Soft-hard combined rock mass specimen

    图  4   试验系统示意图

    Figure  4.   Schematic diagram of the experimental system

    图  5   电荷传感器分布图

    Figure  5.   Distribution of charge sensors along specimen surface

    图  6   喷漆后的试样散斑场(θ=30°,h=20 mm)

    Figure  6.   Speckle field of specimen after painting (θ=30°, h=20 mm)

    图  7   不同倾角组合岩体的应力-应变曲线

    Figure  7.   Stress-strain curves of combined rock masses with different inclination angles

    图  8   不同倾角组合岩体弹性模量、抗压强度变化曲线

    Figure  8.   Variation curves of elastic modulus and compressive strength of rock mass with different inclination angles

    图  9   应力-累计振铃计数-时间关系曲线

    Figure  9.   Stress-cumulative ringing count-time relationship curve

    图  10   岩体表面竖直方向应变演化云图

    Figure  10.   Cloud map of vertical strain evolution on rock mass surface

    图  11   岩体内部三维破裂点标识图

    Figure  11.   Three-dimensional distribution map of fracture points inside the rock mass

    图  12   不同倾角组合岩体应力-累计振铃计数-时间关系曲线

    Figure  12.   Stress-cumulative ringing count-time relationship curve with different inclination angles

    图  13   不同倾角组合岩体三维破裂点示意图

    Figure  13.   Three-dimensional distribution map of fracture points inside the rock mass with different inclination angles

    图  14   不同倾角组合岩体水平方向应变演化云图

    Figure  14.   Cloud map of horizontal strain evolution on rock mass surface with different inclination angles

    图  15   不同倾角组合岩体竖直方向应变演化云图

    Figure  15.   Cloud map of vertical strain evolution on rock mass surface with different inclination angles

    图  16   含不同倾角组合岩体单轴压缩破坏形态

    Figure  16.   Uniaxial compression failure mode of combined rock mass with different inclination angles

    表  1   试验方案

    Table  1   Summary of test plan

    组名软岩角度/(°)软岩厚度/mm数量
    Q00203
    Q1515203
    Q3030203
    Q4545203
    下载: 导出CSV

    表  2   不同倾角组合岩体单轴压缩试验结果

    Table  2   Experimental results of uniaxial compression of rock masses with different inclination angles of the weak layers

    标号密度/(g·cm−3弹性模量/GPa峰值应变/%抗压强度/MPa
    单个试样均值单个试样均值单个试样均值单个试样均值
    Q0-12.422.402.962.941.641.4629.5027.53
    Q0-22.412.991.5326.50
    Q0-32.362.861.2126.59
    Q15-12.382.382.862.801.541.5125.0725.62
    Q15-22.413.001.6926.95
    Q15-32.352.551.3024.83
    Q30-12.422.392.912.761.571.3218.7519.42
    Q30-22.382.841.2619.89
    Q30-32.372.541.1219.62
    Q45-12.282.282.402.390.971.0016.9916.75
    Q45-22.272.391.0516.07
    Q45-32.282.370.9917.02
    下载: 导出CSV
  • [1] 毛正君,毕银丽,李成,等. 渭北石灰岩露天采区高陡边坡破坏模式及形态优化研究[J]. 西北地质,2021,54(4):211 − 226. [MAO Zhengjun,BI Yinli,LI Cheng,et al. Study on failure mode and shape optimization of high and steep slope of open-pit limestone mining area in Weibei[J]. Northwestern Geology,2021,54(4):211 − 226. (in Chinese with English abstract)

    [MAO Zhengjun, BI Yinli, LI Cheng, et al. Study on failure mode and shape optimization of high and steep slope of open-pit limestone mining area in Weibei[J]. Northwestern Geology, 2021, 54(4)211-226(in Chinese with English abstract)

    [2] 姚闯闯,姚鑫,顾畛逵,等. 基于InSAR识别的黄土高原活动性地质灾害发育规律分析[J]. 地质力学学报,2022,28(2):257 − 267. [YAO Chuangchuang,YAO Xin,GU Zhenkui,et al. Analysis on the development law of active geological hazards in the Loess Plateau based on InSAR identification[J]. Journal of Geomechanics,2022,28(2):257 − 267. (in Chinese with English abstract)

    [YAO Chuangchuang, YAO Xin, GU Zhenkui, et al. Analysis on the development law of active geological hazards in the Loess Plateau based on InSAR identification[J]. Journal of Geomechanics, 2022, 28(2)257-267(in Chinese with English abstract)]

    [3] 李洪梁,高波,张佳佳,等. 内外动力地质作用耦合的崩塌形成机理研究—以藏东昌都地区上三叠统石灰石矿山采场崩塌为例[J]. 地质力学学报,2022,28(6):995 − 1011. [LI Hongliang,GAO Bo,ZHANG Jiajia,et al. Mechanism of rockfall coupled with endogenic and exogenic geological processes: A case study in the upper Triassic limestone mines in the Qamdo area, eastern Tibet[J]. Journal of Geomechanics,2022,28(6):995 − 1011. (in Chinese with English abstract)

    [LI Hongliang, GAO Bo, ZHANG Jiajia, et al. Mechanism of rockfall coupled with endogenic and exogenic geological processes: a case study in the upper Triassic limestone mines in the Qamdo area, eastern Tibet[J]. Journal of Geomechanics, 2022, 28(6): 995-1011.(in Chinese with English abstract)

    [4] 王小明,李勇,李刚. 中欧岩土工程勘察分级及岩土分类对比[J]. 长江科学院院报,2013,30(10):72 − 76. [WANG Xiaoming,LI Yong,LI Gang. Comparison of the grading of geotechnical investigation and the classification of rock and soil between Europe and China[J]. Journal of Yangtze River Scientific Research Institute,2013,30(10):72 − 76. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-5485.2013.10.015

    WANG Xiaoming, LI Yong, LI Gang. Comparison of the grading of geotechnical investigation and the classification of rock and soil between Europe and China[J]. Journal of Yangtze River Scientific Research Institute, 2013, 30(10): 72-76. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-5485.2013.10.015

    [5] 徐伟,冉涛,田凯. 西南红层地区地质灾害发育规律与成灾模式—以云南彝良县为例[J]. 中国地质灾害与防治学报,2021,32(6):127 − 133. [XU Wei,RAN Tao,TIAN Kai. Developing law and disaster modes of geohazards in red bed region of southwestern China:A case study of Yiliang County of Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):127 − 133. (in Chinese with English abstract)

    XU Wei, RAN Tao, TIAN Kai. Developing law and disaster modes of geohazards in red bed region of southwestern China: a case study of Yiliang County of Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 127-133. (in Chinese with English abstract)

    [6]

    JAEGER J C. Friction of rocks and stability of rock slopes[J]. Géotechnique,1971,21(2):97 − 134.

    [7] 李剑光,王永岩. 含水平弱夹层岩体界面应力及破坏形式[J]. 辽宁工程技术大学学报(自然科学版),2015,34(6):710 − 715. [LI Jianguang,WANG Yongyan. Analysis for failure modes and interfacial stress of rock mass with horizontal weak interlayer[J]. Journal of Liaoning Technical University (Natural Science),2015,34(6):710 − 715. (in Chinese with English abstract)

    LI Jianguang, WANG Yongyan. Analysis for failure modes and interfacial stress of rock mass with horizontal weak interlayer[J]. Journal of Liaoning Technical University (Natural Science), 2015, 34(6): 710-715. (in Chinese with English abstract)

    [8] 李剑光. 含倾斜软弱夹层复合岩体强度及蠕变特性研究[D]. 青岛: 青岛科技大学, 2015

    LI Jianguang. Study on strength and creep characteristics of composite rock mass with inclined weak interlayer[D]. Qingdao: Qingdao University of Science & Technology, 2015. (in Chinese with English abstract)

    [9]

    SAROGLOU H, TSIAMBAOS G. 2008. A modified Hoek-Brown failure criterionfor anisotropic intact rock[J]. International Journal of Rock Mechanics & Mining Sciences, 45(2) : 223 − 234.

    [10]

    SINGH M,SINGH B. Modified Mohr-Coulomb criterion for non-linear triaxial and polyaxial strength of jointed rocks[J]. International Journal of Rock Mechanics and Mining Sciences,2012,51:43 − 52. DOI: 10.1016/j.ijrmms.2011.12.007

    [11] 康钦容,张卫中,张电吉. 层状岩体破坏性质试验研究[J]. 科学技术与工程,2017,17(14):273 − 276. [KANG Qinrong,ZHANG Weizhong,ZHANG Dianji. Experimental study on failure property of layered rock mass[J]. Science Technology and Engineering,2017,17(14):273 − 276. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2017.14.043

    KANG Qinrong, ZHANG Weizhong, ZHANG Dianji. Experimental study on failure property of layered rock mass[J]. Science Technology and Engineering, 2017, 17(14): 273-276. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2017.14.043

    [12] 张顶立,王悦汉,曲天智. 夹层对层状岩体稳定性的影响分析[J]. 岩石力学与工程学报,2000,19(2):140 − 144. [ZHANG Dingli,WANG Yuehan,QU Tianzhi. Influence analysis of interband on stability of stratified rockmass[J]. Chinese Journal of Rock Mechanics and Engineering,2000,19(2):140 − 144. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2000.02.003

    ZHANG Dingli, WANG Yuehan, QU Tianzhi. Northern Jiaotong University, Beijing China China University of Mining & Technology Xuzhou China Yanzhou Mining group Go. Ltd. , Zoucheng China], WANG Yuehan, QU Tianzhi. Influence analysis of interband on stability of stratified rockmass[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(2): 140-144. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2000.02.003

    [13] 鲜学福, 谭学术. 层状岩体破坏机理[M]. 重庆: 重庆大学出版社, 1989

    XIAN Xuefu, TAN Xueshu. [M]. Chongqing: Chongqing University Press, 1989. (in Chinese)

    [14] 张永泽,刘俊新,冒海军,等. 单轴压缩下页岩力学特性的各向异性试验研究[J]. 金属矿山,2015(12):33 − 37. [ZHANG Yongze,LIU Junxin,MAO Haijun,et al. Anisotropic experimental study on mechanical properties of shale under uniaxial compression[J]. Metal Mine,2015(12):33 − 37. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-1250.2015.12.008

    ZHANG Yongze, LIU Junxin, MAO Haijun, et al. Anisotropic experimental study on mechanical properties of shale under uniaxial compression[J]. Metal Mine, 2015(12): 33-37. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-1250.2015.12.008

    [15] 衡帅,杨春和,张保平,等. 页岩各向异性特征的试验研究[J]. 岩土力学,2015,36(3):609 − 616. [HENG Shuai,YANG Chunhe,ZHANG Baoping,et al. Experimental research on anisotropic properties of shale[J]. Rock and Soil Mechanics,2015,36(3):609 − 616. (in Chinese with English abstract) DOI: 10.16285/j.rsm.2015.03.001

    HENG Shuai, YANG Chunhe, ZHANG Baoping, et al. Experimental research on anisotropic properties of shale[J]. Rock and Soil Mechanics, 2015, 36(3): 609-616. (in Chinese with English abstract) DOI: 10.16285/j.rsm.2015.03.001

    [16] 王聪聪,李江腾,林杭,等. 板岩单轴压缩各向异性力学特征[J]. 中南大学学报(自然科学版),2016,47(11):3759 − 3764. [WANG Congcong,LI Jiangteng,LIN Hang,et al. Anisotropic mechanical characteristics of slate in uniaxial compression[J]. Journal of Central South University (Science and Technology),2016,47(11):3759 − 3764. (in Chinese with English abstract)

    WANG Congcong, LI Jiangteng, LIN Hang, et al. Anisotropic mechanical characteristics of slate in uniaxial compression[J]. Journal of Central South University (Science and Technology), 2016, 47(11): 3759-3764. (in Chinese with English abstract)

    [17] 丁多文,罗国煜. 链子崖危岩体软弱夹层的力学特性[J]. 水文地质工程地质,1994,21(6):7 − 9. [DING Duowen,LUO Guoyu. Mechanical properties of weak interlayers in Lianziya dangerous rock mass[J]. Hydrogeology & Engineering Geology,1994,21(6):7 − 9. (in Chinese with English abstract)

    DING Duowen, LUO Guoyu. Mechanical properties of weak interlayers in Lianziya dangerous rock mass [J]. Hydrogeology & Engineering Geology, 1994, 21(6): 7-9. (in Chinese with English abstract)

    [18]

    TIEN Y M,KUO M C. A failure criterion for transversely isotropic rocks[J]. International Journal of Rock Mechanics and Mining Sciences,2001,38(3):399 − 412. DOI: 10.1016/S1365-1609(01)00007-7

    [19]

    TIEN Y M,TSAO P F. Preparation and mechanical properties of artificial transversely isotropic rock[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37(6):1001 − 1012. DOI: 10.1016/S1365-1609(00)00024-1

    [20] 张立. 冻融循环条件下含软弱夹层隧道围岩力学性质及破坏特征[J]. 水文地质工程地质,2021,48(5):74 − 80. [ZHANG Li. On mechanical properties and failure characteristics of surrounding rock of tunnel with weak interlayer under freezing-thawing cycles[J]. Hydrogeology & Engineering Geology,2021,48(5):74 − 80. (in Chinese with English abstract)

    ZHANG Li. On mechanical properties and failure characteristics of surrounding rock of tunnel with weak interlayer under freezing-thawing cycles[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 74-80. (in Chinese with English abstract)

    [21] 刘伟,曾亚武,夏磊,等. 单轴压缩下层状岩体的各项异性研究[J]. 水利与建筑工程学报,2018,16(1):145 − 149. [LIU Wei,ZENG Yawu,XIA Lei,et al. Anisotropy of layered rock mass under uniaxial compression[J]. Journal of Water Resources and Architectural Engineering,2018,16(1):145 − 149. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-1144.2018.01.026

    LIU Wei, ZENG Yawu, XIA Lei, et al. Anisotropy of layered rock mass under uniaxial compression[J]. Journal of Water Resources and Architectural Engineering, 2018, 16(1): 145-149. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-1144.2018.01.026

    [22] 赵永红,杨振涛. 含软弱夹层岩石材料的损伤破坏过程[J]. 岩石力学与工程学报,2005,24(13):2350 − 2356. [ZHAO Yonghong,YANG Zhentao. Research on fracturing around cemented slot in rock specimen[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(13):2350 − 2356. (in Chinese with English abstract)

    ZHAO Yonghong, YANG Zhentao. Research on fracturing around cemented slot in rock specimen[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(13): 2350-2356. (in Chinese with English abstract)

图(16)  /  表(2)
计量
  • 文章访问数:  2427
  • HTML全文浏览量:  853
  • PDF下载量:  224
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-23
  • 修回日期:  2022-05-29
  • 网络出版日期:  2023-04-15
  • 刊出日期:  2023-08-21

目录

/

返回文章
返回