Research status and development trend of landslide slip zone soil based on CiteSpace visual analysis
-
摘要:
我国是世界上滑坡灾害频发的国家之一,对滑坡的研究一直是防灾减灾的重点。滑带土是滑坡的重要组成部分,对滑带土展开研究不仅有助于深化对滑坡机理的认识,也可为预测滑坡的发生提供有力的支撑和依据。本文首先利用CiteSpace软件对我国近十二年来的滑坡滑带土相关研究进行关键词的图谱分析,归纳了近年来有关滑坡滑带土的主要研究方向;然后重点从滑带土的力学特性以及其在滑带演化过程中起到的关键作用进行文献梳理分析,最后对未来滑坡滑带土研究可能遇到的机遇与挑战进行了展望,提出了从滑坡的预警预报和韧性防控角度出发,结合多学科交叉方法,通过大数据挖掘、人工智能等新技术,对滑坡滑带土进行多尺度(巨-宏-细-微)、全方位、多时序的科学研究将是未来的主要方向。
-
关键词:
- 滑带土 /
- CiteSpace软件 /
- 图谱分析 /
- 滑坡演化 /
- 滑坡预警
Abstract:China ranks among the nations globally that are prone to frequent landslide disasters. The investigation and research of landslide has always been key focuses of disaster prevention and mitigation. Slide zone soil is a crucial component of landslides. Studying slip zone soils not only deepens the understanding of landslide mechanisms but also provides strong support for predicting landslide occurrences. This paper uses citespace software to analyze keywords and graphs of landslide soil in recent 12 years, summarizing the main research directions in recent years. It then reviews and analyzes the mechanical characteristics of slip zone soils and their key role in the evolution of slip zones. Finally, the paper explores the opportunities and challenges that may be encountered in the study of slip zone soil in future, proposing that from the perspectives of landslide early warning and resilience control, combining multidisciplinary methods and leveraging new technologies such as big data mining and artificial intelligence for multi-scale (macro-micro-nano), comprehensive, and multi-temporal scientific research on landslide slip zone soils will be the main direction in the future.
-
Keywords:
- slip zone soil /
- CiteSpace Software /
- picture analysis /
- landslide evolution /
- landslide warning
-
0. 引言
滑坡造成的危害十分严重,常造成灾难性事故,作为滑坡灾害频发国家之一,我国每年都面临巨大的挑战[1]。具统计,仅2020年,我国就发生了
4810 处滑坡灾害,在各类地质灾害发生数量中占比达61.35%。滑坡的类型很多,傅传元将滑坡分成了7类7型[2],而滑带土是滑坡的主要组成部分[3],滑带土分为多种类型,且在滑坡的发育演化过程中扮演着重要的角色(图1),因此研究滑坡滑带土具有十分重要的意义。本文利用科学文本挖掘与可视化软件CiteSpace,对近些年来不同学者在滑坡滑带土研究领域上的重点研究方向、研究热点和开创性成果等内容进行深入分析,通过对中国知网(CNKI)数据库以及Web of Science核心数据库(WoS)中收录的相关文献资料进行可视化分析,并根据结果绘制出知识图谱,从而归纳近十二年来滑带土的研究热点与前沿成果,进而对相关文献进行进一步阅读后对近年研究热点的理论成果进行了分析总结。
1. 基于CiteSpace的可视化分析
1.1 研究方法与数据来源
本文研究主要借助了知识图谱法以及文献计量法。知识图谱法是将所获取的文献进行数据挖掘、分析、排序、导航等一系列过程,最终绘制成知识图谱的形式,使知识的结构得以明显展示,以便于研究者进行知识的获取[12];文献计量分析是一种基于文献的发文作者、国家、关键词和参考文献等研究要素的定量分析技术,通过数理统计方法来客观呈现特定研究领域的现状与发展趋势,为研究者提供深入分析依据[13 − 14]。本文采用由美国德雷塞尔大学华人教授陈超美博士和其团队研发的Citespace6.3.R1信息可视化软件,对滑带土相关的文献研究进行了量化与可视化分析,旨在更直观的展现相关研究趋势与热点[15]。所得到的图谱中,圆形节点表示在此研究领域中的发文国家/地区、关键词、参考文献等的出现频次,其中,节点规模越大则表示其频次越高,节点与节点之间的连线则代表他们之间的关系(合作或共现等),且连线的粗细反映了关系的强弱程度。
本研究数据来源于中国知网(CNKI)数据库和Web of Science(WoS)核心合集数据库。在CNKI使用高级检索方式,检索关键词滑坡滑带土,经过筛选、去重后得到2011—2023年可分析利用文献
1000 篇,之后借助CiteSpace6.3.R1软件对数据进行格式转换,得到CiteSpace6.3.R1可识别的文本文件,即为软件分析的数据库。此外,在WoS核心合集的高级检索中输入的关键词为slip zone soils of landslides ,时间范围为2011-2023,在此基础上对检索出的文献进行筛选统计,共得到滑坡滑带土相关文献204篇,之后输出为纯文本文件以便于在CiteSpace6.3.R1软件中进行分析。1.2 滑坡滑带土研究特征分析
1.2.1 滑坡滑带土研究国家分布及合作关系
通过对WoS核心数据库中所筛选出的文献分析,得到近十二年来滑坡滑带土主要研究国家分布及合作关系如图2所示,图中节点圆圈越大说明相应国家的发文数量越多,各个国家之间的连线表示合作关系,连线粗细表示合作关系的紧密程度。从图中可以看出,中国学者在滑坡滑带土方面的文献数量相比于其他国家较多,这可能是由于中国幅员辽阔,相关的滑坡滑带土案例较多,相应的研究较多,并且中国与德国、美国、日本、英格兰、苏格兰、西班牙、澳大利亚、法国等国家都有合作。其次,美国、意大利、法国、日本等国家对滑坡滑带土的研究也相对丰富。此外,从各国家间的连线粗细可以看出,欧洲许多国家之间的合作关系更为密切。外围的紫色圆圈包围的节点表示其中心性较高,相当于“枢纽”,由此看出,许多国家多通过与中国、美国、法国和意大利的合作对滑坡滑带土展开研究,并进一步通过这些国家与其他国家开展合作关系。
1.2.2 滑坡滑带土关键词知识图谱分析
(1)关键词聚类及时间线图谱
关键词是论文主题的高度概括,图2是滑坡滑带土关键词的聚类分析与时间线图谱。聚类分析能够定量研究关键词的分类和分区问题,它可以使用数学方法按照一定的指标确定关键词之间的亲属关系,进而对其聚类[16]。对CNKI数据库中检索出的关键词进行聚类分析,并得到滑带土聚类时间线图谱(图3a)。其中,关键词所得聚类结果为10类,且Q值为
0.6133 (Q值为聚类模块值,一般认为,若Q>0.3,表示聚类结构显著),S值为0.8643 (S值为聚类平均轮廓值,一般认为,若S>0.5则聚类合理,S>0.7则聚类令人信服)。通过判定得出聚类结构显著且结果可信。通过阅读聚类内主要关键词的相关文献得出,聚类0主要关注滑带土整体;聚类1主要研究滑带土的稳定性;聚类2对滑坡进行数值模拟研究;聚类3主要对滑坡的结构特征、失稳机制以及加固技术等进行研究;聚类4主要关注高速公路等边坡工程的失稳机制和综合治理措施;聚类5则是通过蠕变试验、三轴试验以及直剪试验等对滑坡滑带土的强度特性和蠕变特性进行室内试验研究;聚类6主要关注黄土滑坡的基本特征;聚类0~6基本从2011年~2023年都一直持续有研究,聚类7~9在2019年后的关注逐渐减少。对Web of Science中检索出的关键词进行聚类分析,并得到滑带土聚类时间线图谱(图3b),其中,关键词所得聚类结果为8类,且Q值为0.627,S值为
0.8452 ,通过判定聚类结构显著,聚类结果可信。其中,聚类0主要对滑坡滑带土的环剪试验进行研究,尤其在2019年以来的研究居多;聚类1主要对滑坡滑带土的稳定性进行研究;聚类2主要研究滑带土的渗透性;聚类3主要对滑带土的的微观结构以及模型建立进行分析;聚类4主要对滑带土进行数值模拟以及对失稳机制进行研究;聚类5对地震、滑坡等不良地质因素影响到宏观经济损失进行研究;聚类6针对滑带土的蠕变形为研究。聚类7主要对滑坡滑带土进行野外调查以及利用卫星定位系统等技术对滑坡的空间分布进行研究。总结以上聚类信息,并结合图3中的具体内容和相关文献,分析得出,对于滑坡滑带土的研究在10年前主要集中于滑带土的强度参数和力学性质等方面;之后逐渐对滑带土的成因机制、演化特征等细、微观方面深入研究,更加广泛的运用数值模拟手段对滑带土变形演化规律进一步分析;近些年则在滑坡监测预警、滑坡失稳机制等方面的研究逐渐增多,并结合实际案例进行分析。本文将对以下关于滑带土的研究热点主题展开进一步分析:(i)滑坡滑带土的强度特性及直剪试验,(ii)滑坡滑带土的蠕变特性及环剪试验;(iii)滑坡滑带土的数值模拟研究;(iv)滑坡滑带土的成因机制和微观机理研究。
(2)关键词突现分析
图4为关键词突现统计图,可知关键词的出现时间和持续时间,由此得知每个时间段研究领域内的研究热点[17]。图中深蓝色部分代表关键词持续时间,红色部分代表关键字爆发时间,关键词突现强度大小代表本次分析中关键字出现次数的多少。对CNKI数据库中相关文献进行突现分析得了19个突现关键词,其中突现强度较强的有稳定系数、变形、参数反演、滑坡成因、基本特征、强度参数等。对WoS数据库中相关文献进行突现分析得出10个突现关键词,其中突现强度较强的关键词有reservoir(水库蓄水)、surface(滑坡破面)、failure(破坏)、progressive failure(渐进破坏)、landslide(滑坡) 等。
由图4(a)可知,近十二年来对滑坡滑带土的稳定变形、强度特征以及滑坡勘察与治理方面一直有持续性研究,在2015年前后,学者们开始加大对滑坡成因等内在因素以及外在影响因素的研究,在2018年之后,集中开展滑坡滑带土的模型试验以及其蠕变特性的研究,同时,有关滑坡尤其是滑坡的发育特征、滑坡发生的影响因素以及高速公路等实际应用的研究突现明显。由图4(b)可知,对于水库蓄水、降雨、以及地震诱发滑坡因素的研究集中时间最长,在2017年之后,学者们开始对滑坡坡体的变形,排水以及微观作用进行大量研究;对于地震诱发滑坡,自2012年起至今都有持续关注,但从2021年起,相关研究数量增多,相应的研究深度也提高。总的来说,对于滑坡滑带土的研究重点,大致是从深入研究滑带土的各项力学性质和强度参数的理论依据,到充分利用数值模拟和模型试验等补充理论研究,再结合实际案例阐述滑坡滑带土的影响因素与成因机制等,并加大对滑坡监测和预警的研究力度。研究程度逐渐从片面到全面,从变形后的治理研究到预防监测,研究内容逐渐完善,研究手段逐渐新颖。
2. 滑带土的力学性质
滑带土的力学性质直接影响到滑坡体的稳定性,尤其在长期降雨、工程开挖或大型地震后极易诱发滑坡的发生。今井秀喜等(1963)和伏斯列夫(1960)较早对滑带土的力学性质进行研究,他们对滑带土样进行剪切试验,研究裂缝的产生机理,并将破碎带划定为羽状裂缝强烈切割的部分[18]。近些年来,国内外众多学者对滑坡滑带土的力学特性做了大量开创性研究(图5),以下将从滑带土力学特性的影响因素、滑带土的残余强度特性以及长期强度特性进行论述。
2.1 滑带土强度特性影响因素
影响滑带土强度特性的因素有很多,例如试验条件、应力大小、含水率及土体密实度等均为影响滑带土力学特性的重要因素[19~21]。相比其他因素,水的影响较突出[22],且大部分滑坡滑带土都具有水致弱化性[23]。李妥德最早对滑带土强度参数的确定方法进行了总结,其中提到了环形剪切,并对各种方法的优缺点进行了概述[24]。张玉等对争岗大型滑坡滑带土取样并进行了室内大型直剪试验,研究在天然状况下滑带土强度和变形之间的关系,探索了含石量、含水量的变化对土体抗剪强度的影响[25]。林峰等采用多种直剪试验的方法研究了泥加碎石滑带土的强度随含水量的变化,结果表明,粘聚力随含水量的增大先增大后减小[26]。柏永岩等通过进行不同含水率下的滑带土直剪试验发现,含水率对内摩擦角的影响微弱,而对粘聚力的影响显著,并且粘聚力与含水
率之间的关系可以通过对数函数进行拟合[27]。而周永昆等利用三轴UU试验深入探讨了含水率与强度参数之间的联系,并构建了含水率与强度参数的二次函数关系模型[28];林鹏等通过对不同饱和度的土样进行直剪试验,发现在不同饱和状态时土体抗剪强度不同,饱和状态下,强度降低到天然时的1/5[29]。周春梅等对三舟溪滑坡滑带土进行剪切试验和压缩试验,试验结果表明,当土体的含水量低于最优含水量时,随着含水量的上升,土体的粘聚力会相应增强,而变形模量则会逐渐减小。然而,一旦土体的含水量高于最优值时,土体的粘聚力、内摩擦角、抗剪强度以及变形模量都随着含水量的增加而降低[30]。李险峰对千枚岩碎屑土滑带土进行三轴固结排水剪切试验,随着含水率的增加,其粘聚力逐渐减小;且在一定区段内,千枚岩碎屑土滑带土的粘聚力对含水率的变化较为敏感,随着含水率的增加大幅减小[31]。
究其原因,从微观角度来看,当滑带土含水率介于液塑限之间时,随着含水率的升高,土颗粒之间的弱结合水会逐渐增多[23]。当含水率超过液限并继续增长,滑带土颗粒间的自由水含量会显著上升,进而减弱分子间的结合力,在宏观上展现出滑带土粘聚力的下降。通过滑带土强度特性的研究可获得其应力-应变曲线,从而对滑坡滑带土的力学行为和变形特性有初步判断,进而为滑坡体稳定性分析、滑坡防治等提供依据,然而对滑体的宏观变形和内在力学行为之间的联系以及变化的统一性还缺乏一定的研究,目前大多通过残余强度(环剪试验)和长期强度(蠕变试验)来探究。
2.2 滑带土的残余强度
滑带土的力学强度特性可以利用峰值抗剪强度、残余抗剪强度、滑坡启动强度、完全软化强度以及流变研究中得出的长期抗剪强度等特征强度进行表示,残余强度是其主要研究内容[32]。在一定的应力下,对土样进行环形剪切,开始剪切后剪应力在某一时段持续上升之后达到一个最大值,这个最大值即为土样的峰值强度,之后随着剪切位移增加,强度会逐渐降低且逐渐趋于一个稳定值,这个稳定值即为土样的残余强度。由于常规剪切试验的剪切位移即剪切应变大小控制有限,因此目前国内外广泛使用环剪仪进行环剪试验研究土体残余强度[33, 36]。孟颂颂等人通过环剪试验探究了前期固结压力对粉砂土滑带土残余强度的影响,发现粉砂土的残余强度受应力历史的影响并不显著[37]。胡静等通过环剪试验发现,滑带土的残余强度与有效法向应力呈正相关[38]。江强强等对干湿循环后的滑带土进行环剪试验,发现在干湿循环作用下,滑带土残余强度具有十分明显的劣化特性[39]。对含砾石滑带土进行研究发现,滑带土的残余强度与剪切面的摩擦度有关[40],而其抗剪强度与剪切应变速率有关[41 − 42]。土体本身的细粒含量也影响到滑带土的残余强度[43]。
对滑带土剪切过程中颗粒的微观结构进行分析发现,滑动带内最明显的微观结构特征是滑动带内的颗粒反向排列,并且在滑移面附近近似平行排列。这种几何图案与在构造剪切带中观察到的S-C组构十分相似[44]。朱兆波等对滑带土进行环剪试验,发现黄土骨架的颗粒圆度可随含水量的增加而提高,增加接触面积,可提高黄土结构稳定性[45]。江强强等发现干湿循环下的土粒间距离增大,微小孔隙逐渐增大,结构逐渐疏松[39]。由此可见,土体的力学强度的逐渐减小会伴随着结构的疏松和稳定性的减弱。滑带土的残余强度是土颗粒受力破坏并重新排列后的结果,为之后揭示滑坡变形机理、滑坡稳定性评价以及提高滑坡的预测预报水平有重要的理论价值。
2.3 滑带土的长期强度
蠕变特性是土体力学特性中的另一种表现,在土体应力应变随时间不断变化的过程中,滑带土的变形逐渐增大最终形成滑坡。滑带土的蠕变往往发生在滑坡前的阶段[46],它是整个滑坡形成演化的关键,因此对滑带土的蠕变特性研究有利于对滑坡的稳定性进一步的认识,也可用于滑坡发生的预测方面。
滑带土的蠕变变形主要分为三个阶段,分别是瞬时蠕变阶段、衰减蠕变阶段和稳定蠕变阶段[47 − 50]。当偏应力大于临界应力时,黄土会出现加速蠕变阶段[51 − 52]。当土体处于瞬时蠕变阶段时,其变形量占总变形量的比例最大,当应力不断增大,蠕变变形也逐渐增大,增大到一定程度后,会出现衰减蠕变,其变形量以及变形速率逐渐减小,进而达到稳定蠕变阶段[53]。蠕变试验一般分为三轴蠕变试验、直剪蠕变试验以及环剪蠕变试验[54]。基于蠕变试验得到土体的应力应变时间三者之间的关系,国内外学者使用一系列岩土体的本构模型对其进行表示,常用的有经验模型和元件模型。对于不同时空下的土体特性适用于不同的蠕变模型[55 − 56]。经验模型中常用的有Singh-Mitchell模型、Mesri模型等[57~59],元件模型中常使用Burger’s模型、西原模型等[60 − 61]。
土体蠕变的长期强度是滑坡稳定性分析计算的重要参数指标[19, 47, 62],它是土体在经历较长时间的荷载作用后达到的最小强度值,通常有两种方式确定:(1)在某特定偏应力作用下,轴向蠕变随时间变化的关系曲线,出现明显的稳态流变向加速流变过渡的情况,这一应力可被看作该土体的长期强度;(2)当土体蠕变曲线未发生加速蠕变特征时,可分别以轴向应变和应力为坐标轴绘制等时曲线,等时曲线在不同应力下由非线性段和近似线性段组成,并且两者之间存在一个拐点,这一拐点所对应的偏应力即为该土体的长期强度[64 − 65](如图6)。
大量专家对滑带土的长期强度展开了广泛的探讨。将岩土体的长期强度与其目前的受力情况加以比较,可对滑坡进行稳定性分析,以及对滑坡今后的演变预测提供依据[67]。Liu et al 通过对饱和Q2黄土进行蠕变研究,发现其破环强度是单轴抗压强度的75%-80%,因此在实际工程中建议采取单轴抗压强度的75%作为饱和Q2黄土的长期强度[68]。对于出现加速蠕变阶段的岩土体,其临界剪应力即为长期强度[52]。土体长期强度的影响因素有很多,许多学者通过研究发现水是导致滑带土蠕变加速的重要原因[47 − 48, 53]。龙建辉等对泾阳南塬11个黄土滑坡滑带土的蠕变进行研究,发现随着含水率的增加,滑坡的长期强度会逐渐降低。赖小玲等在三峡库区以某大型滑坡滑带土为研究对象进行了三轴蠕变试验,发现土体的轴向应变会随着基质吸力的减小不断增加,且这种趋势会随偏应力水平的增大更加明显。土体的蠕变试验往往耗费时间较长,因此一些学者便探索可以加快蠕变试验的方法,从而快速获得滑带土的长期强度[69]。
对于滑带土蠕变形成的微观机制和演化规律,国内外学者进行了大量的研究。当土体受到的应力值较小时,土体中的矿物颗粒主要发生相对位移和旋转,一些矿物颗粒由于受力不均匀会不断填充土体孔隙,宏观上主要表现在瞬时蠕变阶段,蠕变变形幅度较大;随着应力的增加,土体中的矿物颗粒可能会产生破环现象,其相对位移和旋转幅度不断减小,破坏后较小的颗粒会继续填充孔隙,使土体蠕变逐渐达到稳定状态[70 − 71]。
滑带土的长期强度可表明滑坡在抵御外界荷载的最大强度值,然而目前国内外大多都是通过蠕变试验结果来间接确定土体的长期强度,对长期强度的直接研究较少,且无论是根据过度蠕变法还是等时曲线法,都不能保证结果的准确性,因此之后有必要更深入的研究长期强度的确定方法及其合理性和准确性。
3. 滑带土的力学性质在滑坡演化过程中的关键作用
滑带土力学特性的变化在滑坡的变形及演化过程中起关键性作用,且与应力、应变、时间等多因素有关。但有限的室内试验仅能确定在特定条件下滑带土的力学特性,并不能直接分析滑坡滑带土的稳定演化过程,且滑坡的稳定性以及滑带土的力学性质是随着滑坡发生过程中的变形而逐渐变化的,因此,对滑坡的稳定性进行动态评价,需要从多方面进行分析,结合以往文献成果,本节将从滑坡滑带土的宏观表现、稳定性分析方法、理论预测模型的建立与应用以及数值模型分析几个方面(图7)展开论述。
3.1 滑坡滑带土宏观表现
滑带土是滑坡的重要组成部分,滑带土的分布是一个较为复杂空间系统,若仅对其进行室内试验,所得数据并不能详细阐述滑带土的演化特征和滑坡的失稳特性,因此需结合野外观测和监测手段进行研究[72]。大部分滑坡的发生主要是由于降雨、人工开挖、地震和灌溉等因素诱发[73 − 74],如夏季集中降雨后水流会沿着岩土体节理裂隙下渗,使地下水位上升,不利于土体排水而导致孔隙水压力增大,滑面往往形成于孔隙水压力突变区域[75 − 76]。在已发生的滑坡上还可以观察到滑坡后缘发育有落水洞及拉张裂缝等。
仅对滑坡进行野外观测还不能完全揭露滑坡滑带土的宏观特征,因此一些学者对已发生的滑坡进行钻孔、探槽、探井以及现场观测等研究[10, 77]。还有许多学者采用物理模型的方式来探究滑坡破坏机制[78 − 79],通过建立大型物理模型试验的方式模拟不同工况下的滑坡整体演化过程[80 − 82]。
3.2 滑坡的稳定性分析
在滑坡滑动过程中,滑带土的力学特性会随着滑带土位移的变化而变化,因此滑坡的稳定性也会随着滑坡的滑动而变化[83]。在进行边坡稳定性分析时可使用基于力学平衡方程并结合滑坡力学特征的方法进行稳定性计算,常常使用瑞典法、极限刚体平衡法、Bishop法、传递系数法,剩余推力法[83]、有限元法[10]等。Tang[72]用一系列方程说明了滑面的力学性质是时间的函数;刘洋等[84]使用两种非严格条分法对滑坡稳定性计算结果进行对比;霍善欣等[85]采用熵权法改进的模糊数学方法对滑坡稳定性进行评价;还有一些学者[76]采用对滑坡相关参数进行统计的方式,对研究区域的危险性进行预测。相比之下对于野外工程勘察程度较高的滑坡,采用稳定性计算的定量方式分析较准确,反之可采用稳定性量化评分的方式[86]。
3.3 滑坡滑带土理论预测模型
对滑坡进行稳定性分析的目的往往是探明滑坡的启动机制以预测滑坡的发生,包括发生的规模风险、发生概率[87 − 88]、滑坡演化特征[80]以及发生的时间[89]等,从而减少滑坡对生命财产安全的威胁。由于外界因素可能随时会触发滑坡的发生,因此有学者[90 − 91]提出用理论模型预测滑坡的临界位移,无论是受何种外界因素影响,当滑带土到达特定的临界位移值后就会发生灾害[92]。目前多数滑坡的时间预测均以位移为参量,通常可通过室内蠕变试验得到位移-时间的关系函数来建立理论预测模型[93]。
最初对滑坡的发生进行预测常采用经验模型,Saito[94](1965)首次使用蠕变加速阶段的规律对滑坡进行预测,之后在此基础上,Fukuzono(1985)等人[95]提出位移反速度模型并不断改进,并广泛使用。尽管一些滑坡的预测和发生印证了位移反速度模型的可行性[96 − 97],但经验模型是一个“统计模型”,有许多局限性,例如在滑坡发生前需要尽可能长时间的监测并不断调整趋势变化,且此模型几乎没有用到滑带土的物理力学机制,因此一些学者[91]建立了土体蠕变曲线和应力应变曲线之间的力学联系,并提出破坏时的位移判据,以便于预测滑坡破坏的临界位移。秦四清等[89 − 90, 98]将滑坡滑面上有高强度应力集中的部位称为“锁固段”,提出具有锁固段滑坡的力学特性,并对一些典型滑坡的破坏机制进行验证和阐述。Yan J.等[99]基于损伤理论、胡克定律等建立了本构模型,并与剩余推力法结合,对滑带土稳定性进行动态评价。Tang[100]等建立了一个方程来说明滑坡滑带土破裂面的力学特性是时间和位移的函数,并用此方程分析滑坡演化过程中的稳定性。
3.4 滑带土的数值模拟分析
随着计算机的计算水平不断提高以及人工智能的出现和发展,不少学者开始将滑坡的稳定性与数值方法和统计方法相结合。近年来,数值模拟分析逐渐成为研究滑坡失稳特性的有力工具,可为滑坡灾害的预测以及防治提供一定的参考价值[35]。通常,一个斜坡的失稳是由自身的构造原因及自重应力等长期作用与开挖或降雨等短期作用相耦合的结果[101],受到的短期扰动影响可使用数值模拟分析的方式。模拟滑坡的数值方法主要有离散元(DEM)法和连续介质法等[102 − 103]。离散元法是将研究对象简化为小球并通过小球之间的相互作用模拟固体介质之间的力学特征和相互作用,如不同元素法或不连续变形分析(DDA)法等。郑博宁等[104]通过三维颗粒流程序对建立好的含砾滑带土模型进行数值模拟计算并证明其可行性。吴剑[105]等采用颗粒流模拟软件建立环剪试验模型并通过试验验证模型的可行性。连续体法通常是将滑坡体的模型划分为有限的网格再进行计算分析,如有限元(FEM)法和有限差分法(FDM)。离散元法通常用来模拟大范围的滑坡,但无法表征颗粒之间的相互作用;连续体法无法表征土体中出现不连续的情况,如裂隙。因此,一些学者不断探索新的数值计算方式,如光滑粒子流体动力学法(SPH)[35, 106],是一种无网格方法,可以模拟研究对象的流体变形、自由表面和变形边界。
4. 挑战与机遇
目前众多学者在滑坡滑带土力学性质方面研究取得了一系列丰硕的研究成果,在滑坡的监测、预报以及数值模拟等方面的研究同样如火如荼。面对新技术的发展,如何将传统研究方法与新兴技术相结合是目前面临的一大挑战(图8),如:对滑坡建立数值模型并与滑带土力学特性相结合,进行滑坡评价分析方面以及长期演化方面的研究。随着计算机的发展,数字图像处理技术在滑坡中的应用为研究滑坡的发展提供较为准确的方法,在室内力学试验的基础上结合数值模拟方法可以得到更好的研究效果[104, 107],也为研究滑坡预警领域提供了更好的发展前景。
随着新理论、新技术、新方法、新材料和新设备在滑坡滑带土特性研究方面的应用,越来越多具有不同背景的科学家正参与到滑带土及其孕灾机理的研究中来。尤其是近年来北斗、InSAR、近景摄影测量、现代传感器和物联网等“天-空-地”多源长时序智能监测技术的发展[108],以及大数据、云平台和人工智能等新一代信息技术的应用(图9),为揭示滑坡滑带土特性及其孕灾机理带来了新的机遇。
图10是利用CiteSpace基于WoS核心数据集所得到的近五年来关于滑坡监测方面的关键词关系图谱分析,可以看出,近些年对滑坡的监测主要针对位移、三维变形以及浅层滑坡等监测,对滑坡的监测方式主要集中在无人机摄影测量(UAV)、干涉合成孔径雷达测量技术(InSAR)、全球导航卫星系统(GNSS)、卫星光学影像等方面[108]。无人机摄影测量可对滑坡隐患的发现更加直观、便捷,精度可高达厘米级。InSAR监测可以解释不稳定滑带土遍行的位置范围等,可提前判断并掌握滑坡的运动、变形及发展趋势等。采用多时相、高分辨率的卫星光学遥感影像,可以追踪滑坡的动态演变历程及其特征,这有助于更准确地评估滑坡的规模、形变特性以及潜在危险性等。除此之外,滑坡的多场监测技术的发展,可以得到海量、系统的监测数据[109],为滑坡长期稳定性评价以及防治提供了重要科学依据。例如Tang等人在三峡库区,对滑坡的发生与防治结构体系的多方位信息开展了长时间的连续监测,揭示了滑坡变形、多场之间相互作用及变化等规律;李长冬等人则利用室内力学试验、大型物理模型试验以及仿真实验等方法,并提出了一种“渗流驱动-强度劣化-启动滑移”的滑坡启滑假说[110 − 111]。
在滑坡滑带土未来研究方面,需充分利用新兴的各种技术的自身优势,通过多层次、多技术的综合使用,优势互补、相辅相成,实现对滑坡滑带土多尺度(巨-宏-细-微)、全方位、多时序的理论研究,同时应结合多学科交叉方法,通过大数据挖掘、人工智能等新技术,厘清滑带土在滑坡的孕育、发展、发生和消亡的各演化过程所扮演的角色作用, 进而更为科学的揭示滑坡滑带土巨-宏-细-微多尺度孕灾机理(图11),以期为滑坡的预警预报和韧性防控提供理论和技术参考。
5. 结语与展望
(1)本文采用文献计量法和知识图谱法,利用CiteSpace软件分别对CNKI和WoS数据库中的文献筛选分析,对近十二年来关于滑坡滑带土的研究分别从国家之间的合作关系图以及关键词时间线图和突现图进行分析,并对相关文献进行阅读可知,近些年对滑坡滑带土的研究大多数分布于中国,且不同国家之间的研究联系密切;对滑带土的研究手段大多采取野外勘察、室内试验和数值模拟的方式,同时模型试验也逐渐增多;室内试验主要对滑带土稳定性、强度特性和蠕变特性的研究居多。
(2)从滑带土的力学特性以及其在滑带演化过程中起到的关键作用进行文献梳理分析;系统梳理并总结了近些年来学者们对于滑坡滑带土在多方面的研究成果,为之后的研究指明方向。从滑坡滑带土的残余强度、长期强度、强度特性的影响因素中叙述了滑带土的力学行为,从滑坡滑带土的宏观表现、稳定性分析、理论预测模型的建立和数值模拟分析中阐述了滑带土的力学行为以及应力应变时间关系与滑坡变形演化之间的联系,滑带土的力学行为影响了滑坡的变形演化,但目前相关的的研究不是很丰富,也缺乏基于多因素耦合影响的滑带土变形机制而建立滑坡预测模型相关的研究。
(3)对未来滑坡滑带土研究可能遇到的机遇与挑战进行了展望,尽管现阶段已有一些学者对滑坡的监测方法、手段以及预警预报有一定程度的研究,但对滑坡滑带土进行多尺度(巨-宏-细-微)、全方位、多时序的理论研究仍将是未来的重点方向。同时应结合多学科交叉方法,通过大数据挖掘、人工智能等新技术,厘清滑带土在滑坡的孕育、发展、发生和消亡的各演化过程所扮演的角色作用, 以期更为科学的揭示滑坡滑带土的孕灾机理。
-
-
[1] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报,2007,26(3):433 − 454. [HUANG Runqiu. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(3):433 − 454. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-6915.2007.03.001 HUANG Runqiu. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 433 − 454. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2007.03.001
[2] 傅传元. 滑坡七类七型分类和中国铁路滑坡分布规律[J]. 重庆交通学院学报,1985(2):83 − 91. [FU Chuanyuan. Classification of seven types and seven types of landslides and distribution law of railway landslides in China[J]. Journal of Chongqing Jiaotong University,1985(2):83 − 91. (in Chinese with English abstract)] FU Chuanyuan. Classification of seven types and seven types of landslides and distribution law of railway landslides in China[J]. Journal of Chongqing Jiaotong University, 1985(2): 83 − 91. (in Chinese with English abstract)
[3] 李晓,梁收运,郑国东. 滑带土的研究进展[J]. 地球科学进展,2010,25(5):484 − 491. [LI Xiao,LIANG Shouyun,ZHENG Guodong. Progresses in sliding zone soil of landslides[J]. Advances in Earth Science,2010,25(5):484 − 491. (in Chinese with English abstract)] LI Xiao, LIANG Shouyun, ZHENG Guodong. Progresses in sliding zone soil of landslides[J]. Advances in Earth Science, 2010, 25(5): 484 − 491. (in Chinese with English abstract)
[4] LIAN Baoqin,WANG Xingang,PENG Jianbing,et al. Shear rate effect on the residual strength characteristics of saturated loess in naturally drained ring shear tests[J]. Natural Hazards and Earth System Sciences,2020,20(10):2843 − 2856. DOI: 10.5194/nhess-20-2843-2020
[5] 王新刚,刘凯,连宝琴,等. 黄土-泥岩滑坡诱发因素及形成机理研究进展[J]. 西北大学学报(自然科学版),2021,51(3):404 − 413. [WANG Xingang,LIU Kai,LIAN Baoqin,et al. Recent advance in understanding inducing factors and formation mechanism of loess-mudstone landslides[J]. Journal of Northwest University (Natural Science Edition),2021,51(3):404 − 413. (in Chinese with English abstract)] WANG Xingang, LIU Kai, LIAN Baoqin, et al. Recent advance in understanding inducing factors and formation mechanism of loess-mudstone landslides[J]. Journal of Northwest University (Natural Science Edition), 2021, 51(3): 404 − 413. (in Chinese with English abstract)
[6] LIAN Baoqin,WANG Xingang,LIU Kai,et al. A mechanical insight into the triggering mechanism of frequently occurred landslides along the contact between loess and red clay[J]. Scientific Reports,2021,11:17556. DOI: 10.1038/s41598-021-96384-7
[7] 辛鹏,吴树仁,石菊松,等. 黄土高原渭河宝鸡段北岸大型深层滑坡动力学机制研究[J]. 地质学报,2014,88(7):1341 − 1352. [XIN Peng,WU Shuren,SHI Jusong,et al. Research on kinematics and dynamic mechanism of large-scale deep-seated landslide on the north bank of Baoji stream segment of Weihe River in Loess Plateau[J]. Acta Geologica Sinica,2014,88(7):1341 − 1352. (in Chinese with English abstract)] XIN Peng, WU Shuren, SHI Jusong, et al. Research on kinematics and dynamic mechanism of large-scale deep-seated landslide on the north bank of Baoji stream segment of Weihe River in Loess Plateau[J]. Acta Geologica Sinica, 2014, 88(7): 1341 − 1352. (in Chinese with English abstract)
[8] 柳万里. 含泥岩类夹层巴东组斜坡工程地质特性及其孕滑机理研究[D]. 武汉:中国地质大学,2022. [LIU Wanli. Study on engineering geological characteristics and sliding mechanism of Badong Formation slope with mudstone interlayer[D]. Wuhan:China University of Geosciences,2022. (in Chinese with English abstract)] LIU Wanli. Study on engineering geological characteristics and sliding mechanism of Badong Formation slope with mudstone interlayer[D]. Wuhan: China University of Geosciences, 2022. (in Chinese with English abstract)
[9] 许强,黄润秋,殷跃平,等. 2009年6·5重庆武隆鸡尾山崩滑灾害基本特征与成因机理初步研究[J]. 工程地质学报,2009,17(4):433 − 444. [Xu Qiang,Huang Runqiu,Yin Yueping,et al. A preliminary study on the basic characteristics and genetic mechanism of Jiwei landslide in Wulong,Chongqing on June 5,2009[J]. Journal of Engineering Geology,2009,17(4):433 − 444. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1004-9665.2009.04.001 Xu Qiang, Huang Runqiu, Yin Yueping, et al. A preliminary study on the basic characteristics and genetic mechanism of Jiwei landslide in Wulong, Chongqing on June 5, 2009[J]. Journal of Engineering Geology, 2009, 17(4): 433 − 444. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2009.04.001
[10] TANG Huiming,LI Changdong,HU Xinli,et al. Evolution characteristics of the Huangtupo landslide based on in situ tunneling and monitoring[J]. Landslides,2015,12(3):511 − 521. DOI: 10.1007/s10346-014-0500-2
[11] 邬 凯,周立荣,张乐,等. 饱水软化下顺层边坡原状滑带土强度特性研究[J]. 土木工程学报. 2023,11(56):24-34. [Wu Kai,Zhou Lirong,Zhang Le,et al. Study on strength characteristics of undisturbed sliding zone soil in water-softened lower bedding slope [J]. Chinese Journal of Civil Engineering. 2023,11(56):24-34. (in Chinese with English abstract)] Wu Kai, Zhou Lirong, Zhang Le, et al. Study on strength characteristics of undisturbed sliding zone soil in water-softened lower bedding slope [J]. Chinese Journal of Civil Engineering. 2023, 11(56): 24-34. (in Chinese with English abstract)
[12] SHIFFRIN R M,BÖRNER K. Mapping knowledge domains[J]. PNAS2004,101(Suppl 1):5183-5185.
[13] 陈文玥,余静,姜璐. 基于CiteSpace的海岸地质灾害风险评估研究知识图谱分析[J]. 海洋湖沼通报. 2022,44(6):173-182. [Chen Wenyue,Yu Jing,Jiang Lu. Analysis of knowledge map for coastal geological hazard risk assessment based on CiteSpace [J]. Bulletin of Oceanology and Limnology. 202,44(6):173-182. (in Chinese with English abstract)] Chen Wenyue, Yu Jing, Jiang Lu. Analysis of knowledge map for coastal geological hazard risk assessment based on CiteSpace [J]. Bulletin of Oceanology and Limnology. 202, 44(6): 173-182. (in Chinese with English abstract)
[14] 赵蓉英,许丽敏. 文献计量学发展演进与研究前沿的知识图谱探析[J]. 中国图书馆学报,2010,36(5):60 − 68. [ZHAO Rongying,XU Limin. Analysis on the knowledge map of the development and evolution of bibliometrics and its research frontier[J]. Journal of Library Science in China,2010,36(5):60 − 68. (in Chinese with English abstract)] ZHAO Rongying, XU Limin. Analysis on the knowledge map of the development and evolution of bibliometrics and its research frontier[J]. Journal of Library Science in China, 2010, 36(5): 60 − 68. (in Chinese with English abstract)
[15] CHEN Chaomei. CiteSpace II:detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology,2006,57(3):359 − 377. DOI: 10.1002/asi.20317
[16] 张绍波,王梦琪,姜俊超. 基于CiteSpace的水资源承载力的热点与前沿可视化分析[J]. 辽宁师范大学学报(自然科学版),2022,45(4):524 − 532. [ZHANG Shaobo,WANG Mengqi,JIANG Junchao. CiteSpace-based visualisation of hotspots and frontiers in water carrying capacity[J]. Journal of Liaoning Normal University (Natural Science Edition),2022,45(4):524 − 532. (in Chinese with English abstract)] ZHANG Shaobo, WANG Mengqi, JIANG Junchao. CiteSpace-based visualisation of hotspots and frontiers in water carrying capacity[J]. Journal of Liaoning Normal University (Natural Science Edition), 2022, 45(4): 524 − 532. (in Chinese with English abstract)
[17] 夏梅梅,钟宛凌,欧阳里山,等. 1989—2018年国内作物连作障碍研究现状——基于CNKI的文献计量学分析和科学知识图谱研究[J]. 农学学报,2021,11(3):46-54. [XIA M M,Zhong W L,OuYANG L S,et al. Research status of continuous cropping obstacles in China from 1989 to 2018:bibliometric analysis and scientific knowledge map research based on CNKI [J]. Journal of Agricultural Sciences,2019,11(3):46-54. (in Chinese with English abstract)] XIA M M, Zhong W L, OuYANG L S, et al. Research status of continuous cropping obstacles in China from 1989 to 2018: bibliometric analysis and scientific knowledge map research based on CNKI [J]. Journal of Agricultural Sciences, 2019, 11(3): 46-54. (in Chinese with English abstract)
[18] 王志荣,王念秦. 黄土滑坡研究现状综述[J]. 中国水土保持,2004(11):16 − 18. [WANG Zhirong,WANG Nianqin. A summary of present study on loess landslides[J]. Soil and Water Conservation in China,2004(11):16 − 18. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0941.2004.11.008 WANG Zhirong, WANG Nianqin. A summary of present study on loess landslides[J]. Soil and Water Conservation in China, 2004(11): 16 − 18. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0941.2004.11.008
[19] 祝艳波,刘振谦,李文杰,等. 黄土−三趾马红土滑坡滑带土的长期强度影响因素研究[J]. 水文地质工程地质,2022,49(2):148 − 156. [ZHU Yanbo,LIU Zhenqian,LI Wenjie,et al. Experimental investigation of influencing factors on the long-term strength of sliding zones of the Loess-Hipparion laterite landslide[J]. Hydrogeology & Engineering Geology,2022,49(2):148 − 156. (in Chinese with English abstract)] ZHU Yanbo, LIU Zhenqian, LI Wenjie, et al. Experimental investigation of influencing factors on the long-term strength of sliding zones of the Loess-Hipparion laterite landslide[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 148 − 156. (in Chinese with English abstract)
[20] 程东幸,刘大安,丁恩保,等. 滑带土长期强度参数的衰减特性研究[J]. 岩石力学与工程学报,2005(S2):5827 − 5834. [Cheng Dongxing,Liu Da 'an,Ding Enbao,et al. Study on attenuation characteristics of long-term strength parameters of slip zone soil[J]. Chinese Journal of Rock Mechanics and Engineering,2005(S2):5827 − 5834. (in Chinese with English abstract)] Cheng Dongxing, Liu Da 'an, Ding Enbao, et al. Study on attenuation characteristics of long-term strength parameters of slip zone soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2005(S2): 5827 − 5834. (in Chinese with English abstract)
[21] 汤文,姚志宾,李邵军,等. 水化学作用对滑坡滑带土的物理力学特性影响试验研究[J]. 岩土力学,2016,37(10):2885 − 2892. [TANG Wen,YAO Zhibin,LI Shaojun,et al. Effect of pore water chemistry on physical and mechanical properties of sliding-zone soil:an experimental study[J]. Rock and Soil Mechanics,2016,37(10):2885 − 2892. (in Chinese with English abstract)] TANG Wen, YAO Zhibin, LI Shaojun, et al. Effect of pore water chemistry on physical and mechanical properties of sliding-zone soil: an experimental study[J]. Rock and Soil Mechanics, 2016, 37(10): 2885 − 2892. (in Chinese with English abstract)
[22] 李维树,邬爱清,丁秀丽. 三峡库区滑带土抗剪强度参数的影响因素研究[J]. 岩土力学,2006,27(1):56 − 60. [LI Weishu,WU Aiqing,DING Xiuli. Study on influencing factors of shear strength parameters of slide zone clay in Three Gorges Reservoir Area[J]. Rock and Soil Mechanics,2006,27(1):56 − 60. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2006.01.011 LI Weishu, WU Aiqing, DING Xiuli. Study on influencing factors of shear strength parameters of slide zone clay in Three Gorges Reservoir Area[J]. Rock and Soil Mechanics, 2006, 27(1): 56 − 60. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2006.01.011
[23] 董金玉,郑珠光,赵志强,等. 滑带土强度参数的水致弱化规律试验研究[J]. 华北水利水电大学学报(自然科学版),2016,37(2):83 − 86. [DONG Jinyu,ZHENG Zhuguang,ZHAO Zhiqiang,et al. Experimental study on the decrease regularity of the strength parameters of slip soil because of the influence of moisture[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition),2016,37(2):83 − 86. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1002-5634.2016.02.015 DONG Jinyu, ZHENG Zhuguang, ZHAO Zhiqiang, et al. Experimental study on the decrease regularity of the strength parameters of slip soil because of the influence of moisture[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2016, 37(2): 83 − 86. (in Chinese with English abstract) DOI: 10.3969/j.issn.1002-5634.2016.02.015
[24] 李妥德. 滑坡滑带土抗剪强度的确定方法[J]. 山地学报,1984,2(1):25 − 30. [Li Tuode. Determination method of shear strength of soil in landslide slip zone[J]. Journal of Mountain Science,1984,2(1):25 − 30. (in Chinese with English abstract)] Li Tuode. Determination method of shear strength of soil in landslide slip zone[J]. Journal of Mountain Science, 1984, 2(1): 25 − 30. (in Chinese with English abstract)
[25] 张玉,徐卫亚,李德亮. 大型滑坡演化机制及滑带剪切特性试验研究[J]. 岩石力学与工程学报. 2013,32(1):2606 − 2616. [Zhang Yu,Xu Weiya,Li De-Liang. Experimental study on evolution mechanism of large-scale landslide and shear characteristics of sliding zone [J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(1):2606 − 2616. (in Chinese with English abstract)] Zhang Yu, Xu Weiya, Li De-Liang. Experimental study on evolution mechanism of large-scale landslide and shear characteristics of sliding zone [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(1): 2606 − 2616. (in Chinese with English abstract)
[26] 林锋,丁秀美,杨松. 滑带土强度对水的敏感性直剪试验研究[C]. 中国岩石力学与工程学会. 第八次全国岩石力学与工程学术大会论文集. 北京:科学出版社,2004. [Lin Feng,Ding Xiumei,Yang Song. Direct shear test study on the strength sensitivity of slip zone soil to water [C]. Chinese Society of Rock Mechanics and Engineering. Proceedings of the eighth National Conference on Rock Mechanics and Engineering. Beijing:Science Press,2004. (in Chinese with English abstract)] Lin Feng, Ding Xiumei, Yang Song. Direct shear test study on the strength sensitivity of slip zone soil to water [C]. Chinese Society of Rock Mechanics and Engineering. Proceedings of the eighth National Conference on Rock Mechanics and Engineering. Beijing: Science Press, 2004. (in Chinese with English abstract)
[27] 柏永岩,聂德新. 茨菇滑坡滑带土扰动样强度参数取值分析及滑坡稳定性评价[J]. 工程地质学报,2009,17(4):496 − 502. [BAI Yongyan,NIE Dexin. Strength of disturbed clay in sliding zone of Cigu landslide and associated stability analysis[J]. Journal of Engineering Geology,2009,17(4):496 − 502. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1004-9665.2009.04.010 BAI Yongyan, NIE Dexin. Strength of disturbed clay in sliding zone of Cigu landslide and associated stability analysis[J]. Journal of Engineering Geology, 2009, 17(4): 496 − 502. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2009.04.010
[28] 周永昆,魏作安,朱彬,等. 滑带土厚度及含水率对其强度参数的影响[J]. 中国地质灾害与防治学报,2010,21(2):25 − 29. [ZHOU Yongkun,WEI Zuoan,ZHU Bin,et al. Study on the effect about interlayer thickness and water content to the strength parameters of landslide soil[J]. The Chinese Journal of Geological Hazard and Control,2010,21(2):25 − 29. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1003-8035.2010.02.005 ZHOU Yongkun, WEI Zuoan, ZHU Bin, et al. Study on the effect about interlayer thickness and water content to the strength parameters of landslide soil[J]. The Chinese Journal of Geological Hazard and Control, 2010, 21(2): 25 − 29. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-8035.2010.02.005
[29] 林鹏,赵思健,李昂,等. 坡积土渗水软化对边坡稳定性的影响[J]. 工程勘察,2002,30(1):26 − 28. [LIN Peng,ZHAO Sijian,LI Ang,et al. Effect of infiltration into cliff debris on the stability of slope[J]. Geotechnical Investigation & Surveying,2002,30(1):26 − 28. (in Chinese with English abstract)] LIN Peng, ZHAO Sijian, LI Ang, et al. Effect of infiltration into cliff debris on the stability of slope[J]. Geotechnical Investigation & Surveying, 2002, 30(1): 26 − 28. (in Chinese with English abstract)
[30] 周春梅,赵子鹏,鲁阳. 含水量对滑带土强度变形参数及滑坡稳定性的影响[J]. 防灾减灾工程学报,2016,36(2):213 − 219. [ZHOU Chunmei,ZHAO Zipeng,LU Yang. The influence of water content on strength and deformation parameters of sliding zone and slope stability[J]. Journal of Disaster Prevention and Mitigation Engineering,2016,36(2):213 − 219. (in Chinese with English abstract)] ZHOU Chunmei, ZHAO Zipeng, LU Yang. The influence of water content on strength and deformation parameters of sliding zone and slope stability[J]. Journal of Disaster Prevention and Mitigation Engineering, 2016, 36(2): 213 − 219. (in Chinese with English abstract)
[31] 李险峰. 含水率对滑带土力学特性的影响研究[J]. 四川理工学院学报(自然科学版),2012,25(1):83 − 85. [32] 刘小丽,邓建辉,李广涛. 滑带土强度特性研究现状[J]. 岩土力学,2004,25(11):1849 − 1854. [LIU Xiaoli,DENG Jianhui,LI Guangtao. Shear strength properties of slip soils of landslides:an overview[J]. Rock and Soil Mechanics,2004,25(11):1849 − 1854. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2004.11.037 LIU Xiaoli, DENG Jianhui, LI Guangtao. Shear strength properties of slip soils of landslides: an overview[J]. Rock and Soil Mechanics, 2004, 25(11): 1849 − 1854. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2004.11.037
[33] 洪勇,孙涛,栾茂田,等. 土工环剪仪的开发及其应用研究现状[J]. 岩土力学,2009,30(3):628 − 634. [HONG Yong,SUN Tao,LUAN Maotian,et al. Development and application of geotechnical ring shear apparatus:an overview[J]. Rock and Soil Mechanics,2009,30(3):628 − 634. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2009.03.009 HONG Yong, SUN Tao, LUAN Maotian, et al. Development and application of geotechnical ring shear apparatus: an overview[J]. Rock and Soil Mechanics, 2009, 30(3): 628 − 634. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2009.03.009
[34] WEN B P,AYDIN A. Microstructural study of a natural slip zone:quantification and deformation history[J]. Engineering Geology,2003,68(3/4):289 − 317.
[35] YU Miao,HUANG Yu,DENG Wenbin,et al. Forecasting landslide mobility using an SPH model and ring shear strength tests:a case study[J]. Natural Hazards and Earth System Sciences,2018,18(12):3343 − 3353. DOI: 10.5194/nhess-18-3343-2018
[36] DEWOOLKAR M M,HUZJAK R J. Drained residual shear strength of some claystones from front range,Colorado[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(12):1543 − 1551. DOI: 10.1061/(ASCE)1090-0241(2005)131:12(1543)
[37] 孟颂颂,李德营,李仕波,等. 不同前期固结压力下粉砂类滑带土抗剪强度环剪试验研究[J]. 工程地质学报. 2016,(24):1355 − 1361. [Meng Songsong,Li Deying,Li Shibo,et al. Ring shear test on shear strength of silty slip-belt soil under different pre-consolidation pressures [J]. Chinese Journal of Engineering Geology,2016,(24):1355 − 1361. (in Chinese with English abstract)] Meng Songsong, Li Deying, Li Shibo, et al. Ring shear test on shear strength of silty slip-belt soil under different pre-consolidation pressures [J]. Chinese Journal of Engineering Geology, 2016, (24): 1355 − 1361. (in Chinese with English abstract)
[38] 胡静,张广浩,刘军. 三浙高速公路滑带土微观及残余强度特性研究[J]. 河南城建学院学报. 2019,28(4):39 − 44. [Hu Jing,Zhang Guanghao,Liu Jun. Study on micro and residual strength characteristics of slip-belt soil in Sanzhe Expressway [J]. Journal of Henan University of Urban Construction. 2019,28(4):39 − 44. (in Chinese with English abstract)] Hu Jing, Zhang Guanghao, Liu Jun. Study on micro and residual strength characteristics of slip-belt soil in Sanzhe Expressway [J]. Journal of Henan University of Urban Construction. 2019, 28(4): 39 − 44. (in Chinese with English abstract)
[39] 江强强,刘路路,焦玉勇,等. 干湿循环下滑带土强度特性与微观结构试验研究[J]. 岩土力学,2019,40(3):1005 − 1012. [JIANG Qiangqiang,LIU Lulu,JIAO Yuyong,et al. Strength properties and microstructure characteristics of slip zone soil subjected to wetting-drying cycles[J]. Rock and Soil Mechanics,2019,40(3):1005 − 1012. (in Chinese with English abstract)] JIANG Qiangqiang, LIU Lulu, JIAO Yuyong, et al. Strength properties and microstructure characteristics of slip zone soil subjected to wetting-drying cycles[J]. Rock and Soil Mechanics, 2019, 40(3): 1005 − 1012. (in Chinese with English abstract)
[40] 任三绍,张永双,徐能雄,等. 含砾滑带土残余强度与剪切面粗糙度的细观响应机制[J]. 岩土工程学报,2021,43(8):1473 − 1482. [REN Sanshao,ZHANG Yongshuang,XU Nengxiong,et al. Mesoscopic response mechanism of shear surface roughness and residual strength in gravelly sliding zone soils[J]. Chinese Journal of Geotechnical Engineering,2021,43(8):1473 − 1482. (in Chinese with English abstract)] DOI: 10.11779/CJGE202108012 REN Sanshao, ZHANG Yongshuang, XU Nengxiong, et al. Mesoscopic response mechanism of shear surface roughness and residual strength in gravelly sliding zone soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1473 − 1482. (in Chinese with English abstract) DOI: 10.11779/CJGE202108012
[41] KIMURA S,NAKAMURA S,VITHANA S B,et al. Shearing rate effect on residual strength of landslide soils in the slow rate range[J]. Landslides,2014,11(6):969 − 979. DOI: 10.1007/s10346-013-0457-6
[42] 高旭,晏鄂川,崔学杰. 应变速率对含砾滑带土抗剪强度影响研究[J]. 水文地质工程地质,2016,43(1):94 − 98. [GAO Xu,YAN EC,CUI Xuejie. Influence of strain rate to the shear strength of conglomeratic sliding-zone soil[J]. Hydrogeology & Engineering Geology,2016,43(1):94 − 98. (in Chinese with English abstract)] GAO Xu, YAN EC, CUI Xuejie. Influence of strain rate to the shear strength of conglomeratic sliding-zone soil[J]. Hydrogeology & Engineering Geology, 2016, 43(1): 94 − 98. (in Chinese with English abstract)
[43] 胡世英. 库区顺层滑坡滑带土残余强度变化机制分析[J]. 水利科学与寒区工程,2022,5(4):24 − 27. [Hu Shiying. Analysis on the change mechanism of residual strength of soil in bedding landslide zone in reservoir area[J]. Water Conservancy Science and Cold Area Engineering,2022,5(4):24 − 27. (in Chinese with English abstract)] DOI: 10.3969/j.issn.2096-5419.2022.04.007 Hu Shiying. Analysis on the change mechanism of residual strength of soil in bedding landslide zone in reservoir area[J]. Water Conservancy Science and Cold Area Engineering, 2022, 5(4): 24 − 27. (in Chinese with English abstract) DOI: 10.3969/j.issn.2096-5419.2022.04.007
[44] WEN B P,AYDIN A,DUZGOREN-AYDIN N S,et al. Residual strength of slip zones of large landslides in the Three Gorges Area,China[J]. Engineering Geology,2007,93(3/4):82 − 98.
[45] 朱兆波,王新刚,朱荣森,等. 甘肃黑方台黄土滑坡滑带土剪切特性环剪试验研究[J]. 干旱区资源与环境,2021,35(5):144 − 150. [ZHU Zhaobo,WANG Xingang,ZHU Rongsen,et al. Ring shear test on the shear characteristics of sliding zone soil of loess in Heifangtai,Gansu[J]. Journal of Arid Land Resources and Environment,2021,35(5):144 − 150. (in Chinese with English abstract)] ZHU Zhaobo, WANG Xingang, ZHU Rongsen, et al. Ring shear test on the shear characteristics of sliding zone soil of loess in Heifangtai, Gansu[J]. Journal of Arid Land Resources and Environment, 2021, 35(5): 144 − 150. (in Chinese with English abstract)
[46] 王明龙. 滑坡滑带土蠕变特性及其模型研究综述与展望[J]. 工程技术研究,2020,5(14):34 − 35. [WANG Minglong. State-of-the-art and prospect of the creep characteristics of slip soil and its models[J]. Engineering and Technological Research,2020,5(14):34 − 35. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-3818.2020.14.012 WANG Minglong. State-of-the-art and prospect of the creep characteristics of slip soil and its models[J]. Engineering and Technological Research, 2020, 5(14): 34 − 35. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-3818.2020.14.012
[47] 周静静,赵法锁,袁湘秦,等. 滑带土蠕变过程及微观结构演化分析[J]. 水文地质工程地质,2020,47(3):115 − 121. [ZHOU Jingjing,ZHAO Fasuo,YUAN Xiangqin,et al. Creep process and the microstructural evolution of sliding-zone soil[J]. Hydrogeology & Engineering Geology,2020,47(3):115 − 121. (in Chinese with English abstract)] ZHOU Jingjing, ZHAO Fasuo, YUAN Xiangqin, et al. Creep process and the microstructural evolution of sliding-zone soil[J]. Hydrogeology & Engineering Geology, 2020, 47(3): 115 − 121. (in Chinese with English abstract)
[48] 黄志全,李小慧,孙怡,等. 魏家沟滑坡滑带土非饱和蠕变特性试验研究[J]. 华北水利水电大学学报(自然科学版),2015,36(1):47 − 50. [HUANG Zhiquan,LI Xiaohui,SUN Yi,et al. Experimental research on unsaturated creep characteristics of slip soils in Weijiagou landslide[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition),2015,36(1):47 − 50. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1002-5634.2015.01.010 HUANG Zhiquan, LI Xiaohui, SUN Yi, et al. Experimental research on unsaturated creep characteristics of slip soils in Weijiagou landslide[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2015, 36(1): 47 − 50. (in Chinese with English abstract) DOI: 10.3969/j.issn.1002-5634.2015.01.010
[49] 张晓奇,胡新丽,刘忠绪,等. 呷爬滑坡滑带土蠕变特性及其稳定性[J]. 地质科技通报. 2020,39(6):145-153. [Zhang Xiaoqi,Hu Xinli,Liu Zhongxu,et al. Creep characteristics and stability of soil in Xiashan landslide slip zone [J]. Bulletin of Geological Science and Technology. 2019,39(6):145-153. (in Chinese with English abstract)] Zhang Xiaoqi, Hu Xinli, Liu Zhongxu, et al. Creep characteristics and stability of soil in Xiashan landslide slip zone [J]. Bulletin of Geological Science and Technology. 2019, 39(6): 145-153. (in Chinese with English abstract)
[50] 陈沛,王雁林,陈新建,等. 黄土-基岩滑坡滑带土蠕变本构模型研究[J]. 灾害学,2020,35(4):228 − 234. [CHEN Pei,WANG Yanlin,CHEN Xinjian,et al. Research on creep constitutive model of loess-basic landslide slip zone soil[J]. Journal of Catastrophology,2020,35(4):228 − 234. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-811X.2020.04.042 CHEN Pei, WANG Yanlin, CHEN Xinjian, et al. Research on creep constitutive model of loess-basic landslide slip zone soil[J]. Journal of Catastrophology, 2020, 35(4): 228 − 234. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-811X.2020.04.042
[51] TANG Hao,DUAN Zhao,WANG Dongpo,et al. Experimental investigation of creep behavior of loess under different moisture contents[J]. Bulletin of Engineering Geology and the Environment,2020,79(1):411 − 422. DOI: 10.1007/s10064-019-01545-8
[52] 蒋秀姿,宝萍. 缓慢复活型滑坡滑带土的蠕变性质与特征强度试验研究[J]. 岩土力学,2015,36(2):495 − 501. [JIANG Xiuzi,BAO Ping. Creep behavior of slip zone of reactivated slow-moving landslide and its characteristic strength[J]. Rock and Soil Mechanics,2015,36(2):495 − 501. (in Chinese with English abstract)] JIANG Xiuzi, BAO Ping. Creep behavior of slip zone of reactivated slow-moving landslide and its characteristic strength[J]. Rock and Soil Mechanics, 2015, 36(2): 495 − 501. (in Chinese with English abstract)
[53] 赖小玲,叶为民,王世梅. 滑坡滑带土非饱和蠕变特性试验研究[J]. 岩土工程学报,2012,34(2):286 − 293. [LAI Xiaoling,YE Weimin,WANG Shimei. Experimental study on unsaturated creep characteristics of landslide soils[J]. Chinese Journal of Geotechnical Engineering,2012,34(2):286 − 293. (in Chinese with English abstract)] LAI Xiaoling, YE Weimin, WANG Shimei. Experimental study on unsaturated creep characteristics of landslide soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2): 286 − 293. (in Chinese with English abstract)
[54] HU Wei,CHANG C S,MCSAVENEY M,et al. A weakening rheology of dry granular flows with extensive brittle grain damage in high-speed rotary shear experiments[J]. \grl,2020,47(11):e87763.
[55] 郭威. 滑带土蠕变本构模型综述[J]. 山西建筑,2022,48(4):82 − 88. [GUO W. Review on creep constitutive model of slip zone soil[J]. Shanxi Architecture,2022,48(4):82 − 88. (in Chinese with English abstract)] GUO W. Review on creep constitutive model of slip zone soil[J]. Shanxi Architecture, 2022, 48(4): 82 − 88. (in Chinese with English abstract)
[56] LI Chun,TANG Huiming,HAN Dawei,et al. Exploration of the creep properties of undisturbed shear zone soil of the Huangtupo landslide[J]. Bulletin of Engineering Geology and the Environment,2019,78(2):1237 − 1248. DOI: 10.1007/s10064-017-1174-5
[57] LAI X L,WANG S M,YE W M,et al. Experimental investigation on the creep behavior of an unsaturated clay[J]. Canadian Geotechnical Journal,2014,51(6):621 − 628. DOI: 10.1139/cgj-2013-0064
[58] 王鹏程,骆亚生,胡连信,等. 重塑黄土三轴蠕变特性研究及模型分析[J]. 岩土力学,2015,36(6):1627 − 1632. [WANG Pengcheng,LUO Yasheng,HU Lianxin,et al. Research on triaxial creep characteristics and models of remolded loess[J]. Rock and Soil Mechanics,2015,36(6):1627 − 1632. (in Chinese with English abstract)] WANG Pengcheng, LUO Yasheng, HU Lianxin, et al. Research on triaxial creep characteristics and models of remolded loess[J]. Rock and Soil Mechanics, 2015, 36(6): 1627 − 1632. (in Chinese with English abstract)
[59] 黄海峰,巨能攀,周新,等. 红层滑坡滑带土经验型蠕变模型研究[J]. 人民长江,2017,48(5):91 − 95. [HUANG Haifeng,JU Nengpan,ZHOU Xin,et al. Research on empirical creep model of red bed slip soil[J]. Yangtze River,2017,48(5):91 − 95. (in Chinese with English abstract)] HUANG Haifeng, JU Nengpan, ZHOU Xin, et al. Research on empirical creep model of red bed slip soil[J]. Yangtze River, 2017, 48(5): 91 − 95. (in Chinese with English abstract)
[60] 王力,王世梅,李高,等. 考虑渗流与蠕变耦合作用的水库滑坡变形数值分析[J]. 工程科学与技术,2020,52(1):66 − 74. [WANG Li,WANG Shimei,LI Gao,et al. Numerical analysis on deformation of reservoir landslides considering coupling effect of seepage and creep[J]. Advanced Engineering Sciences,2020,52(1):66 − 74. (in Chinese with English abstract)] WANG Li, WANG Shimei, LI Gao, et al. Numerical analysis on deformation of reservoir landslides considering coupling effect of seepage and creep[J]. Advanced Engineering Sciences, 2020, 52(1): 66 − 74. (in Chinese with English abstract)
[61] 郑俊,王世梅,周辉,等. 基于伯格模型的非饱和土蠕变模型构建[J]. 长江科学院院报,2019,36(8):112 − 118. [ZHENG Jun,WANG Shimei,ZHOU Hui,et al. A creep model of unsaturated soil based on burger’s model[J]. Journal of Yangtze River Scientific Research Institute,2019,36(8):112 − 118. (in Chinese with English abstract)] DOI: 10.11988/ckyyb.20180096 ZHENG Jun, WANG Shimei, ZHOU Hui, et al. A creep model of unsaturated soil based on burger’s model[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(8): 112 − 118. (in Chinese with English abstract) DOI: 10.11988/ckyyb.20180096
[62] 刘虎虎,缪海波,陈志伟,等. 三峡库区侏罗系顺层滑坡滑带土的剪切蠕变特性[J]. 岩土工程学报,2019,41(8):1573 − 1580. [LIU Huhu,MIAO Haibo,CHEN Zhiwei,et al. Shear creep behaviors of sliding-zone soil of bedding landslide in Jurassic stratum in Three Gorges Reservoir Area[J]. Chinese Journal of Geotechnical Engineering,2019,41(8):1573 − 1580. (in Chinese with English abstract)] DOI: 10.11779/CJGE201908024 LIU Huhu, MIAO Haibo, CHEN Zhiwei, et al. Shear creep behaviors of sliding-zone soil of bedding landslide in Jurassic stratum in Three Gorges Reservoir Area[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1573 − 1580. (in Chinese with English abstract) DOI: 10.11779/CJGE201908024
[63] 龙建辉,郭文斌,李萍,等. 黄土滑坡滑带土的蠕变特性[J]. 岩土工程学报,2010,32(7):1023 − 1028. [LONG Jianhui,GUO Wenbin,LI Ping,et al. Creep property of soil in sliding zone of loess landslide[J]. Chinese Journal of Geotechnical Engineering,2010,32(7):1023 − 1028. (in Chinese with English abstract)] LONG Jianhui, GUO Wenbin, LI Ping, et al. Creep property of soil in sliding zone of loess landslide[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7): 1023 − 1028. (in Chinese with English abstract)
[64] 胡新丽,孙淼军,唐辉明,等. 三峡库区马家沟滑坡滑体粗粒土蠕变试验研究[J]. 岩土力学,2014,35(11):3163 − 3169. [HU Xinli,SUN Miaojun,TANG Huiming,et al. Creep tests of gravel-soil of Majiagou landslide in Three Gorges Reservoir Area[J]. Rock and Soil Mechanics,2014,35(11):3163 − 3169. (in Chinese with English abstract)] HU Xinli, SUN Miaojun, TANG Huiming, et al. Creep tests of gravel-soil of Majiagou landslide in Three Gorges Reservoir Area[J]. Rock and Soil Mechanics, 2014, 35(11): 3163 − 3169. (in Chinese with English abstract)
[65] 李翔,程聪. 基于数值模拟的滑带土蠕变特性研究[J]. 安全与环境工程,2014,21(4):25 − 29. [LI Xiang,CHENG Cong. Numerical simulation on the creep property of slip soil[J]. Safety and Environmental Engineering,2014,21(4):25 − 29. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-1556.2014.04.006 LI Xiang, CHENG Cong. Numerical simulation on the creep property of slip soil[J]. Safety and Environmental Engineering, 2014, 21(4): 25 − 29. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1556.2014.04.006
[66] 王新刚,刘凯,王友林,等. 典型黄土滑坡滑带土不同含水率下蠕变特性试验研究[J]. 水文地质工程地质,2022,49(5):137 − 143. [WANG Xingang,LIU Kai,WANG Youlin,et al. An experimental study of the creep characteristics of loess landslide sliding zone soil with different water content[J]. Hydrogeology & Engineering Geology,2022,49(5):137 − 143. (in Chinese with English abstract)] WANG Xingang, LIU Kai, WANG Youlin, et al. An experimental study of the creep characteristics of loess landslide sliding zone soil with different water content[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 137 − 143. (in Chinese with English abstract)
[67] 严绍军,项伟,唐辉明,等. 大岩淌滑坡滑带土蠕变性质研究[J]. 岩土力学,2008,29(1):58 − 62. [YAN Shaojun,XIANG Wei,TANG Huiming,et al. Research on creep behavior of slip band soil of Dayantang landslide[J]. Rock and Soil Mechanics,2008,29(1):58 − 62. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2008.01.012 YAN Shaojun, XIANG Wei, TANG Huiming, et al. Research on creep behavior of slip band soil of Dayantang landslide[J]. Rock and Soil Mechanics, 2008, 29(1): 58 − 62. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2008.01.012
[68] LIU Xiaowei,ZHANG Xudong,FU Xiaogang,et al. Experimental study on creep characteristics of saturated Q2 loess[J]. Frontiers in Earth Science,2022,10:815275. DOI: 10.3389/feart.2022.815275
[69] 王者超,乔丽苹,李术才,等. 土的内变量蠕变模型研究[J]. 岩土工程学报,2011,33(10):1569 − 1575. [WANG Zhechao,QIAO Liping,LI (S /Z)C,et al. An internal-variable creep model for soils[J]. Chinese Journal of Geotechnical Engineering,2011,33(10):1569 − 1575. (in Chinese with English abstract)] WANG Zhechao, QIAO Liping, LI (S /Z)C, et al. An internal-variable creep model for soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1569 − 1575. (in Chinese with English abstract)
[70] 孙淼军,唐辉明,王潇弘,等. 蠕动型滑坡滑带土蠕变特性研究[J]. 岩土力学,2017,38(2):385 − 391. [SUN Miaojun,TANG Huiming,WANG Xiaohong,et al. Creep properties of sliding-zone soil from a creeping landslide[J]. Rock and Soil Mechanics,2017,38(2):385 − 391. (in Chinese with English abstract)] SUN Miaojun, TANG Huiming, WANG Xiaohong, et al. Creep properties of sliding-zone soil from a creeping landslide[J]. Rock and Soil Mechanics, 2017, 38(2): 385 − 391. (in Chinese with English abstract)
[71] KARIMPOUR H,LADE P V. Creep behavior in Virginia Beach sand[J]. Canadian Geotechnical Journal,2013,50(11):1159 − 1178. DOI: 10.1139/cgj-2012-0467
[72] TANG Huiming,ZOU Zongxing,XIONG Chengren,et al. An evolution model of large consequent bedding rockslides,with particular reference to the Jiweishan rockslide in Southwest China[J]. Engineering Geology,2015,186:17 − 27. DOI: 10.1016/j.enggeo.2014.08.021
[73] 龙建辉,李同录,雷晓锋,等. 黄土滑坡滑带土的物理特性研究[J]. 岩土工程学报,2007,29(2):289 − 293. [LONG Jianhui,LI Tonglu,LEI Xiaofeng,et al. Study on physical properties of soil in sliding zone of loess landslip[J]. Chinese Journal of Geotechnical Engineering,2007,29(2):289 − 293. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-4548.2007.02.023 LONG Jianhui, LI Tonglu, LEI Xiaofeng, et al. Study on physical properties of soil in sliding zone of loess landslip[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 289 − 293. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-4548.2007.02.023
[74] 辛鹏,吴树仁,石菊松,等. 黄土高原渭河宝鸡段北岸大型深层滑坡动力学机制研究[J]. 地质学报,2014,88(7):1341 − 1352. [XIN Peng,WU Shuren,SHI Jusong,et al. Research on kinematics and dynamic mechanism of large-scale deep-seated landslide on the north bank of Baoji stream segment of Weihe River in Loess Plateau[J]. Acta Geologica Sinica,2014,88(7):1341 − 1352. (in Chinese with English abstract)] XIN Peng, WU Shuren, SHI Jusong, et al. Research on kinematics and dynamic mechanism of large-scale deep-seated landslide on the north bank of Baoji stream segment of Weihe River in Loess Plateau[J]. Acta Geologica Sinica, 2014, 88(7): 1341 − 1352. (in Chinese with English abstract)
[75] 罗浩,伍法权,王定伟,等. 赵家岸滑坡地区马兰黄土物理力学特性试验研究[J]. 工程地质学报,2015,23(1):44 − 51. [LUO Hao,WU Faquan,WANG Dingwei,et al. Physical and mechanical properties of Malan loess at zhaojiaan landslide area[J]. Journal of Engineering Geology,2015,23(1):44 − 51. (in Chinese with English abstract)] LUO Hao, WU Faquan, WANG Dingwei, et al. Physical and mechanical properties of Malan loess at zhaojiaan landslide area[J]. Journal of Engineering Geology, 2015, 23(1): 44 − 51. (in Chinese with English abstract)
[76] 许领,戴福初. 泾阳南塬黄土滑坡特征参数统计分析[J]. 水文地质工程地质,2008,35(5):28 − 32. [XU Ling,DAI Fuchu. Statistical analysis of the characteristic parameters of loess landslides at the South Jingyang Plateau[J]. Hydrogeology & Engineering Geology,2008,35(5):28 − 32. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-3665.2008.05.007 XU Ling, DAI Fuchu. Statistical analysis of the characteristic parameters of loess landslides at the South Jingyang Plateau[J]. Hydrogeology & Engineering Geology, 2008, 35(5): 28 − 32. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3665.2008.05.007
[77] 唐辉明,鲁莎. 三峡库区黄土坡滑坡滑带空间分布特征研究[J]. 工程地质学报,2018,26(1):129 − 136. [TANG Huiming,LU Sha. Research on the spatial distribution of slip zone of huangtupo landslide in Three Gorges Reservoir Area[J]. Journal of Engineering Geology,2018,26(1):129 − 136. (in Chinese with English abstract)] TANG Huiming, LU Sha. Research on the spatial distribution of slip zone of huangtupo landslide in Three Gorges Reservoir Area[J]. Journal of Engineering Geology, 2018, 26(1): 129 − 136. (in Chinese with English abstract)
[78] 杨校辉,周廷昱,刁显锋,等. 江水冲刷与降雨耦合作用下堆积体滑坡模型试验[J]. 兰州大学学报(自然科学版),2022,58(4):483 − 491. [YANG Xiaohui,ZHOU Tingyu,DIAO Xianfeng,et al. A model test of accumulation landslide under the coupling effect of river erosion and rainfall[J]. Journal of Lanzhou University (Natural Sciences),2022,58(4):483 − 491. (in Chinese with English abstract)] YANG Xiaohui, ZHOU Tingyu, DIAO Xianfeng, et al. A model test of accumulation landslide under the coupling effect of river erosion and rainfall[J]. Journal of Lanzhou University (Natural Sciences), 2022, 58(4): 483 − 491. (in Chinese with English abstract)
[79] 任占强,宋章,林棋文,等. 滑坡碎屑化运动物理模型相似材料特性研究[J]. 水文地质工程地质,2021,48(2):132 − 142. [REN Zhanqiang,SONG Zhang,LIN Qiwen,et al. A study of the similar material characteristics of fragmenting rock mass physical model[J]. Hydrogeology & Engineering Geology,2021,48(2):132 − 142. (in Chinese with English abstract)] REN Zhanqiang, SONG Zhang, LIN Qiwen, et al. A study of the similar material characteristics of fragmenting rock mass physical model[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 132 − 142. (in Chinese with English abstract)
[80] 杨登芳,胡新丽,徐楚,等. 基于物理模型试验的多层滑带滑坡变形演化特征[J]. 地质科技通报,2022,41(2):300 − 308. [Yang Dengfang,Hu Xin-Li,Xu Chu,et al. Evolution characteristics of multi-layer slip zone landslide deformation based on physical model test[J]. Bulletin of Geological Science and Technology,2022,41(2):300 − 308. (in Chinese with English abstract)] Yang Dengfang, Hu Xin-Li, Xu Chu, et al. Evolution characteristics of multi-layer slip zone landslide deformation based on physical model test[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 300 − 308. (in Chinese with English abstract)
[81] 钟源,李远耀,殷坤龙,等. 基于物理模型试验的厚层堆积层滑坡强降雨触发机制[J]. 地球科学,1–14. [Zhong Yuan,LI Yuan-Yao,Yin Kun-Long,et al. Trigger mechanism of heavy rainfall in landslide of thick accumulation layer based on physical model test [J]. Earth Science,1-14. (in Chinese with English abstract)] Zhong Yuan, LI Yuan-Yao, Yin Kun-Long, et al. Trigger mechanism of heavy rainfall in landslide of thick accumulation layer based on physical model test [J]. Earth Science, 1-14. (in Chinese with English abstract)
[82] 王旋,胡新丽,周昌,等. 基于物理模型试验的滑坡-抗滑桩位移场变化特征[J]. 地质科技通报,2020,39(4):103 − 108. [Wang Xuan,Hu XL,Zhou Chang,et al. Change characteristics of displacement field of landslide-anti-slide pile based on physical model test[J]. Bulletin of Geological Science and Technology,2020,39(4):103 − 108. (in Chinese with English abstract)] Wang Xuan, Hu XL, Zhou Chang, et al. Change characteristics of displacement field of landslide-anti-slide pile based on physical model test[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 103 − 108. (in Chinese with English abstract)
[83] ZOU Zongxing,YAN Junbiao,TANG Huiming,et al. A shear constitutive model for describing the full process of the deformation and failure of slip zone soil[J]. Engineering Geology,2020,276:105766. DOI: 10.1016/j.enggeo.2020.105766
[84] 刘洋,王锐. 两种非严格条分法在山区公路滑坡稳定性计算中的应用研究[A]. 2018年全国工程勘察学术大会论文集[C]. 中国建筑学会工程勘察分会、全国建筑工程勘察科技情报网、全国建工勘察科技情报网华北站,2018:484 − 488. [LIU Yang,WANG Rui. Application of two non-strict strip methods to landslide stability calculation in mountainous areas[A]. Proceedings of the 2018 National Engineering Investigation Conference[C]. China Architectural Society Engineering Survey Branch,National Construction Engineering Survey Science and Technology Information Network,North China Station of National Construction Engineering Survey Science and Technology Information Network,2018:484 − 488. (in Chinese with English abstract)] LIU Yang, WANG Rui. Application of two non-strict strip methods to landslide stability calculation in mountainous areas[A]. Proceedings of the 2018 National Engineering Investigation Conference[C]. China Architectural Society Engineering Survey Branch, National Construction Engineering Survey Science and Technology Information Network, North China Station of National Construction Engineering Survey Science and Technology Information Network, 2018: 484 − 488. (in Chinese with English abstract)
[85] 霍善欣,王新刚,薛晨,等. 熵权法改进的模糊数学滑坡稳定性评价方法研究[J]. 中国地质灾害与防治学报. 2024,35(1):19 − 27. [Huo Shanxin,Wang Xingang,Xue Chen,et al. Study on the stability evaluation method of fuzzy mathematical landslide improved by entropy weight method [J]. The Chinese Journal of Geological Hazards and Control. 2024,35(1):19 − 27. (in Chinese with English abstract)] Huo Shanxin, Wang Xingang, Xue Chen, et al. Study on the stability evaluation method of fuzzy mathematical landslide improved by entropy weight method [J]. The Chinese Journal of Geological Hazards and Control. 2024, 35(1): 19 − 27. (in Chinese with English abstract)
[86] 肖松春. 滑坡稳定性计算和滑坡稳定性量化评分方法的适用性对比研究——以湖南衡东某风电场公路切坡为例[J]. 水文地质工程地质,2018,45(3):159 − 164. [XIAO Songchun. Comparison of the landslide stability calculation and landslide stability evaluation method:a case of the cutting slope of a wind farm in Hengdong,Hunan[J]. Hydrogeology & Engineering Geology,2018,45(3):159 − 164. (in Chinese with English abstract)] XIAO Songchun. Comparison of the landslide stability calculation and landslide stability evaluation method: a case of the cutting slope of a wind farm in Hengdong, Hunan[J]. Hydrogeology & Engineering Geology, 2018, 45(3): 159 − 164. (in Chinese with English abstract)
[87] MIGNELLI C,LO RUSSO S,PEILA D. ROckfall risk MAnagement assessment:the RO. MA. approach[J]. Natural Hazards,2012,62(3):1109 − 1123. DOI: 10.1007/s11069-012-0137-1
[88] MINEO S,PAPPALARDO G,D’URSO A,et al. Event tree analysis for rockfall risk assessment along a strategic mountainous transportation route[J]. Environmental Earth Sciences,2017,76(17):620. DOI: 10.1007/s12665-017-6958-1
[89] 秦四清. 斜坡失稳过程的非线性演化机制与物理预报[J]. 岩土工程学报,2005,27(11):1241 − 1248. [QIN Siqing. Nonlinear evolutionary mechanisms and physical prediction of instability of planar-slip slope[J]. Chinese Journal of Geotechnical Engineering,2005,27(11):1241 − 1248. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-4548.2005.11.001 QIN Siqing. Nonlinear evolutionary mechanisms and physical prediction of instability of planar-slip slope[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 1241 − 1248. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-4548.2005.11.001
[90] CHEN Hongran,QIN Siqing,XUE Lei,et al. A physical model predicting instability of rock slopes with locked segments along a potential slip surface[J]. Engineering Geology,2018,242:34 − 43. DOI: 10.1016/j.enggeo.2018.05.012
[91] XUE Lei,QIN Siqing,LI Pei,et al. New quantitative displacement criteria for slope deformation process:from the onset of the accelerating creep to brittle rupture and final failure[J]. Engineering Geology,2014,182:79 − 87. DOI: 10.1016/j.enggeo.2014.08.007
[92] 秦四清,王媛媛,马平. 崩滑灾害临界位移演化的指数律[J]. 岩石力学与工程学报,2010,29(5):873 − 880. [QIN Siqing,WANG Yuanyuan,MA Ping. Exponential laws of critical displacement evolution or landslides and avalanches[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(5):873 − 880. (in Chinese with English abstract)] QIN Siqing, WANG Yuanyuan, MA Ping. Exponential laws of critical displacement evolution or landslides and avalanches[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5): 873 − 880. (in Chinese with English abstract)
[93] FEDERICO A,POPESCU M,ELIA G,et al. Prediction of time to slope failure:a general framework[J]. Environmental Earth Sciences,2012,66(1):245 − 256. DOI: 10.1007/s12665-011-1231-5
[94] M S. Forecasting the time of occurrence of a slope failure. [J]. Proc. 6 th Int. Conf. Soil Mechanics and Foundation Eng. 1965:537–541.
[95] VOIGHT B. A method for prediction of volcanic eruptions[J]. Nature,1988,332:125 − 130. DOI: 10.1038/332125a0
[96] SEGALINI A,VALLETTA A,CARRI A. Landslide time-of-failure forecast and alert threshold assessment:a generalized criterion[J]. Engineering Geology,2018,245:72 − 80. DOI: 10.1016/j.enggeo.2018.08.003
[97] ROSE N D,HUNGR O. Forecasting potential rock slope failure in open pit mines using the inverse-velocity method[J]. International Journal of Rock Mechanics and Mining Sciences,2007,44(2):308 − 320. DOI: 10.1016/j.ijrmms.2006.07.014
[98] Qin SQ,Xu XW,Hu P,et al. Brittle failure mechanism of multiple locked patches in a seismogenic fault system and exploration on a new way for earthquake prediction[J]. Chinese Journal of Geophysics,Chinese Journal of Geophysics. 2010,53(4):1001–1014.
[99] YAN Junbiao,ZOU Zongxing,MU Rui,et al. Evaluating the stability of Outang landslide in the Three Gorges Reservoir Area considering the mechanical behavior with large deformation of the slip zone[J]. Natural Hazards,2022,112(3):2523 − 2547. DOI: 10.1007/s11069-022-05276-0
[100] TANG Huiming,ZOU Zongxing,XIONG Chengren,et al. An evolution model of large consequent bedding rockslides,with particular reference to the Jiweishan rockslide in Southwest China[J]. Engineering Geology,2015,186:17 − 27. DOI: 10.1016/j.enggeo.2014.08.021
[101] ZHANG Shilin,ZHU Zhaohui,QI Shunchao,et al. Deformation process and mechanism analyses for a planar sliding in the Mayanpo massive bedding rock slope at the Xiangjiaba Hydropower Station[J]. Landslides,2018,15(10):2061 − 2073. DOI: 10.1007/s10346-018-1041-x
[102] LU C Y,TANG C L,CHAN Yuchang,et al. Forecasting landslide hazard by the 3D discrete element method:a case study of the unstable slope in the Lushan hot spring district,central [◆◆◆Taiwan◆◆◆][J]. Engineering Geology,2014,183:14 − 30. DOI: 10.1016/j.enggeo.2014.09.007
[103] WU Jianhong,LIN Weikang,HU H T. Assessing the impacts of a large slope failure using 3DEC:the Chiu-Fen-erh-Shan residual slope[J]. Computers and Geotechnics,2017,88:32 − 45. DOI: 10.1016/j.compgeo.2017.03.002
[104] 郑博宁,丁大勇,张丹,等. 含砾滑带土三维颗粒流模型建模方法研究[J]. 工程地质学报,2019,27(3):569 − 576. [ZHENG Boning,DING Dayong,ZHANG Dan,et al. Ct scanning and pfc modeling combined 3d method for gravel-bearing slip soil[J]. Journal of Engineering Geology,2019,27(3):569 − 576. (in Chinese with English abstract)] ZHENG Boning, DING Dayong, ZHANG Dan, et al. Ct scanning and pfc modeling combined 3d method for gravel-bearing slip soil[J]. Journal of Engineering Geology, 2019, 27(3): 569 − 576. (in Chinese with English abstract)
[105] 吴剑,冯夏庭. 高速剪切条件下土的颗粒流模拟[J]. 岩石力学与工程学报,2008(增刊1):3064 − 3069. [WU Jian,FENG Xiating. Particle flow simulation of soil under high speed shear[J]. Chinese Journal of Rock Mechanics and Engineering,2008(S1):3064 − 3069. (in Chinese with English abstract)] WU Jian, FENG Xiating. Particle flow simulation of soil under high speed shear[J]. Chinese Journal of Rock Mechanics and Engineering, 2008(S1): 3064 − 3069. (in Chinese with English abstract)
[106] ŽIC E,ARBANAS,BIĆANIĆ N,et al. A model of mudflow propagation downstream from the Grohovo landslide near the city of Rijeka (Croatia)[J]. Natural Hazards and Earth System Sciences,2015,15(2):293 − 313. DOI: 10.5194/nhess-15-293-2015
[107] 王学滨,白雪元,张博闻,等. 基于数字图像相关方法的单轴压缩黏土试样剪切带剪胀实验研究[J]. 工程地质学报,2018,26(4):882 − 890. [WANG Xuebin,BAI Xueyuan,ZHANG Bowen,et al. Experimental studies of shear dilatancy of shear bands for wet clay specimens in uniaxial compression using digital image correlation method[J]. Journal of Engineering Geology,2018,26(4):882 − 890. (in Chinese with English abstract)] WANG Xuebin, BAI Xueyuan, ZHANG Bowen, et al. Experimental studies of shear dilatancy of shear bands for wet clay specimens in uniaxial compression using digital image correlation method[J]. Journal of Engineering Geology, 2018, 26(4): 882 − 890. (in Chinese with English abstract)
[108] 许强,朱星,李为乐,等. “天-空-地”协同滑坡监测技术进展[J]. 测绘学报,2022,51(7):1416 − 1436. [XU Q,ZHU X,LI W L,et al. Progress of "space-space-ground" collaborative landslide monitoring technology[J]. Journal of Surveying and Mapping,2022,51(7):1416 − 1436. (in Chinese with English abstract)] DOI: 10.11947/j.issn.1001-1595.2022.7.chxb202207027 XU Q, ZHU X, LI W L, et al. Progress of "space-space-ground" collaborative landslide monitoring technology[J]. Journal of Surveying and Mapping, 2022, 51(7): 1416 − 1436. (in Chinese with English abstract) DOI: 10.11947/j.issn.1001-1595.2022.7.chxb202207027
[109] 唐辉明,李长冬,龚文平,等. 滑坡演化的基本属性与研究途径[J]. 地球科学,2022,47(12):4596 − 4608. [TANG Huiming,Li Changdong,Gong Wenping,et al. Basic properties and research approaches of landslide evolution[J]. Earth Science,2022,47(12):4596 − 4608. (in Chinese with English abstract)] TANG Huiming, Li Changdong, Gong Wenping, et al. Basic properties and research approaches of landslide evolution[J]. Earth Science, 2022, 47(12): 4596 − 4608. (in Chinese with English abstract)
[110] 李长冬,谭钦文,动水驱动型滑坡物理启滑能够预测吗?[J]. 地球科学,2022,47(10):3908 − 3910. [Li Changdong,Tan Qin-Wen,Can the physical initiation of landslides driven by moving water be predicted? [J]. Earth Science,2022,47(10):3908 − 3910. (in Chinese with English abstract)] Li Changdong, Tan Qin-Wen, Can the physical initiation of landslides driven by moving water be predicted? [J]. Earth Science, 2022, 47(10): 3908 − 3910. (in Chinese with English abstract)
[111] 李长冬,龙晶晶,姜茜慧,等. 水库滑坡成因机制研究进展与展望[J]. 地质科技通报,2020,39(1):67 − 77. [Li Changdong,Long Jingjing,Jiang Xihui,et al. Advance and prospect of formation mechanism for reservoir landslides[J]. Bulletin of Geological Science and Technology,2020,39(1):67 − 77. (in Chinese with English abstract)] Li Changdong, Long Jingjing, Jiang Xihui, et al. Advance and prospect of formation mechanism for reservoir landslides[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 67 − 77. (in Chinese with English abstract)