Mechanism of the post-fire debris flow of the Xiangshui gully in “3·30” fire area of Xichang,Sichuan Province
-
摘要: 2020年3月30日,西昌市经久乡发生森林大火,响水沟流域植被被林火大面积烧毁,同年雨季,响水沟流域内多条沟道暴发泥石流,其中1#、2#、3#沟毗邻居民房屋和耕地,影响较为严重。通过野外调查、遥感解译和室外试验,以响水沟1#、2#、3#沟为研究对象,分析了不同林火烈度下,渗透特征、坡面侵蚀和沟道侵蚀的差异,从而揭示响水沟火后泥石流的成灾机理。结果表明,林火是泥石流暴发的重要诱因,火后泥石流的降雨阈值会明显降低。林火干扰导致坡面土壤的渗透系数表现出不同程度的降低,林火烈度越严重的区域,渗透系数越小,降雨更大比例地转化为坡面径流参与到坡面侵蚀。随降雨次数的增多,轻度、中度、重度火烧区域的坡面土壤侵蚀深度均增加;中度、重度林火烈度的侵蚀深度差异不大,且明显高于轻度区域,说明当林火烈度达到中度时,坡面土壤便会受到较大程度的侵蚀。地形条件相似的沟道,林火烈度越严重,泥石流侵蚀能力越强,最终体现于沟道两岸崩滑体数量越多,沟道宽度和深度越大。Abstract: On March 30, 2020, a forest fire broke out in Jingjiu Township, Xichang City, and the vegetation in Xiangshui gully watershed was burned in a large area by forest fire. In the rainy season of the same year, debris flow broke out in many gullies in the Xiangshui gully watershed, of which 1#, 2#, 3# gullies were adjacent to residential houses and cultivated land, and the impact of the debris flow was relatively serious. Through field investigation, remote sensing interpretation, and outdoor test, taking Xiangshui gully 1#, 2#, 3# gully as the research object, the differences of permeability characteristics, slope erosion, and gully erosion under different forest fire intensities are analyzed, so as to reveal the disaster mechanism of post-fire debris flow of Xiangshui gully. The results show that forest fire is an important inducement for the outbreak of debris flow, and the rainfall threshold of debris flow after the fire will be significantly reduced. Forest fire disturbance leads to the decrease of the permeability coefficient of slope soil in varying degrees. The more serious the forest fire intensity is, the smaller the permeability coefficient is, and the rainfall is transformed into slope runoff in a larger proportion to participate in slope erosion. With the increase of rainfall times, the depth of slope soil erosion in light, moderate and severe fire areas increased. The difference of erosion depth between moderate and severe forest fire intensity is small, and it is significantly higher than that in light areas, indicating that when the forest fire intensity reaches moderate, the slope soil will be eroded to a greater extent. For the gully with similar topographic conditions, the more serious the forest fire intensity is, the stronger the erosion capacity of debris flow is, which is finally reflected in the greater the number of landslide bodies on both sides of the gully and the greater the width and depth of the gully.
-
0. 引言
三峡工程是当今世界上最大的水利枢纽工程,三峡库区历来就是滑坡地质灾害隐患居多的区域。据统计,三峡水库自2003年首次蓄水以来库区发生了较大变形的滑坡有674处,其中下滑入江的有8个[1-3]。长期以来,国内学者对三峡库区一些重要滑坡的变形破坏特征进行了相关研究,如白水河滑坡、树坪滑坡、卧沙溪滑坡、千将坪滑坡、八字门滑坡、凉水井滑坡、藕塘滑坡、木鱼包滑坡等[4-10]。水土作用对水库堆积层滑坡影响甚大,主要表现为引起滑坡土体物理力学性质的改变与滑坡受力状态的变化。根据水土作用的不同方式变形成因可分为降雨型、浸泡软化型、动水压力型、浮托减重型、复合型五类[11-12]。
石榴树包滑坡是黄蜡石滑坡群中的一个重要滑坡,其长期持续变形对长江航运及人民生命财产安全造成严重威胁,一直以来备受关注。1998年罗先启等[13]采用非线性有限元方法对原石榴树包滑坡在不同运行工况下的位移、应力、塑性区进行了分析。2000年保长汉等[14]采用广义楔形体法对原石榴树包滑坡进行了稳定性计算。杨学堂等[15-16]对原石榴树包滑坡滑体滑动后的速度、滑距及涌浪进行了计算。而后一些学者采用有限元法对原石榴树包滑坡的稳定性及变形规律进行了分析[17-22]。2004年通过削方减载、设置排水等措施对滑坡进行了治理。李秀珍等[23]基于滑坡治理前10多年的变形监测资料,研究了原石榴树包滑坡的影响因素和变形演化特征和规律。钟少波等[24]基于滑坡治理后6年的监测数据,分析了石榴树包滑坡变形监测位移特征及稳定性。以上研究对石榴树包滑坡稳定性进行了分析,对滑坡变形特征分析较少,尤其对滑坡变形机制的研究几乎很少涉及。因此,本章首先通过钻探与物探资料分析石榴树包滑坡滑体的物质结构特征,再通过近两年的自动GPS表面位移、地下水位变化、降雨量等监测对该滑坡的变形特征、变形机理进行深入探讨与研究。
1. 石榴树包滑坡概况
石榴树包滑坡位于湖北省巴东县东瀼口镇黄蜡石村,长江左(北)岸。滑坡原始斜坡坡高约为500 m,斜坡倾向188°,斜坡结构类型为逆向斜坡(图1)。
石榴树包滑坡后缘高程340~350 m,前缘剪出口高程50~60 m,面积约0.25 km2,平均厚度约47.2 m,体积约11.80×106 m3。高程350~250 m间的地形坡角为32°~37°;高程200 m有一平台,为前期治理削方所致,东西长150~170 m,南北宽90~110 m;高程200 m以下地形坡角为30°~45°。石榴树包滑坡边界特征见图2。滑坡左侧边界为一冲沟,左侧边界沟外侧为一小山脊,见图2(a)。滑坡右侧边界为一冲沟,沟中树木茂密,沟外侧可见混凝土护坡,该冲沟将石榴树包滑坡与原台子角滑坡分割开来,见图2(b)。滑坡前缘大部分被江水淹没,出露部分为黏土夹紫红色泥岩、泥质砂岩与粉质砂岩块石,见图2(c)。滑坡后缘地势较为平缓,位于公路下方,与原磨盘湾滑坡的前缘相接,相对中前缘宽度变窄,见图2(d)。由于前期治理,滑坡表面分布有多条排水沟,3个排水平硐。
2. 滑坡物质组成及结构
在石榴树包滑坡建立综合观测站,主剖面上选取适当的6个位置布置钻孔,其中ZK1、ZK2、ZK4、ZK5等4个钻孔为水文孔。滑坡上安装的仪器主要有:GPS自动监测站4个(其中1个基站),地下水位监测仪器8个分布于水文孔中,库水位监测点1个,雨量监测站2个。现场仪器安装布置见图3。
2.1 钻探结果
石榴树包滑坡所处斜坡结构为逆向坡,结构复杂。根据钻孔资料综合分析,滑体物质主要为第四系崩坡积碎块石土,原岩为三叠系巴东组的岩体,经强烈滑动破坏而成,在总体上显示一定的成层性。表层覆盖少量第四系松散的崩坡积土,厚1.5~2 m,见图4(a)。浅层及后缘滑体物质主要为三叠系巴东组第四段的红色砂泥岩、粉砂岩破坏形成的碎石土;中层主要为三叠系巴东组第三段灰绿色、灰黄泥灰岩、灰岩破坏后的散裂结构块石土,从后到前厚度逐渐增大,见图4(b);下层有一层三叠系巴东组第二段紫红色泥岩和粉砂岩破坏后形成的碎石土。
滑带物质为土含碎石,位于基覆界面处,厚度一般为1~2 m,碎石含量10%~30%。土主要为灰黄、灰绿色黏土和粉质黏土。碎石以粒径2~10 mm者居多,呈次棱角-次圆状,并具有一定程度的定向排列,岩性主要为来自巴东组第三段的灰色、灰绿色灰岩、泥灰岩,见图4(c)。
滑床物质由下到上可分为三段,巴东组第一段(T2b1)为灰色、浅灰色的泥灰岩、灰岩,厚约30.30 m;巴东组第二段(T2b2)为紫红色泥岩和粉砂岩,厚度为11.07~32.65 m;巴东组第三段(T2b3)为灰绿色、灰黄色的泥灰岩,厚约11.96 m。滑床基岩岩层产状倾向山内,倾角20°~30°左右,见图4(d)。岩层总体产状70°∠20°。根据现场钻孔的工程地质剖面见图5。
2.2 物探测试结果
在三峡水库处于高水位时期(库水位为173 m),对石榴树包滑坡进行高密度电法物探工作。在滑坡体上共布设1横1纵剖面,分别为300 m和280 m,各剖面上分别布设60个电极和56个电极,电极之间间距为5 m,布设的剖面与钻孔剖面吻合,经过每个钻孔。将高密度电法结果与钻孔岩芯进行对比,见图6。
由图6可以看出:视电阻率呈块团状分布,成层性较差,视电阻率范围约0~800 Ω·m。钻探岩性及物质结构分界面与电阻率分界面较吻合。整体上表层的电阻率值较低,低至20~30 Ω·m,该处泥岩、粉砂岩颗粒粒径较小,土颗粒含量较多所致,与实际情况一致。浅层电阻率值较高的仅分布在钻孔ZK4周边的平台处,电阻率值达500~800 Ω·m,主要为浅灰色泥灰岩夹灰岩碎块石为主。由此可分析得到石榴树包滑坡体结构岩性分布,电阻率值低于50 Ω·m以下的区域主要以泥岩、粉砂岩等黏土岩形成的土石混合体为主,块状分布;电阻率值高于200 Ω·m的区域主要以泥灰岩形成的土石混合体为主,块状分布。50~200 Ω·m的区域主要为前两者的混合物。
根据钻孔资料,结合物探剖面,对石榴树包滑坡体纵剖面物质结构进行了分层,如图7所示。
3. 滑坡变形特征
3.1 历史变形特征
该滑坡为古滑坡,最早有记录的复活变形出现在1980年煤矿导洞施工,而后多次降雨以及人类工程活动出现较大变形。为此在2003年4月—2004年2月对石榴树包滑坡进行了工程治理,治理工程措施主要包含削方压脚、地下排水、地表排水。目前,前期治理工程部分失效,坡体上排水沟损坏堵塞,排水平硐内部垮塌。根据相关资料,石榴树包滑坡在治理后布置了3条监测剖面,现大部分仪器不能工作[24]。根据原监测数据分析,2004年—2009年期间滑坡变形较明显,前缘变形最大达到1.4 m,变形总体呈阶梯状持续变形,变形时间主要在每年5—8月。
3.2 近期变形特征
石榴树包滑坡3个GPS表面位移监测数据、降雨量、库水位随时间的变化曲线见图8。
由图8可以看出,在库水位下降及低水位运行期间,表面位移增加较大,在库水位升高及高水位运行期间,表面位移也在增加但增加较少。可见,石榴树包滑坡表现出动水压力型滑坡的特征,与收集的前期监测数据在变形时间上表现一致。在库水位较低时期,降雨会使滑坡各部分的位移都有小幅增大。GPS3位移量大于GPS2位移量大于GPS1位移量,可见滑坡变形主要发生在中部与后部,前缘变形较小。前缘变形较小这可能是由于前缘渗透性大,水力梯度较小的原因;中后部变形大可能是中后部渗透性小,水力梯度相对较大的原因。总体上,滑坡累计变形量最大未超过8 cm,位移随时间增加缓慢,可见石榴树包滑坡目前处于蠕动变形阶段。
4. 滑坡变形机理分析
4.1 变形影响因素
石榴树包滑坡前缘直抵长江,为变形提供了良好的地形临空条件。滑坡下伏基岩为三叠系巴东组的紫红色、浅灰色泥岩、粉砂岩、泥灰岩的易滑岩组;滑坡体也为易滑岩组形成的土石混合体,因此本身物质易于受雨水的影响而发生软化泥化。滑坡体前缘坡脚为长江,江水对滑体前缘岸坡不断的冲刷、掏蚀,造成滑坡前缘坍塌,抗滑力减小。库水位下降过程中,由于中后部渗透性不良导致滑体内地下水位下降滞后于库水位,由此产生的较大动水压力使滑坡的整体稳定性减小。滑坡体结构较松散,渗透性相对较大,地表水易于汇集和下渗,每逢暴雨从滑坡后缘汇集来的地表水排泄于滑坡体上,使得堆积体饱水、抗剪强度降低,诱发浅表层变形。松散堆积物与下伏基岩接触面形成潜在滑动面,因坡体渗透性大,降雨也易下渗到滑动带,一方面滑动面长期处于地下水位之下,使滑动带(面)强度弱化;另一方面也使局部水力梯度急剧增大,诱发整体变形。
4.2 地下水的影响
由监测数据可知滑坡变形主要发生在库水位下降阶段及低水位运行期,结合滑坡地质形态,石榴树包滑坡属于动水压力型滑坡,可见地下水对滑坡变形有较大影响。
(1)地下水位监测结果
石榴树包滑坡布设的4个地下水位监测孔于2018年4月27日开始获取监测数据,截至2019年10月30日,经历两次库水位升降过程,地下水位随库水位、降雨变化曲线如下图9所示。
由图9可知,ZK1、ZK2、ZK4孔地下水位的的变化曲线与库水位变化趋势一致,变化幅度是随着离库水越远变化越小,而ZK5孔地下水位的变化曲线与库水位变化曲线无相似之处,说明ZK5孔地下水位变化与库水位无关,库水位的变化的影响范围在ZK4与ZK5孔之间。降雨对ZK2与ZK5孔的地下水位影响较大,对ZK1与ZK4孔的地下水位影响甚小。滑坡体地下水位对降雨的响应在库水位下降及低水位期间明显,在库水位上升及高水位运行期间响应不明显,响应雨量阈值约为40 mm。
①第一次升降过程(2018年4月27日—2018年10月14日)
ZK1孔水位升降最大29.84 m,ZK2水位升降最大27.73 m,ZK4孔水位升降最大8.91 m,ZK5孔里面水位升降最大14.08 m。
②第二次升降过程(2019年4月27日—2019年10月14日)
ZK1孔水位升降最大30.09 m,ZK2水位升降最大28.58 m,ZK4孔水位升降最大9.69 m,ZK5孔里面水位升降最大7.12 m。
(2)水力梯度变化特征
两个库水位升降过程的水力梯度随库水位及时间的变化曲线见图10,水力梯度变化特征见表1。
表 1 水力梯度变化特征Table 1. Variation characteristics of hydraulic gradient项目 水力梯度i2−1 水力梯度i4−2 水力梯度i5−4 高水位时 低水位时 降雨时 高水位 低水位 降雨时 高水位 低水位 降雨时 第一次升降 0.009 0.0068 0.67 0.11 0.465 0.068 0.0095 0.161 0.331 第二次升降 0.0097 0.0078 0.75 0.118 0.43 0.167 0.01 0.154 0.138 由图10可见,前三条水力梯度线存在突变,是受降雨影响所致。为便于观察,将受降雨影响小的ZK4与ZK1之间的水力梯度作于图中。可见四条曲线表现出相同的趋势,随着库水位的下降,水力梯度逐步增大,在低水位水力梯度逐渐减小;当库水位上升时,水力梯度快速减小,高水位时趋于稳定。
由表1可知,在剔除降雨影响下,水力梯度i2−1低水位与高水位基本无变化,水力梯度i4−2低水位时约是高水位的4倍,水力梯度i5−4低水位时约是高水位的15倍。当考虑降雨影响时,降雨时的水力梯度i2−1约是高水位的74倍;水力梯度i4−2却在减小,甚至小于高水位的水力梯度;水力梯度i5−4约是高水位的35倍。
综上,在不考虑降雨条件下,在两次循环的下降及低水位过程中,水力梯度i4−2与水力梯度i5−4都较大,水力梯度i2−1较小。在考虑降雨条件下,水力梯度i2−1增大较多,i4−2减小,i5−4增大。说明,滑坡中后部渗透压力较大,前缘在降雨后渗透压力会大幅增大。滑坡体中后部水位比较高,主要受后方山体地下水供给,可见滑坡滑动面大部分都长期处于地下水位以下。
5. 结论
(1)石榴树包滑坡滑坡体物质具有一定成层性,团块状分布,电阻率值低于50 Ω·m以下的区域主要以泥岩、粉砂岩等黏土岩形成的土石混合体为主,电阻率值高于200 Ω·m的区域主要以泥灰岩形成的土石混合体为主。
(2)降雨是石榴树包滑坡复活的主要原因,库水位升降与降雨联合作用使石榴树包滑坡持续变形。库水位下降及低水位运行过程中的变形大于库水位上升及高水位运行过程中的变形。前缘变形较小主要是由于前缘渗透性大,水力梯度较小的原因;中后部变形大主要是由于中后部渗透性小,水力梯度相对较大的原因。
(3)库水位变化主要影响滑坡前缘和中部地下水变化,前缘地下水基本与库水位同步;滑坡后部地下水与库水位基本无关,主要受降雨影响。在不考虑降雨影响下,低水位时水力梯度是高水位时的4~15倍,考虑降雨影响时水力梯度是高水位时的35~74倍,降雨影响较大。
(4)石榴树包滑坡一直处于蠕变阶段,受库水位周期性升降与降雨的影响,其变形将继续发展,还需进一步加强监测。
-
表 1 研究区各沟道地形特征参数
Table 1 Topographic characteristic parameters of each channel in the study area
沟名 汇水
面积
/km2主沟
长度
/m流域相对
高差/m流域切
割密度
/(km·km−2)沟道纵坡降/‰ 1# 0.28 1059 402 10.50 305 2# 0.96 1 902 632 9.74 308 3# 0.25 969 305 10.51 323 表 2 研究区泥石流暴发情况统计表
Table 2 Statistics of debris flow outbreaks in the study area
沟
名是否发生泥石流 5月1日 6月17日 6月23日 7月18日 1# × × √ √ 2# × √ √ √ 3# √ √ √ √ 注:“√”代表暴发泥石流;“×”代表未暴发泥石流。 表 3 研究区各沟道林火烈度分布情况
Table 3 Distribution of forest fire intensity in each gully in the study area
沟名 未火烧/% 轻度
火烧/%中度
火烧/%重度
火烧/%1# 68.24 8.10 20.35 3.31 2# 10.78 9.90 37.25 42.07 3# 25.25 32.86 32.73 9.16 表 4 中度、重度火烧区与泥石流规模和次数的关系
Table 4 Relationship between forest fire intensity and debris flow scale and times
沟名 中度、重度林火烈度
占比/%泥石流累计规模
/(104 m3)泥石流
暴发次数1# 23.66 0.24 2 2# 79.32 2.24 3 3# 41.89 1.09 4 表 5 中度、重度林火烈度占比与泥石流沟侵蚀的关系
Table 5 Relationship between the proportion of moderate and severe forest fire intensity and debris flow gully erosion
沟名 中度、重度林火
烈度占比/%崩滑物源
数量/个沟道宽度
/m沟道深度
/m1# 23.66 4 1.0~2.5 0.5~1.5 2# 79.32 22 3.0~6.0 2.0~5.0 3# 41.89 7 3.0~6.0 2.0~4.0 表 6 研究区域不同降雨频率降雨强度值
Table 6 Rainfall intensity values of different rainfall frequencies in the study area
降雨时段 设计频率/% 20 10 5 2 1 10 min 17.57 20.57 23.38 26.92 29.51 1 h 44.87 53.71 62.14 72.88 80.80 6 h 71.81 87.92 103.50 123.57 138.50 24 h 91.39 111.90 131.72 157.28 176.27 -
[1] WELLS W G. The effects of fire on the generation of debris flows in southern California[J]. Reviews in Engineering Geology,1987,7:105 − 114.
[2] STALEY D M, KEAN J W, RENGERS F K. The recurrence interval of post-fire debris-flow generating rainfall in the southwestern United States[J]. Geomorphology,2020,370:1 − 10.
[3] RENGERS F K. Movement of sediment through a burned landscape sediment volume observations and model comparisons in the San Gabriel mountains, California, USA[J]. Journal of Geophysical Research-Earth Surface,2021,126(7):1 − 25.
[4] STALEY D M, WASKLEWICZ T A, KEAN J W. Characterizing the primary material sources and dominant erosional processes for post-fire debris-flow initiation in a headwater basin usingmulti-temporal terrestrial laser scanning data[J]. Geomorphology,2014,214:324 − 338. DOI: 10.1016/j.geomorph.2014.02.015
[5] SANTI P M, VICTOR G, DEWOLFE V G, et al. Sources of debris flow material in burned areas[J]. Geomorphology,2008,96:310 − 321. DOI: 10.1016/j.geomorph.2007.02.022
[6] WOODS S W, BALFOUR V N. The effects of soil texture and ash thickness on the post-fire hydrological response from ash-covered soils, Journal of Hydrology, 2010, 393(3): 274 − 286.
[7] LARSEN I J, PEDERSON J L, SCHMIDT J C. Geologic versus wildfire controls on hillslope processes and debris flow initiation in the Green River canyons of Dinosaur National Monument, Geomorphology, 2006, 81(1−2): 114 − 127.
[8] OAKLEY N S, LANCASTER J T, KAPLAN M L, et al. Synoptic conditions associated with cool season post-fire debris flows in the Transverse Ranges of southern California[J]. Natural Hazards,2017,88:327 − 354.
[9] WALL S A, ROERING J J, RENGERS F K. Runoff-initiated post-fire debris flow Western Cascades, Oregon[J]. Landslides,2020,17(7):1649 − 1661.
[10] 胡卸文, 金涛, 殷万清, 等. 西昌市经久乡森林火灾火烧区特点及火后泥石流易发性评价[J]. 工程地质学报,2020,28(4):762 − 771. [HU Xiewen, JIN Tao, YIN Wanqing, et al. The characteristics of forest fire burned area and susceptibility assessment of post-fire debris flow in Jingjiu Township, Xichang City[J]. Journal of Engineering Geology,2020,28(4):762 − 771. (in Chinese with English abstract) HU Xiewen, JIN Tao, YIN Wanqing, et al. The characteristics of forest fire burned area and susceptibility assessment of post-fire debris flow in Jingjiu Township, Xichang City[J]. Journal of Engineering Geology, 2020, 28(4): 762-771. (in Chinese with English abstract)
[11] 曹楠, 申太丽, 罗水莲, 等. 西昌市地质灾害发育分布规律及防灾建议[J]. 中国地质灾害与防治学报,2010,21(1):127 − 131. [CAO Nan, SHEN Taili, LUO Shuilian, et al. Development and distribution patterns of geologic hazards in Xichang City and prevention suggestion[J]. The Chinese Journal of Geological Hazard and Control,2010,21(1):127 − 131. (in Chinese with English abstract) CAO Nan, SHEN Taili, LUO Shuilian, et al. Development and distribution patterns of geologic hazards in Xichang City and prevention suggestion[J], The Chinese Journal of Geological Hazard and Control, 2010, 21(1): 127-131. (in Chinese with English abstract)
[12] 李秀珍, 刘希林, 苏鹏程. 四川凉山州安宁河流域泥石流危险性评价[J]. 防灾减灾工程学报,2005,25(4):426 − 430. [LI Xiuzhen, LIU Xilin, SU Pengcheng. Assessment on regional debris flow hazardousness of Anning River Valley in Liangshan Prefecture, Sichuan[J]. Journal of Disaster Prevention and Mitigation Engineering,2005,25(4):426 − 430. (in Chinese with English abstract) LI Xiuzhen, LIU Xilin, SU Pengcheng. Assessment on regional debris flow hazardousness of Anning River Valley in Liangshan Prefecture, Sichuan[J]. Journal of Disaster Prevention and Mitigation Engineering, 2005, 25(4): 426-430. (in Chinese with English abstract)
[13] 任云, 胡卸文, 王严, 等. 四川省九龙县色脚沟火后泥石流成灾机理[J]. 水文地质工程地质,2018,45(6):150 − 156. [REN Yun, HU Xiewen, WANG Yan, et al. Disaster mechanism of the Sejiao post-fire debris flow in Jiulong County of Sichuan[J]. Hydrogeology & Engineering Geology,2018,45(6):150 − 156. (in Chinese with English abstract) REN Yun, HU Xiewen, WANG Yan, et al. Disaster mechanism of the Sejiao post-fire debris flow in Jiulong County of Sichuan[J]. Hydrogeology & Engineering Geology, 2018, 45(6): 150-156. (in Chinese with English abstract)
[14] KEY C H, BENSON N C. Landscape assessment (LA) sampling and analysis methods[M]. USDA ForestService, Rocky Mountain Research Station General Technical Report, RMRS-GTR-164-CD. Ogden, UT, 2006.
[15] CANNON S H, GARTNER J E. Wildfire-related debris flow from a hazards perspective[M]. Debris Flow Hazards and Related Phenomena, Berlin: Springer-Praxis, 2005: 363 − 385.
[16] PARISE M, CANNON S H. Wildfire impacts on the processes that generate debris flows in burned watersheds[J]. Natural Hazards,2012,61(1):217 − 227. DOI: 10.1007/s11069-011-9769-9
[17] 王晓艺, 苏正安, 马菁, 等. 河北坝上与坝下不同土地利用类型土壤入渗特征及其影响因素[J]. 自然资源学报,2020,35(6):1360 − 1368. [WANG Xiaoyi, SU Zhengan, MA Jing, et al. Soil infiltration under different patterns of land use and its influencing factor in the Bashang and Baxia regions of Hebei Province[J]. Journal of Natural Resources,2020,35(6):1360 − 1368. (in Chinese with English abstract) DOI: 10.31497/zrzyxb.20200609 WANG Xiaoyi, SU Zhengan, MA Jing, et al. Soil infiltration under different patterns of land use and its influencing factor in the Bashang and Baxia regions of Hebei Province[J]. Journal of Natural Resources, 2020, 35(6): 1360-1368. (in Chinese with English abstract) DOI: 10.31497/zrzyxb.20200609
[18] 杨瀛, 胡卸文, 王严, 等. 八角楼乡火后泥石流空间发育特征[J]. 西南交通大学学报,2021,56(4):818 − 827. [YANG Ying, HU Xiewen, WANG Yan, et al. Spatial development characteristics of post-fire debris flow in Bajiaolou Town[J]. Journal of Southwest Jiaotong University,2021,56(4):818 − 827. (in Chinese with English abstract) YANG Ying, HU Xiewen, WANG Yan, et al. Spatial Development characteristics of post-fire debris flow in Bajiaolou Town[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 818-827. (in Chinese with English abstract)
[19] 王严, 胡卸文, 金涛, 等. 火后泥石流形成过程的物源启动模式研究[J]. 工程地质学报,2019,27(6):1415 − 1423. [WANG Yan, HU Xiewen, JIN Tao, et al. Material initiation of debris flow generation processes after hillside fires[J]. Journal of Engineering Geology,2019,27(6):1415 − 1423. (in Chinese with English abstract) WANG Yan, HU Xiewen, JIN Tao, et al. Material initiation of debris flow generation processes after hillside fires[J]. Journal of Engineering Geology, 2019, 27(6): 1415-1423. (in Chinese with English abstract)
[20] 殷万清, 金涛, 胡卸文, 等. 喜德县中坝村火后泥石流发育特征及预警避险[J]. 中国地质灾害与防治学报,2021,32(3):61 − 69. [YIN Wanqing, JIN Tao, HU Xiewen, et al. Study on the development characteristics of post-fire debris flow and its early warning risk aversion in Zhongba Village, Xide County[J]. The Chinese Journal of Geological Hazard and Control,2021,32(3):61 − 69. (in Chinese with English abstract) YIN Wanqing, JIN Tao, HU Xiewen, et al. Study on the development characteristics of post-fire debris flow and its early warning risk aversion in Zhongba Village, Xide County[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 61-69. (in Chinese with English abstract)
-
期刊类型引用(5)
1. 安雪莲,密长林,孙德亮,文海家,李晓琴,辜庆渝,丁悦凯. 基于不同评价单元的三峡库区滑坡易发性对比——以重庆市云阳县为例. 吉林大学学报(地球科学版). 2024(05): 1629-1644 . 百度学术
2. 赵立财. 降雨条件下弃土场滑坡力学参数敏感性反演研究. 地质与勘探. 2023(03): 627-636 . 百度学术
3. 熊超,孙红月. 基于多因素-多尺度分析的阶跃型滑坡位移预测. 吉林大学学报(地球科学版). 2023(04): 1175-1184 . 百度学术
4. 朱军威,张强,卢晓春,陈鸿杰,程伟. 基于离心模型试验的水动力型滑坡失稳机制研究. 人民长江. 2023(10): 189-195 . 百度学术
5. 刘东泽,江俊杰. 库水位涨落耦合降雨条件下的滑坡稳定性分析. 萍乡学院学报. 2023(06): 12-16 . 百度学术
其他类型引用(3)