ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

基于滑坡破坏模式分析的易发性评价以三峡库区首段泄滩河左岸为例

朱宇航, 黄海峰, 殷坤龙, 郭子正, 郭飞, 赖鹏

朱宇航,黄海峰,殷坤龙,等. 基于滑坡破坏模式分析的易发性评价−以三峡库区首段泄滩河左岸为例[J]. 中国地质灾害与防治学报,2023,34(2): 156-166. DOI: 10.16031/j.cnki.issn.1003-8035.202112035
引用本文: 朱宇航,黄海峰,殷坤龙,等. 基于滑坡破坏模式分析的易发性评价−以三峡库区首段泄滩河左岸为例[J]. 中国地质灾害与防治学报,2023,34(2): 156-166. DOI: 10.16031/j.cnki.issn.1003-8035.202112035
ZHU Yuhang,HUANG Haifeng,YIN Kunlong,et al. Evaluation of landslide susceptibility based on landslide failure mode analysis: A case study of the left bank of Xietan River in the first section of Three Gorges Reservoir[J]. The Chinese Journal of Geological Hazard and Control,2023,34(2): 156-166. DOI: 10.16031/j.cnki.issn.1003-8035.202112035
Citation: ZHU Yuhang,HUANG Haifeng,YIN Kunlong,et al. Evaluation of landslide susceptibility based on landslide failure mode analysis: A case study of the left bank of Xietan River in the first section of Three Gorges Reservoir[J]. The Chinese Journal of Geological Hazard and Control,2023,34(2): 156-166. DOI: 10.16031/j.cnki.issn.1003-8035.202112035

基于滑坡破坏模式分析的易发性评价——以三峡库区首段泄滩河左岸为例

基金项目: 国家自然科学基金项目 (42107489);水电工程智能视觉监测湖北省重点实验室开放基金项目(2020SDSJ02);三峡库区地质灾害教育部重点实验室开放基金项目(2020KDZ09)
详细信息
    作者简介:

    朱宇航(1999-),男,硕士,主要从事地质灾害风险评价方面的研究工作。E-mail:cugzyh@cug.edu.cn

    通讯作者:

    黄海峰(1978-),男,博士,教授,主要从事地质灾害监测防治等方面的教学与科研工作。E-mail:hhf@ctgu.edu.cn

  • 中图分类号: P642.22

Evaluation of landslide susceptibility based on landslide failure mode analysis: A case study of the left bank of Xietan River in the first section of Three Gorges Reservoir

  • 摘要: 三峡库区首段发育有大量岩质滑坡,其中很多灾害点极具隐蔽性且目前并未被查明。文中以三峡库区首段泄滩河左岸为研究区,以区内唯一破坏的卡门子湾顺层岩质滑坡为例,在分析其成因机制的基础上归纳总结了该地区顺层岩质滑坡的破坏模式,并以此确定了高程、坡度、坡向、起伏度、平面曲率、剖面曲率、地层岩性、距河流距离及距道路距离共9个评价指标因子及疑似滑坡隐患点,将这些灾害隐患点作为滑坡样本,运用ALSA模型开展研究区的滑坡易发性分区,最后采用ROC曲线及现场复查等方法验证评价结果的可靠性。预测结果表明:研究区内顺层岩质滑坡的极高易发区和较高易发区大致呈面状分布,主要集中在岩性为侏罗系中统上沙溪庙组紫红色泥岩夹砂岩和西北坡向的近库岸地区。现场验证发现易发分区结果与滑坡破坏模式分布规律较吻合,表明基于滑坡破坏模式选择滑坡样本得到的滑坡易发性结果在整体上也能反映研究区滑坡概率空间分布规律,在缺乏准确滑坡样本时可作为一种替补方案。上述研究结果为基于滑坡破坏模式选取滑坡样本开展易发性评价工作提供了理论支持和科学依据。
    Abstract: There are a large number of rock landslide disasters developed in the first section of the Three Gorges Reservoir area, many of which are very hidden and have not been identified. In this paper, taking the left bank of Xietan River in the first section of the Three Gorges Reservoir as the study area, taking the only bedding rock landslide in Kamenziwan as an example, the failure mode of bedding rock landslide in this area is summarized on the basis of analyzing its genesis mechanism. Nine evaluation index factors, including elevation, slope aspect, slope, relief, plane curvature, profile curvature, formation lithology, distance from river and distance from road, as well as suspected hidden danger points of landslide disaster are determined. These hidden danger points are taken as landslide samples. Automatic Landside Susceptibility Assessment Model (ALSA) was used to carry out landslide Susceptibility zoning in the study area. Finally, ROC curve and field review were used to verify the reliability of the evaluation results. The prediction results show that the extremely high and highly prone areas of bedding rock landslides in the study area are distributed in a plane shape, mainly concentrated in the middle Jurassic Upper Shaximiao Formation purplish red mudstone intercalated sandstone, and the northwest slope direction near the reservoir bank area. Field verification shows that the results of prone zoning are consistent with the distribution law of landslide failure mode, indicating that the landslide susceptibility results obtained by selecting landslide samples based on landslide failure mode can also reflect the spatial distribution law of landslide probability in the study area on the whole, and can be used as a substitute scheme in the absence of accurate landslide samples. The above research results provide theoretical support and scientific basis for selecting landslide samples to carry out vulnerability assessment based on landslide failure mode.
  • 滑坡监测预警是有效减少人员伤亡和财产损失的重要防灾措施之一。近年来随着滑坡监测技术的不断发展,InSAR[12]、三维激光[34]、无人机摄影测量[56]等非接触型边坡监测技术应运而生,可以获取滑坡任意区域的变形数据,但受制于无法进行实时数据分析,一般用于滑坡隐患识别,而对于有实时监测预警需求的滑坡灾害,则主要依靠直接接触的变形监测技术,如裂缝计[78]、GNSS[910]等,通过直观可靠的地表变形监测,分析滑坡变形发展趋势进行预警[1112],如近年来广泛应用的切线角预警模型构建的滑坡变形预警技术,成为了实现滑坡实时预警的可靠手段[13]。这类监测技术应用过程中,GNSS设备因其良好的全天候、多方向监测能力得到了广泛的应用,成为滑坡变形监测最主要的设备之一[14]

    GNSS设备应用于滑坡变形监测时,监测精度可达毫米级,常见误差在±5 mm左右[15],但在受天气或设备本身定位解算异常影响时GNSS变形数据也可能出现异常波动,导致根据变形量计算的滑坡变形速率产生明显震荡,引起边坡变形监测的误报。因此,针对监测数据误差问题,一些学者提出了各种方法对变形量监测数据进行过滤,以还原滑坡实际变形速率,包括采用Kalman滤波及其改进[1618]、神经网络法[1922]、小波降噪法及其改进[2325]等,这些方法都能在事后较好地平滑变形数据,并且过滤后的数据趋势也与滑坡实际变形趋势基本相符,但这类方法需要大量的前期数据进行分析,无法真正应用到滑坡的实时预警中。由此,部分学者开始应用具有一定实时数据处理能力的解析式过滤方法,如各类最小二乘和回归拟合[2627]、移动平均法[28]等,以实现变形数据的实时过滤。其中,最小二乘法由于同时考虑了时间序列的影响,相对于移动平均能更真实地还原出滑坡变形发展趋势,得到了更好的应用。

    在基于GNSS监测的滑坡变形数据实时过滤过程中,由于GNSS偶然误差的影响,会导致常规最小二乘法过滤时无法有效剔除异常值,导致预警误报的发生,而目前单一的过滤方法都无法实现较好的过滤,因此,解决变形数据的实时过滤问题,并实现异常误差值的实时剔除,是还原真实滑坡变形数据的重要支撑,也是实现滑坡变形真正实时有效预警的关键。

    GNSS获取的滑坡变形量误差一般可分为两类,分别是精度误差和偶然误差(图1)。其中,由于设备定位精度影响导致获得的变形量在一定范围内反复波动的误差为精度误差,具有一定的规律和波动幅度;而偶然误差则是由于各类原因导致GNSS设备定位准确度产生的较大偏差,使变形量监测中出现偶发的异常大跳点。在这两类误差影响下,GNSS设备获得的滑坡变形量数据呈现明显的波动,而根据变形量直接计算的滑坡变形速率也呈显著的规律波动和异常抖动,难以进行可靠的变形预警。

    图  1  常见GNSS误差特征
    Figure  1.  common GNSS error characteristics

    对于GNSS设备的变形误差过滤,都是选取一定数量的最新数据,采用各种过滤方法对获得的变形量数据进行实时过滤。而在滑坡变形监测过程中,影响数据过滤效果的最重要因素是数据的选取数量。不同的过滤方法在过滤数据数量不同时,过滤效果也不同。数据选取量越少,平滑后的偏差波动越大;数据选取量越多,平滑效果越好,但对于真正加速后产生的变形量增大则不容易及时识别。目前对于变形量数据的选取数量并没有统一的标准,主要根据经验选取一定数量的变形数据进行平滑,但两者之间应当有一个最佳平衡点,即在确保较好的数据偏差过滤效果的前提下,选取的数据数量最少以减小延迟。同时,还应当考虑不同GNSS设备或区域的差异,构建具有一定普适性的变形数据选取数量,以实现针对这类设备的通用变形数据量选用。

    对于GNSS的变形量精度误差的过滤,目前有很多方法都可以较好地实现数据过滤,如移动平均法、最小二乘法等,其中最小二乘过滤方法简单,拟合后直线斜率为滑坡变形速率,且拟合数据同时考虑了变形量时间序列,在监测频率变化时不会出现局部大幅度波动[29]。因此,本文以常见的最小二乘法过滤为基础,通过搜集国内不同区域、不同型号的GNSS设备获取的边坡不同监测频率的变形量数据进行分析(图2)。通过选取相同长度时间内边坡未产生明显变形的GNSS合位移监测数据,并比较不同数据量选用下的变形量过滤偏差大小的规律,具体方法为:采用不同数量的数据进行最小二乘拟合,获得拟合后的直线位移,并计算其与实际位移量之间的最大偏差值,然后按时间依次向前推进,继续进行最小二乘拟合,并不断计算拟合位移量与实际位移量之间的最大偏差值,最终获得整个时间段上的最大偏移量值。最小二乘拟合的数据量需大于3组,因此分别采用3组~80组数据作为数据选择总量各自进行拟合,最终建立不同数据总量与拟合后最大数据偏差量之间的关系(图3)。

    图  2  不同区域和不同类型的GNSS监测数据
    Figure  2.  GNSS monitoring data across various regions and types
    图  3  过滤尺度确定方法示意图
    Figure  3.  Schematic diagram of filter scale determination method

    通过对比了甘肃省黑方台陈家3#滑坡(监测频率30 min)、江西省弋阳县三县岭滑坡(监测频率1 h)、四川省理县薛城镇滑坡(监测频率1 h)和云南省丽江市华丽高速边坡(监测频率5 min)4个区域不同监测频率的GNSS监测数据过滤效果的偏差关系发现(图4),整体上GNSS监测数据随着拟合采用的数据总数量增多,拟合后的最大偏差值呈逐渐减小的趋势。不同类型的GNSS监测数据都具有大体相同的减小规律,即整体上随着拟合采用的数据总数量增多,GNSS的最大偏差降低程度可以分为三个阶段:快速降低(数据量3~15)、震荡降低(数据量16~40)、缓慢降低(数据量>40)。在快速降低阶段,随着拟合数据量的不断增多,拟合后的GNSS变形数据最大偏差值呈大幅度下降的特征,数据量越多,偏差降低越明显;在震荡降低阶段,拟合后的GNSS变形数据最大偏差值呈波动下降的特征,整体上随着数据量的增多偏差呈较大幅度降低,同时中间也出现明显的震荡区域,即随着数据量的增多,最大偏差值可能出现小幅度的增大,随后再继续降低;在缓慢降低阶段,随着拟合数据量的继续增多,拟合后的GNSS变形数据最大偏差值呈缓慢下降的特征,如拟合数据总数量增加一倍,从40组数据增加至80组数据时,所有GNSS的最大偏移量降低幅度仅约20%,偏差值的过滤效果并不好。

    图  4  GNSS监测数据过滤效果的偏差关系
    Figure  4.  Deviation relationship in GNSS monitoring data filtering effects

    由此可见,对于常见的GNSS监测数据的过滤,可以以快速降低和震荡降低两阶段过滤效果为参考,选用缓慢降低阶段起点的40个数据量进行数据过滤。为了进一步明确该选取值是否有较好的适用性,通过现有甘肃省黑方台陈家3#滑坡和云南省丽江市华丽高速边坡的监测数据按照每小时1组提取进行修正,采用相同过滤方法对比不同监测频率下相同边坡的数据过滤规律(图5)。通过对比发现,GNSS变形监测数据表现出的过滤阶段与频率无显著关系,不同监测频率下仍然可以采用相同的三阶段进行划分,在大约40个数据量时也处于缓慢降低阶段的起点。而不同频率对GNSS变形监测数据的过滤效果差异主要在于偏差的降低幅度,这是由于监测频率过高使得数据量过于集中,在局部时段内GNSS误差呈整体偏大或偏小时,导致整个数据的偏差过滤都出现一定的偏差。而当监测频率大幅降低时,数据量间的持续时间变长,会克服局部时间段区域内数据整体偏大或偏小的问题,因此总体偏差降低幅度会增加,如图5中云南省丽江市华丽高速边坡GNSS监测频率从5 min降低至1 h时,同样的80组数据对应的时间段也从400 min变成80 h,对应了偏差降低幅度也从60%增加至85%。

    图  5  不同频率下的GNSS监测数据过滤效果的偏差关系
    Figure  5.  Deviation relationships in GNSS monitoring data filtering effects across different frequencies

    根据分析发现,对于GNSS变形监测数据的过滤,可以以缓慢降低阶段起点对应的40个数据量作为过滤数据量尺度,对应变形数据的偏差降低幅度均超过50%,能达到在尽量少的数据量前提下取得较好的过滤效果。

    由于GNSS变形监测数据通过卫星获取并解算定位信息,在极端恶劣环境或偶然故障情况下,可能出现变形量监测值的大幅度偏差,即偶然误差(图1)。这类误差呈偶发性,通过多个省份多个类型的GNSS数据进行统计分析发现,GNSS均有一定的偶然异常值,且异常数据总量均小于全部数据总量的10%,呈普遍性规律,这部分数据偏移量极大,可能是正偏移值(即出现极大的数据值),也可能是负偏移值(即出现极小的数据值),属于错误数据,本身没有意义。由于偶然误差的出现会导致计算出的变形速率出现显著的震荡,使基于变形速率的预警产生误报,同时常规的过滤方法难以直接过滤这类误差,因此,最好的处理方式是及时剔除偶然误差,但这一过程需要实时条件下进行才能保证滑坡监测预警的实时性。

    为了实现监测数据的实时过滤,同时及时判识并剔除偶然误差,可以采用设置一定缓冲过滤区的误差剔除方法(图6)。考虑到GNSS变形监测数据过滤量在40个时,可以较好地实现常见精度误差的过滤,对应缓冲过滤区的数据量也设置为40个,具体过滤方法为:当GNSS变形监测数据获取到最新的变形量数据后,取最新的40组变形量监测数据作为数据缓冲区,由时间正序去掉10%的最大变形量(即从过去到最新时间顺序选取4组最大值),由时间倒序去掉10%的最小变形量数据(即从最新时间到过去顺序选取4组最小值)。采用该方法处理后,数据中的偶然误差极大值和极小值都被剔除,还原出仅有精度波动的有效数据;而剩余32组数据作为有效变形量数据,再采用最小二乘过滤方法进行过滤以获得滑坡变形速率信息。随着GNSS不断获取新的变形量数据,对应更新缓冲过滤区实现偶然误差的实时剔除和精度误差的实时过滤。

    图  6  偶然误差数据缓冲过滤方法
    Figure  6.  Data buffer method for filtering incidental errors

    该方法的应用中,缓冲过滤区需要40个监测数据作为基数,按照常规GNSS变形监测数据1 h/次的监测频率,对应缓冲过滤区的判断需要连续40个小时的监测数据。需要说明的是,对于具有突发性特点的滑坡该方法难以及时判断其变形发展趋势。对此可以引入具有监测频率动态调节的自适应GNSS监测设备,在滑坡加速变形时通过自适应变频实现监测频率的自动增加。具体为:通过设置GNSS变形监测设备阈值为S(S大于设备监测精度),采用5 min/次的动态监测对比方式进行判断,当实际监测数据和最新记录的GNSS数据之差大于阈值S时,认为变形可能存在加速情况,此时记录最新的监测数据;当实际监测数据和最新记录的GNSS数据之差小于阈值S时,认为变形尚不明显,仍然采用1 h/次的常规监测频率获取数据。以此不断进行比对和记录,实现滑坡变形在进入加速变形期间能自动将监测频率调整到最高5 min/次,对应40组变形监测数据的最小时间间隔仅为不足4小时,对于不具有强烈突发性的滑坡,可以及时有效地识别出加速且不会导致误报。

    四村滑坡位于四川省茂县黑虎乡,为降雨诱发的堆积体变形滑坡,该区域近年来已实施了自动化监测,并布设了1套GNSS监测站。通过前几年的监测获取了一段时间的GNSS变形监测数据(图7a),该滑坡整体处于基本稳定状态。但在2018年4月12日到13日出现了一次较明显的加速过程(图7b),GNSS监测站全程获取了该次加速变形的位移变化数据。通过提取该加速变形区间的GNSS合位移,并分别采用最小二乘法和剔除误差后的最小二乘法拟合该区域的变形速率进行对比发现(图7c),变形速率的变化特征在剔除误差前后基本一致,能有效反应出GNSS合位移先增大后减缓时表现出的滑坡变形速率增大和减小,两者之间一致性较好,并未出现明显的延迟或显著差异。

    图  7  四村滑坡加速阶段变形速率过滤特征
    Figure  7.  Deformation rate Filtering characteristics of deformation rate in acceleration stage of Sicun landslide

    同时,以最新的彭州市某矿山边坡GNSS变形监测数据为例,进一步验证该方法的过滤效果。该矿山边坡为矿山开采后形成的人工边坡,目前较为稳定,未产生明显变形。GNSS监测站获取了边坡2024年1月份的变形数据(图8a),可见虽然边坡无明显变形,但获取的GNSS原始累计合位移数据有明显的异常跳跃点(图8b),导致了根据累计位移计算的变形速率呈上下波动状态(图8c),最大变形速率达到283.81 mm/d,显然不符合实际情况。采用数据过滤方法处理,剔除10%最大数据和10%最小数据后采用最小二乘拟合,得到的变形速率较稳定地在0附近(图8c),实时反映出了边坡的真实变化状态。

    图  8  彭州某矿山边坡匀变速阶段变形速率过滤特征
    Figure  8.  Characteristics of deformation rate filtration in the homogeneous velocity phase of a mine slope in Pengzhou

    可见,结合了数据过滤和偶然误差剔除的GNSS变形数据过滤方法,可以在实时监测的情况下去掉大偏差数据,且不影响监测数据的实际发展趋势判定,两者的结合为滑坡变形的及时预警提供可靠的数据过滤算法。

    针对滑坡地表变形常用的GNSS监测技术在预警过程中出现的精度误差和偶然误差,本文分析了常见的GNSS设备监测获得的滑坡变形数据误差特征,提出了对应的数据过滤方法,以实现滑坡变形数据的实时过滤,为有效的提前预警提供了科学数据过滤方法。本文主要得到以下结论:

    (1)滑坡GNSS变形数据存在精度误差和偶然误差,其中精度误差可以通过数据解析式过滤的方法实时过滤,偶然误差则应通过剔除的方式进行过滤。

    (2)以最小二乘法进行解析式过滤时发现,随着参与过滤的数据总量增多,GNSS过滤后的变形量数据偏差大小呈快速降低、震荡降低、缓慢降低三个阶段,可以选取缓慢降低阶段起点对应的数据量值40组数据确定为过滤尺度,在确保过滤效果的前提下减少数据延迟。

    (3)通过构建数据缓冲区剔除GNSS变形数据可能出现的偶然误差,同时采用自适应变频技术的方式,使构建数据缓冲区导致的数据分析滞后时间减小到最短不足4小时,为滑坡的实时预警预报提供及时可靠的数据支持,满足非突发性滑坡基于变形速率的预警需求。

    (4)通过对典型滑坡GNSS变形数据的应用验证,该方法可以实现变形速率误差波动的有效过滤,同时偶然误差的剔除也对滑坡实际变形速率不产生明显延迟,可以较好地还原滑坡实际变形发展趋势,具有一定的普适性和适用性。

  • 图  1   研究区位置图

    Figure  1.   Location map of the study area

    图  2   泄滩河左岸现场调查图(摄于2020年8月)

    Figure  2.   Field geotechnical photo of the left bank of Xietan River (August 2020)

    图  3   卡门子湾滑坡全貌及优势结构面

    Figure  3.   Arial view and dominant structural plane of Kamenziwan landslide

    图  4   卡门子湾滑坡结构面赤平投影

    Figure  4.   Equated projection of Kamenziwan landslide section

    图  5   卡门子湾滑坡破坏前后库水位和降雨量

    Figure  5.   Summery of reservoir water level and rainfall before and after Kamenziwan landslide failure

    图  6   卡门子湾滑坡破坏模式概化示意图

    Figure  6.   Generalized schematic diagram of failure mode of Kamenziwan landslide

    图  7   泄滩河北段粉砂岩山脊夹泥岩沟谷微地貌示意图

    Figure  7.   The terrain and watershed partition of siltstone ridge and mudstone valley in Xietan River north section

    图  8   易发性评价指标图层

    Figure  8.   Layer of susceptibility assessment index

    图  9   疑似滑坡区为训练样本的滑坡易发性分区图

    Figure  9.   Distribution map of landslide susceptibility area

    图  10   易发性结果ROC曲线

    Figure  10.   ROC curve of susceptibility results

    图  11   现场验证位置及照片(摄于2021年1月)

    Figure  11.   Field review verification photos (January 2021)

    表  1   卡门子湾滑坡破坏模式总结表

    Table  1   Summary table of failure mode of Kamenziwan landslide

    岸坡类型缓倾切向坡
    破坏模式视倾向顺层牵引式滑坡
    孕灾(六面体)
    结构面
    斜坡表面“上陡下缓前临空”的台阶状折线地形
    底部滑带左侧顺层,右侧切层
    前缘剪出口河流冲刷侵蚀形成临空面,
    剪出口高程在145~175 m
    后缘边界一组陡倾结构面切割,出露岩层切面
    左侧边界多组结构面相互切割形成阶梯状边界
    右侧边界岩层面
    边界特征两个约束边界(右、后)+两个自由边界(左、前)
    物质组成
    条件
    滑体块裂岩体
    滑带中后部由三组结构面及岩层面形成阶梯状
    滑带,前部岩层溃曲形成缓倾结构面
    滑床侏罗系中统沙溪庙组(J2s)上部灰绿色砂岩
    夹泥岩,下部紫红色泥岩夹砂岩
    下载: 导出CSV

    表  2   卡门子湾滑坡区易发性结果分析表

    Table  2   Summey table of landslide susceptibility results at Kamenziwan landslide area

    以疑似滑坡区为样本的滑坡易发性评价结果
    卡门子湾滑坡区栅格数各分区占比/%极高及较高易发区占比/%
    极高易发598626.682.8
    高易发1264056.2
    中易发375016.7
    低易发1130.5
    极低易发00.0
    总计22489100
    下载: 导出CSV
  • [1] 殷坤龙,朱良峰. 滑坡灾害空间区划及GIS应用研究[J]. 地学前缘,2001,8(2):279 − 284. [YIN Kunlong,ZHU Liangfeng. Landslide hazard zonation and application of GIS[J]. Earth Science Frontiers,2001,8(2):279 − 284. (in Chinese with English abstract) DOI: 10.3321/j.issn:1005-2321.2001.02.010
    [2] 黄波林,殷跃平,李滨,等. 三峡工程库区岩溶岸坡岩体劣化及其灾变效应[J]. 水文地质工程地质,2020,47(4):51 − 61. [HUANG Bolin,YIN Yueping,LI Bin,et al. Rock mass deterioration and its catastrophic effect of karst bank slope in the Three Gorges Project Reservoir area[J]. Hydrogeology & Engineering Geology,2020,47(4):51 − 61. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202003055
    [3] 卫童瑶,殷跃平,高杨,等. 三峡库区巫山县塔坪H1滑坡变形机制[J]. 水文地质工程地质,2020,47(4):73 − 81. [WEI Tongyao,YIN Yueping,GAO Yang,et al. Deformation mechanism of the taping H1 landslide in Wushan County in the Three Gorges Reservoir area[J]. Hydrogeology & Engineering Geology,2020,47(4):73 − 81. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202003043
    [4] 郭子正,殷坤龙,付圣,等. 基于GIS与WOE-BP模型的滑坡易发性评价[J]. 地球科学,2019,44(12):4299 − 4312. [GUO Zizheng,YIN Kunlong,FU Sheng,et al. Evaluation of landslide susceptibility based on GIS and WOE-BP model[J]. Earth Science,2019,44(12):4299 − 4312. (in Chinese with English abstract)
    [5] 张钟远,邓明国,徐世光,等. 镇康县滑坡易发性评价模型对比研究[J]. 岩石力学与工程学报,2022,41(1):157 − 171. [ZHANG Zhongyuan,DENG Mingguo,XU Shiguang,et al. Comparison of landslide susceptibility assessment models in Zhenkang County,Yunnan Province,China[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(1):157 − 171. (in Chinese with English abstract)
    [6]

    MOHAMMADY M,POURGHASEMI H R,PRADHAN B. Landslide susceptibility mapping at Golestan Province,Iran:a comparison between frequency ratio,Dempster-Shafer,and weights-of-evidence models[J]. Journal of Asian Earth Sciences,2012,61:221 − 236. DOI: 10.1016/j.jseaes.2012.10.005

    [7] 王世宝,庄建琦,樊宏宇,等. 基于频率比与集成学习的滑坡易发性评价:以金沙江上游巴塘—德格河段为例[J]. 工程地质学报,2022,30(3):817 − 828. [WANG Shibao,ZHUANG Jianqi,FAN Hongyu,et al. Evaluation of landslide susceptibility based on frequency ratio and ensemble learning:Taking the Batang-Dege section in the upstream of Jinsha River as an example[J]. Journal of Engineering Geology,2022,30(3):817 − 828. (in Chinese with English abstract)
    [8]

    DU Juan,GLADE T,WOLDAI T,et al. Landslide susceptibility assessment based on an incomplete landslide inventory in the Jilong Valley,Tibet,Chinese Himalayas[J]. Engineering Geology,2020,270:105572. DOI: 10.1016/j.enggeo.2020.105572

    [9]

    STEGER S,BRENNING A,BELL R,et al. Exploring discrepancies between quantitative validation results and the geomorphic plausibility of statistical landslide susceptibility maps[J]. Geomorphology,2016,262:8 − 23. DOI: 10.1016/j.geomorph.2016.03.015

    [10]

    MEINHARDT M,FINK M,TÜNSCHEL H. Landslide susceptibility analysis in central Vietnam based on an incomplete landslide inventory:Comparison of a new method to calculate weighting factors by means of bivariate statistics[J]. Geomorphology,2015,234:80 − 97. DOI: 10.1016/j.geomorph.2014.12.042

    [11]

    ABEDINI M,TULABI S. Assessing LNRF,FR,and AHP models in landslide susceptibility mapping index:A comparative study of Nojian watershed in Lorestan Province,Iran[J]. Environmental Earth Sciences,2018,77(11):405. DOI: 10.1007/s12665-018-7524-1

    [12] 夏辉,殷坤龙,梁鑫,等. 基于SVM-ANN模型的滑坡易发性评价—以三峡库区巫山县为例[J]. 中国地质灾害与防治学报,2018,29(5):13 − 19. [XIA Hui,YIN Kunlong,LIANG Xin,et al. Landslide susceptibility assessment based on SVM-ANN Models:A case stualy for Wushan County in the Three Gorges Reservoir[J]. The Chinese Journal of Geological Hazard and Control,2018,29(5):13 − 19. (in Chinese with English abstract)
    [13] 殷坤龙,柳源. 滑坡灾害区划系统研究[J]. 中国地质灾害与防治学报,2000,11(4):28 − 32. [YIN Kunlong,LIU Yuan. Systematic studies on landslide hazard zonation[J]. The Chinese Journal of Geological Hazard and Control,2000,11(4):28 − 32. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-8035.2000.04.007
    [14] 周天伦,曾超,范晨,等. 基于快速聚类-信息量模型的汶川及周边两县滑坡易发性评价[J]. 中国地质灾害与防治学报,2021,32(5):137 − 150. [ZHOU Tianlun,ZENG Chao,FAN Chen,et al. Landslide susceptibility assessment based on K-means cluster information model in Wenchuan and two neighboring counties,China[J]. The Chinese Journal of Geological Hazard and Control,2021,32(5):137 − 150. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2021.05-17
    [15] 石菊松,张永双,董诚,等. 基于GIS技术的巴东新城区滑坡灾害危险性区划[J]. 地球学报,2005,26(3):275 − 282. [SHI Jusong,ZHANG Yongshuang,DONG Cheng,et al. GIS-based landslide hazard zonation of the new Badong County site[J]. Acta Geosicientia Sinica,2005,26(3):275 − 282. (in Chinese with English abstract) DOI: 10.3321/j.issn:1006-3021.2005.03.014
    [16] 郭子正,殷坤龙,黄发明,等. 基于滑坡分类和加权频率比模型的滑坡易发性评价[J]. 岩石力学与工程学报,2019,38(2):287 − 300. [GUO Zizheng,YIN Kunlong,HUANG Faming,et al. Evaluation of landslide susceptibility based on landslide classification and weighted frequency ratio model[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(2):287 − 300. (in Chinese with English abstract) DOI: 10.13722/j.cnki.jrme.2018.0838
    [17]

    MA Shuyue,QIU Haijun,HU Sheng,et al. Quantitative assessment of landslide susceptibility on the Loess Plateau in China[J]. Physical Geography,2020,41(6):489 − 516. DOI: 10.1080/02723646.2019.1674559

    [18] 罗路广,裴向军,黄润秋,等. GIS支持下CF与Logistic回归模型耦合的九寨沟景区滑坡易发性评价[J]. 工程地质学报,2021,29(2):526 − 535. [LUO Luguang,PEI Xiangjun,HUANG Runqiu,et al. Landslide susceptibility assessment in Jiuzhaigou scenic area with GIS based on certainty factor and Logistic regression model[J]. Journal of Engineering Geology,2021,29(2):526 − 535. (in Chinese with English abstract) DOI: 10.13544/j.cnki.jeg.2019-202
    [19] 罗路广,裴向军,崔圣华,等. 九寨沟地震滑坡易发性评价因子组合选取研究[J]. 岩石力学与工程学报,2021,40(11):2306 − 2319. [LUO Luguang,PEI Xiangjun,CUI Shenghua,et al. Combined selection of susceptibility assessment factors for Jiuzhaigou earthquake-induced landslides[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(11):2306 − 2319. (in Chinese with English abstract) DOI: 10.13722/j.cnki.jrme.2021.0198
    [20]

    HONG Haoyuan,CHEN Wei,XU Chong,et al. Rainfall-induced landslide susceptibility assessment at the Chongren area (China) using frequency ratio,certainty factor,and index of entropy[J]. Geocarto International,2017,32(2):139 − 154.

    [21] 刘璐瑶,高惠瑛. 基于证据权与Logistic回归模型耦合的滑坡易发性评价[J]. 工程地质学报,2021:1 − 11 [2021-05-13]. [LIU Luyao,GAO Huiying. landslide susceptibility assessment based on coupling of woe model and Logistic regression model[J]. Journal of Engineering Geology,2021:1 − 11 [2021-05-13]. (in Chinese with English abstract) DOI: 10.13544/j.cnki.jeg.2020-482
    [22] 李郎平,兰恒星,郭长宝,等. 基于改进频率比法的川藏铁路沿线及邻区地质灾害易发性分区评价[J]. 现代地质,2017,31(5):911 − 929. [LI Langping,LAN Hengxing,GUO Changbao,et al. Geohazard susceptibility assessment along the Sichuan-Tibet railway and its adjacent area using an improved frequency ratio method[J]. Geoscience,2017,31(5):911 − 929. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-8527.2017.05.004
    [23]

    LI Langping,LAN Hengxing,GUO Changbao,et al. A modified frequency ratio method for landslide susceptibility assessment[J]. Landslides,2017,14(2):727 − 741. DOI: 10.1007/s10346-016-0771-x

    [24]

    ZHANG Yixing,LAN Hengxing,LI Langping,et al. Optimizing the frequency ratio method for landslide susceptibility assessment:A case study of the Caiyuan Basin in the southeast mountainous area of China[J]. Journal of Mountain Science,2020,17(2):340 − 357. DOI: 10.1007/s11629-019-5702-6

    [25]

    HE Keqiang,WANG Shangqing,DU Wen,et al. Dynamic features and effects of rainfall on landslides in the Three Gorges Reservoir region,China:Using the Xintan landslide and the large Huangya landslide as the examples[J]. Environmental Earth Sciences,2010,59(6):1267. DOI: 10.1007/s12665-009-0114-5

    [26]

    TANG Huiming,WASOWSKI J,JUANG C H. Geohazards in the three Gorges Reservoir Area,China - Lessons learned from decades of research[J]. Engineering Geology,2019,261:105267. DOI: 10.1016/j.enggeo.2019.105267

    [27]

    YIN Yueping,HUANG Bolin,ZHANG Quan,et al. Research on recently occurred reservoir-induced Kamenziwan rockslide in Three Gorges Reservoir,China[J]. Landslides,2020,17(8):1935 − 1949. DOI: 10.1007/s10346-020-01394-7

    [28]

    Regional level landslide inventory maps of the Shyok River watershed, Northern Pakistan[J]. Bulletin of Engineering Geology and the Environment, 2016, 75(2): 563 − 574.

    [29] 吴润泽,胡旭东,梅红波,等. 基于随机森林的滑坡空间易发性评价—以三峡库区湖北段为例[J]. 地球科学,2021,46(1):321 − 330. [WU Runze,HU Xudong,MEI Hongbo,et al. Spatial susceptibility assessment of landslides based on random forest:A case study from Hubei section in the Three Gorges Reservoir area[J]. Earth Science,2021,46(1):321 − 330. (in Chinese with English abstract)
    [30] 周超,殷坤龙,曹颖,等. 基于集成学习与径向基神经网络耦合模型的三峡库区滑坡易发性评价[J]. 地球科学,2020,45(6):1865 − 1876. [ZHOU Chao,YIN Kunlong,CAO Ying,et al. Landslide susceptibility assessment by applying the coupling method of radial basis neural network and adaboost:A case study from the Three Gorges Reservoir area[J]. Earth Science,2020,45(6):1865 − 1876. (in Chinese with English abstract)
    [31] 闫举生,谭建民. 基于不同因子分级法的滑坡易发性评价—以湖北远安县为例[J]. 中国地质灾害与防治学报,2019,30(1):52 − 60. [YAN Jusheng,TAN Jianmin. Landslide susceptibility assessment based on different factor classification methods:A case study in Yuanan County of Hubei Province[J]. The Chinese Journal of Geological Hazard and Control,2019,30(1):52 − 60. (in Chinese with English abstract)
    [32]

    LIU Zhongqiang,GILBERT G,CEPEDA J M,et al. Modelling of shallow landslides with machine learning algorithms[J]. Geoscience Frontiers,2021,12(1):385 − 393. DOI: 10.1016/j.gsf.2020.04.014

    [33]

    LAN H X,ZHOU C H,WANG L J,et al. Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang watershed,Yunnan,China[J]. Engineering Geology,2004,76(1/2):109 − 128.

    [34] 周越,曾昭发,唐海燕,等. 公路勘察中滑坡体的地球物理特征与分析—以张榆线公路勘察为例[J]. 吉林大学学报(地球科学版),2021,51(2):638 − 644. [ZHOU Yue,ZENG Zhaofa,TANG Haiyan,et al. Geophysical characteristics of landslide body in highway reconnaissance: A case study in highway prospecting of Zhangyu line[J]. Journal of Jilin University (Earth Science Edition),2021,51(2):638 − 644. (in Chinese with English abstract)
图(11)  /  表(2)
计量
  • 文章访问数:  5246
  • HTML全文浏览量:  2196
  • PDF下载量:  461
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-27
  • 修回日期:  2022-04-05
  • 录用日期:  2022-04-07
  • 网络出版日期:  2023-02-19
  • 刊出日期:  2023-04-24

目录

/

返回文章
返回