ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

甘肃黑方台“10·5”黄土滑坡启动及运动特征分析

冉林, 马鹏辉, 彭建兵, 孔嘉旭, 张作蓬, 杨炬, 李泽坤, 马哲

冉林,马鹏辉,彭建兵,等. 甘肃黑方台“10·5”黄土滑坡启动及运动特征分析[J]. 中国地质灾害与防治学报,2022,33(6): 1-9. DOI: 10.16031/j.cnki.issn.1003-8035.202111006
引用本文: 冉林,马鹏辉,彭建兵,等. 甘肃黑方台“10·5”黄土滑坡启动及运动特征分析[J]. 中国地质灾害与防治学报,2022,33(6): 1-9. DOI: 10.16031/j.cnki.issn.1003-8035.202111006
RAN Lin, MA Penghui, PENG Jianbing, et al. The initiation and motion characteristics of the “10·5” loess landslide in the Heifangtai platform, Gansu Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 1-9. DOI: 10.16031/j.cnki.issn.1003-8035.202111006
Citation: RAN Lin, MA Penghui, PENG Jianbing, et al. The initiation and motion characteristics of the “10·5” loess landslide in the Heifangtai platform, Gansu Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 1-9. DOI: 10.16031/j.cnki.issn.1003-8035.202111006

甘肃黑方台“10·5”黄土滑坡启动及运动特征分析

基金项目: 国家自然科学基金项目(42107198;42090053;300102262907)
详细信息
    作者简介:

    冉 林(1997-),男,重庆人,硕士研究生,从事地质灾害研究。E-mail:13594411800@163.com

    通讯作者:

    马鹏辉(1990-),男,河北张家口人,博士,讲师,从事黄土灾害链研究与教学工作。E-mail:spawnkobe@163.com

  • 中图分类号: P642.22

The initiation and motion characteristics of the “10·5” loess landslide in the Heifangtai platform, Gansu Province

  • 摘要: 数十年的塬上大面积灌溉导致甘肃黑方台地下水位不断提升,迄今为止已有约200余起黄土滑坡发生,造成了大量伤亡,给当地居民生活和财产安全带来了巨大的影响。针对黑方台黄土滑坡启动迅速、运动速度快、影响范围广的特征,文中以2019年10月5日发生在黑方台党川村附近的一起黄土滑坡为研究对象,通过野外调研和无人机手段,获取该滑坡的发育特征和地形数据。基于Massflow软件再现了该滑坡运动全过程,最终得到堆积厚度及运动速度2个方面特征,得出以下结论:(1)“10·5”黄土滑坡体积约2.7×104 m3,最大滑距355 m,属于小型黄土滑坡;(2)模拟结果显示,滑坡运动持续时间约45 s,最大运动速度为26 m/s,反演结果与实际情况较吻合。运动过程可分为启动加速阶段、稳定加速阶段、减速堆积阶段三个阶段;(3)对滑坡堆积厚度进行分析发现,该滑坡在主滑方向上平均厚度约0.59 m,最大堆积厚度为1.35 m,沿滑坡运动方向,堆积厚度呈现先增大后减小的趋势,堆积区最大堆积厚度为0.82 m。该研究成果可为黑方台黄土滑坡风险防控提供一定的技术支持。
    Abstract: Long-time diversion irrigation has led to the continuous rise of the groundwater level in the Heifangtai platform,Gansu Province. So far, more than 200 loess landslides have occurred, causing more catastrophic threats to local people and property. The loess landslides on the Heifangtai Platform were charactered by rapid initiation,fast speed and wide accumulation area. A loess landslide occurred near Dangchuan village in the Heifangtai Platform on October 5, 2019. The characteristics and topographic data of the landslide were obtained by field investigation and UAV technology. We used the Massflow software to simulate the motion process of the landslide, and the deposits thickness and motion speed of the landslide are obtained. The result show that: (1) The “10·5 ” landslide has a volume of about 2.7×104 m3 and a maximum sliding distance of 355 m. It is a small kind of loess landslide; (2) The motion time is about 45 s, the maximum movement speed is 26 m/s, and the inversion result is consistent with the actual situation. The landslide movement process is divided into three stages: start acceleration→steady acceleration→deceleration accumulation; (3) It found that the average thickness and maximum accumlation thickness of the landslide in the main sliding direction were respectively 0.59 m and 1.35 m. The accumulation thickness shows a trend of increasing momently and then decreasing. The largest accumulation thickness is 0.82 m. The research results can provide related technical support for the risk prevention of the loess landslide occurred in the Heifangtai Platform.
  • 库岸滑坡是深切割高山峡谷型库岸常见的破坏形式,多集中分布于我国西南山区[1-2]。库岸滑坡由地表内外营力相互作用而形成,人类工程建设及库区水位变化则使其演化特征更为突出,通常表现为库区蓄水之后库岸下缘坡体岩层软化,从而引起上部库岸的形变破坏[3-4]。库岸滑坡受多方面因素影响,具有成因复杂、类型多样和危害巨大等特点[5-7]。在水电站库区,蓄水和泄洪等因素导致的水位变化直接影响库岸滑坡的稳定性,库岸滑坡一旦失稳会诱发一系列次生灾害,破坏区域生态系统,毁坏库区坝体和发电设施[8],严重威胁库区上下游居民生命财产安全。因此,对水电站库岸滑坡进行变形监测具有重要意义。

    常规监测手段已难以识别和监测大面积的库岸滑坡形变,相对传统的精密水准测量、全球卫星导航系统(Global Navigation Satellite System, GNSS)和光学遥感技术,合成孔径雷达干涉测量(Interferometric Synthetic Aperture Radar,InSAR)技术因其大范围、全天时、全天候、高精度和高分辨率等特点,已成功应用于库岸滑坡灾害识别监测分析中[9-11]。国内外学者利用InSAR技术在库岸滑坡灾害的应用方面做了大量研究,康亚等[8]利用三类InSAR产品和DEM数据对金沙江流域乌东德水电站段进行滑坡早期识别,成功探测到多处未知和已知的滑坡体;徐帅等利用墨兰指数对SBAS-InSAR技术获取的形变点进行空间域异常值分析和聚类处理,成功识别出三峡库区巫山—奉节段高概率潜在滑坡范围[12];王振林等[13]利用SBAS-InSAR技术提取雅砻江流域锦屏一级水电站库区左岸边坡的形变特征信息,推断出大幅水位上升是诱发滑坡复活的主要因素;朱同同等[14]结合时序InSAR技术和GPS观测值分析了降雨和蓄水对三峡库区树坪滑坡变形的影响;史绪国等[15]联合分布式目标与点目标的时序InSAR技术对三峡库区藕塘滑坡进行稳定性监测;Tantianuparp等[16]联合多种SAR数据和PS-InSAR技术对三峡巴东进行滑坡探测,并将PS点时序形变与水位时间变化进行初步相关性分析;Zhou等[17]利用时序InSAR技术发现三峡库区木鱼堡滑坡变形主要发生在水库涨落期和高水位期;Liu等[18]利用SBAS-InSAR技术对三峡巴东地区进行滑坡探测并分析季节性滑坡运动与水位变化之间的相关性,上述研究证明了时序InSAR技术在库岸滑坡监测中的可靠性,可以对水电站库岸滑坡变形进行有效分析。白鹤滩水电站地处四川和云南交界,自2021年4月开始蓄水,库区水位由660 m升至825 m,上升幅度达165 m;水电站运行期间最低水位765 m,最高水位825 m,升降水位差60 m,最大库容达256×108 m3[19-20]。库区地形起伏较大、断裂构造发育,加之蓄水引起的水位变化直接影响库岸潜在滑坡的变形趋势,对水电站基础设施和上下游居民生命财产安全造成潜在威胁[21-22]。因此,亟需对白鹤滩水电站库岸潜在滑坡进行变形分析。

    文章联合2019年7月3日至2021年7月28日的150景升降轨Sentinel-1 SAR数据集,采用SBAS-InSAR技术获取白鹤滩水电站库区雷达视线方向(Line of sight,LOS)形变时间序列,在分析地表形变时间演化规律和空间分布特征的基础上,结合无人机野外调查,分析白鹤滩水电站库岸潜在滑坡的变形特征,重点研究蓄水因素对库岸潜在滑坡变形趋势的影响。

    小基线集InSAR(Small Baseline Subset InSAR,SBAS-InSAR)技术最早由Berardino和Lanari等[23]提出,该方法通过组合数据的方式获得一系列短空间基线差分干涉图,这些差分干涉图能较好地克服空间失相关现象。SBAS-InSAR技术利用奇异值分解(SVD)法求解形变速率,将被较大空间基线分开的孤立SAR数据进行连接,进一步提高观测数据的时间采样率[23]。该方法可以有效减弱大气效应,降低相位噪声和误差[24],其基本原理及流程如下:

    假定已获取覆盖同一区域的按时间序列排序的$ N + 1 $幅SAR影像:

    $$ T = {\left[ {{T_0},{T_1}, \cdots ,{T_N}} \right]^{\rm{T}}} $$ (1)

    根据干涉组合规则,生成M幅干涉图且M应当满足:

    $$ \frac{{N + 1}}{2} \leqslant M \leqslant \frac{{N\left( {N + 1} \right)}}{2} $$ (2)

    假设以$ {t_0} $作为影像获取起始时刻且$ {t_0} $时刻影像覆盖区域位移为0,则在去除轨道误差、平地效应及地形相位的影响后,第$ i\left( {1 \leqslant i \leqslant M} \right) $幅影像某像素的干涉相位可表示为:

    $$ \Delta {\varphi _i} = {\varphi _{{t_1}}} - {\varphi _{{t_2}}} \approx \Delta {\varphi _{{i_{\rm{def}}}}} + \Delta {\varphi _{{i_{\rm{topo}}}}} + \Delta {\varphi _{{i_{\rm{atm}}}}} + \Delta {\varphi _{{i_{\rm{noise}}}}} $$ (3)
    $$ \left\{ \begin{gathered} \Delta {\varphi _{{i_{\rm{def}}}}}\left( {x,r} \right) = \frac{{4\text{π} }}{\lambda }\left[ {d\left( {{t_2}} \right) - d\left( {{t_2}} \right)} \right],i = 1,2, \cdots ,m \\ \Delta {\varphi _{{i_{\rm{topo}}}}}\left( {x,r} \right) = \frac{{4\text{π} }}{\lambda } \cdot \frac{{{B_ \bot }\Delta h}}{{r{\sin}\theta }} \\ \Delta {\varphi _{{i_{\rm{atm}}}}}\left( {x,r} \right) = {\varphi _{\rm{atm}}}\left( {{t_2}} \right) - \varphi \left( {{t_1}} \right) \\ \end{gathered} \right. $$ (4)

    式中:$ \Delta {\varphi _{{i_{\rm{def}}}}} $——斜距向形变产生的相位;

    $ \Delta {\varphi _{{i_{\rm{topo}}}}} $——地形相位;

    $ \Delta {\varphi _{{i_{\rm{atm}}}}} $——大气延迟引起的相位;

    $ \Delta {\varphi _{{i_{\rm{noise}}}}} $——相干噪声造成的相位。

    利用最小二乘或者奇异值分解(SVD)对m个解缠相位进行三维时空相位解缠即可获得不同SAR时刻对应的时序形变速率。

    本文以四川省与云南省交界白鹤滩水电站库区作为研究区域,如图1所示。研究区长约30.38 km,宽约11.65 km,总面积353.93 km2,地处横断山脉东北部、青藏高原东南边缘,区域内断裂构造发育,构造运动强烈,河谷深切,山体陡峻,地震频发[25-27]。最高海拔3556 m,最低海拔520 m,高差达3036 m,地势陡峭,致使该区存在大量滑坡、崩塌和泥石流等地质灾害隐患。

    图  1  研究区位置
    Figure  1.  Location of study area

    形变监测数据选用从欧州航天局(European Space Agency, ESA)免费下载的150景C波段Sentinel-1雷达影像(其中升轨数据50景,降轨数据100景并在每个时间点上下两景拼接),升降轨数据覆盖区域如图2所示。时间跨度为2019年7月3日至2021年7月28日,极化方式为VV,成像方式为IW,数据参数如表1所示。为提高影像轨道精度,引入POD精密定轨星历数据。使用日本宇宙航空研究开发机构(Japan Aerospace Exploration Agency,JAXA)发布的ALOS WORLD 3D 30 m空间分辨率的数字高程模型(Digital Elevation Model,DEM),用于去除地形相位影响,如图3所示。

    图  2  SAR卫星影像覆盖范围
    Figure  2.  SAR satellite image coverage
    表  1  Sentinel-1A数据参数
    Table  1.  Sentinel-1A data parameters
    轨道方向成像模式极化方式波长波段入射角/(°)
    升轨IWVV5.63C39.44
    降轨IWVV5.63C39.28
    下载: 导出CSV 
    | 显示表格
    图  3  研究区DEM
    Figure  3.  Digital elevation model of study area

    采用SBAS-InSAR技术,选取经镶嵌、配准和裁剪后的100景Sentinel-1A斜距单视复数(Single Look Complex,SLC)影像(升降轨数据各50景),根据时间基线和垂直基线最优原则,升轨和降轨数据分别以日期为20191216和20200204的影像作为超级主影像。设置时间基线阈值180d,空间基线为临界基线阈值的50%,共生成654和888对干涉像对。为抑制斑点噪声,设置多视数为1∶4,采用Minimum Cost Flow 解缠方法和Goldstein滤波方法进行干涉处理,将组合干涉对经过配准,调整删除不理想的数据后生成干涉图,研究区部分较理想的干涉图如图4所示。

    图  4  研究区部分较理想的干涉图
    注:(a)、(b)、(c)为升轨数据干涉图,(d)、(e)、(f)为降轨数据干涉图
    Figure  4.  Ideal interference patterns in the study area

    经过轨道精炼和重去平,利用最小二乘法和奇异值矩阵分解进行形变反演,然后估算和去除大气相位,得到研究区时间序列形变信息,对时序信息地理编码后获取研究区2019年7月3日至2021年7月28日LOS方向的形变结果。如图5所示,形变速率为正值表示靠近卫星,负值表示远离卫星。对比图5(a)、(b)研究区形变结果可知,降轨数据集探测的形变信息较为丰富,主要集中在库区西岸,最大LOS向形变速率−61.425 mm/a;升轨数据集仅在库区东岸部分区域形变较为明显,最大LOS向形变速率为91.426 mm/a。升降轨数据集形变信息不一致的原因是白鹤滩水电站库区两岸地形起伏较大,山势陡峭险峻,而升轨数据飞行方向大致沿东南向西北,雷达视线方向位于右侧,降轨数据则与之相反,故利用InSAR探测形变过程中阴影、叠掩和透视收缩等几何畸变现象严重。

    图  5  研究区视线向形变速率
    Figure  5.  Line-of-sight deformation rate of the study area

    对升轨和降轨数据获取的研究区形变结果进行综合解译,升轨数据库岸形变区域解译结果如图6所示,共选取库岸形变较大区域4处。结合无人机野外调查结果,发现典型潜在滑坡2处,分别用H1和H2表示;非滑坡形变区2处,分别用X1和X2表示,升轨数据详细解译结果如表2所示。

    图  6  升轨潜在滑坡解译及实地考察结果
    Figure  6.  Interpretation and field investigation results of potential landslide in ascending orbit
    表  2  升轨数据库岸形变区域解译结果列表
    Table  2.  List of interpretation results of shore deformation region in orbit lifting database
    编号形变区域名称最大形变速率/(mm·a−1形变区域类别
    H1观音岩19.846潜在滑坡
    H2鱼坝18.537潜在滑坡
    X1六城村76.259非滑坡形变
    X2半坡55.947非滑坡形变
    下载: 导出CSV 
    | 显示表格

    降轨数据库岸形变区域解译结果如图7所示,共选取库岸形变较大区域6处。结合无人机野外调查结果,发现典型潜在滑坡4处,分别用H3至H6编号;非滑坡形变区2处,分别用X3和X4表示,降轨数据详细解译结果如表3所示。

    表  3  降轨数据库岸形变区域解译结果列表
    Table  3.  List of interpretation results of shore deformation region in orbit descent database
    编号形变区域名称最大形变速率/(mm·a−1形变区域类别
    H3观音岩10.726潜在滑坡
    H4清水沟17.605潜在滑坡
    H5鱼坝19.326潜在滑坡
    H6大湾子15.888潜在滑坡
    X3六城村48.871非滑坡形变
    X4半坡61.425非滑坡形变
    下载: 导出CSV 
    | 显示表格
    图  7  降轨潜在滑坡解译及实地考察结果
    Figure  7.  Interpretation and field investigation results of potential landslide in descending orbit

    对比升轨和降轨数据解译结果可以看出,非滑坡形变区X1、X2与X3、X4分别相同,潜在滑坡H1、H2与H3、H5相互对应。另外,降轨数据还解译出除上述区域以外的潜在滑坡H4和H6,同一时间段不同轨道SAR数据集探测的形变结果能够相互对应,从侧面验证了本文InSAR结果的准确性,但受时间、空间失相干因素和几何畸变影响,升降轨形变信息有所差异,说明升降轨结合的方式能够有效弥补仅利用单一轨道识别结果不全面、不准确的缺陷,提升库岸潜在滑坡灾害识别和监测的准确性和有效性。

    结合4.1节升降轨数据集库岸潜在滑坡解译结果,本文选取H1、H2、H4和H6四处典型潜在滑坡进行变形分析,分别在各滑坡形变结果中选取特征点,引入研究区降雨数据,绘制特征点在蓄水前后的时序形变曲线,并结合无人机野外调查结果分析库岸典型潜在滑坡的变形特征。

    H1滑坡地处观音岩,位于沿江公路东岸,滑坡形变速率如图8(a)所示。滑坡整体形变速率范围为−10.726~15.433 mm/a,分别选取滑坡体上缘和下缘特征点A、B与降雨数据构建时序形变曲线如图8(b)所示,特征点A和B时序形变速率波动趋势大致相同,每年雨季形变速率较旱季明显增加。2019年10月—2020年5月形变速率减小,2021年4月后形变速率增大,同比增加约16 mm/a。

    图  8  H1潜在滑坡形变特征
    Figure  8.  H1 potential landslide deformation characteristics

    经实地勘察,该滑坡坡体上缘为自然坡体,坡体下缘已进行边坡加固,故在2019年10月至2020年5月间B点较A点形变速率变化相对稳定。受降雨因素影响,坡体在雨季滑动速率增大。2021年4月至5月,降雨量几乎为零,水电站蓄水导致库区水位上升,库岸下缘受到江水侵蚀改变坡体上下缘间的平衡关系,使该滑坡体形变量增大。

    H2滑坡地处鱼坝村,金沙江支流末端。滑坡形变速率如图9(a)所示,形变较大值处于坡体中上部,形变范围在−19.326~8.254 mm/a。在坡体两侧分别选择特征点C、D结合降雨数据构建时序形变曲线见图9(b),特征点C和D形变速率变化趋势基本一致,与降雨数据呈现一定相关性,雨旱两季形变速率差异较小。2020年1月至10月间,形变速率逐渐减小,2021年1月后形变速率振荡变化,2021年4月之后,形变速率增加值超过10 mm/a。

    图  9  H2潜在滑坡形变特征
    Figure  9.  H2 potential landslide deformation characteristics

    经野外实地调查,H2滑坡滑面自上而下呈倒“V”字形。由于隧道工程尚未完工,附近仍伴有部分工程活动,故在2020年雨季坡体滑动速率对降雨因素响应较弱,表现为形变速率逐渐减小。从图9(b)可以看出,2021年4月以后,特征点C和D形变速率相对之前有所增加,此时降雨量较小,说明蓄水导致的库区水位抬升也对远离河道的坡体产生影响。

    H4滑坡体地处清水沟,位于库区西岸。滑坡形变速率如图10(a)所示,滑坡整体形变范围为−17.605~9.012 mm/a,形变速率较大区域位于坡体中部。由图10(b)特征点与降雨数据构建的时序形变曲线可知,特征点E呈振荡变化趋势,雨旱两季形变速率差异明显。2020年8月后形变速率急剧增大,2021年4月之后形变速率相比同期增加约17 mm/a。

    图  10  H4潜在滑坡形变特征
    Figure  10.  H4 potential landslide deformation characteristics

    通过野外调查可知,H4滑坡属于临江大型冲沟,沟面呈褶皱形态,目前尚未发育为真正意义的滑坡。图10(b)时序形变曲线在2020年雨季后呈梯度下降趋势,主要原因是降水冲刷沟壑表面使冲沟坡面向下滑动。2021年4月之后相比同期形变速率明显增加,此时受降雨影响微弱,说明该滑坡体对水位变化有较强响应,原本裸露的坡体下缘遭受江水侵蚀,下缘坡体在动水压力作用下土壤结构趋向松散状态,上缘冲沟体失稳,自然产生向下形变。

    H6滑坡位于库区西岸大湾子隧道,滑动面处于隧道临江一侧,其形变速率如图11所示,整体形变速率为−15.888~16.326 mm/a, 选取滑坡体中部特征点F与降雨数据建立时序形变曲线(图11),特征点F形变速率整体呈波动趋势,在2020年雨季形变速率较旱季增速明显。2021年4月之后,形变速率缓慢增大,较同期增加约16 mm/a。

    图  11  H6潜在滑坡形变特征
    Figure  11.  H6 potential landslide deformation characteristics

    经野外实地考察,发现H6滑坡已发育且有部分滑动痕迹,在坡体顶端还发育有一定程度的裂缝(图11),所以在雨季降水冲刷坡面且沿裂缝渗入坡体改变其土体应力结构,使坡体产生较大形变。由图11可以看出,2021年4—5月间,降雨量几乎为零,但形变速率变化明显,说明该坡体对水位抬升具有较强响应,降水沿裂缝进入坡体内部,促进了破裂面的贯通,而水位抬升致使坡体下缘和滑动面软化,降低其抗剪强度,降雨和水位抬升的共同作用可能使H6滑坡进一步发育,后续应当对该滑坡进行重点监测。

    本文联合升降轨Sentinel-1 SAR数据,采用SBAS-InSAR技术并结合无人机野外调查数据,分析白鹤滩水电站库岸潜在滑坡的变形特征,得到以下结论:

    (1)白鹤滩水电站库区LOS方向形变速率为−90.959~91.426 mm/a,受蓄水因素影响,各库岸典型潜在滑坡形变速率明显加快,蓄水前后形变平均增速达10 mm/a以上;

    (2)白鹤滩水电站库岸潜在滑坡对水位变化具有较强响应,蓄水量增加是当前库岸潜在滑坡发育的关键性诱因,水位抬升之后潜在滑坡形变速率变化明显,在降雨和蓄水等因素共同作用下,白鹤滩水电站库岸潜在滑坡存在失稳风险;

    (3)降轨数据集探测的形变信息较为丰富,主要集中在库区西岸,而升轨数据集仅在库区东岸部分区域形变较为明显,故联合升降轨SAR数据能有效克服仅利用单一轨道导致的几何畸变等问题,使水电站库岸潜在滑坡变形监测更加准确、全面。

  • 图  1   研究区地理位置图

    Figure  1.   Geographical location of the study area

    图  2   黑方台滑坡分布图

    Figure  2.   Distribution of landslides in the Heifangtai platform

    图  3   滑坡基本特征

    Figure  3.   The characteristics of the landslide

    图  4   “10·5”滑坡剖面图

    Figure  4.   The profile of the “10·5” landslide

    图  5   滑坡后缘错台及局部裂缝变化过程

    Figure  5.   Dislocation of the trailing edge of the landslide and the change of local fractures

    图  6   滑坡发育过程

    Figure  6.   The developping process of landslide

    图  7   滑坡运动过程路径

    Figure  7.   Motion path of the landslide

    图  8   滑坡不同时刻堆积范围

    Figure  8.   The simulation results of landslide accumulation boundary at different times

    图  9   滑坡剖面位置及堆积厚度图(t=45 s)

    Figure  9.   Location of typical profile and accumulate thickness (t=45 s)

    图  10   不同时刻滑坡运动速度

    Figure  10.   The movement speed of the landslide at different times

    图  11   运动速度-时间变化曲线

    Figure  11.   Relationship between the movement speed and time

    表  1   研究区地层岩性

    Table  1   Stratigraphic lithology of the study area

    代号岩性
    第四系全新统${\rm{Q} }_4^{ {{2del} } }$堆积物,由滑后的黄土、卵砾石及砂泥岩
    第四系上更新统${\rm{Q} }_3^{ {{eol} } }$灰黄色黄土,以粉粒为主,厚30~50 m
    第四系中更新统${\rm{Q} }_2^{ {{al} } }$褐红色粉质黏土层,厚3~10 m
    第四系中更新统${\rm{Q} }_2^{ {{al} } }$粉砂细层、砂卵石层,厚1~10 m
    白垩系下统${\rm{K} }_1{ { {hk} } }$紫红色-暗红色泥岩、砂质泥岩,厚度>70 m
    下载: 导出CSV

    表  2   模拟计算参数

    Table  2   Simulation parameters

    参数$\;\rho$/(kg·m−3c/kPa${\varphi }$/(°)$ \mathrm{\lambda } $g/(m·s−2
    取值14005.532°0.769.8
    下载: 导出CSV
  • [1] 徐新建,林在贯,张茂省. 中国黄土与黄土滑坡[J]. 岩石力学与工程学报,2007,7(26):1297 − 1312. [XU Xinjian,LIN Zaiguan,ZHANG Maosheng. Loess in China and loess landslides[J]. Chinese Journal of Rock Mechanics and Engineering,2007,7(26):1297 − 1312. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2007.07.001
    [2] 许领,戴福初,邝国麟,等. 黄土滑坡典型工程地质问题分析[J]. 岩土工程学报,2009,31(2):287 − 293. [XU Ling,DAI Fuchu,KUANG Guolin,et al. Analysis of some special engineering-geological problems of loess landslide[J]. Chinese Journal of Geotechnical Engineering,2009,31(2):287 − 293. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-4548.2009.02.024
    [3]

    LI T, WANG C, LI P. Loess Deposit and Loess Landslide on the Chinese Loess Plateau[C]//Process of Geo-disaster Mitigation Technology in Asia. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 235 − 261.

    [4] 刘传正. 甘肃永靖黑方台滑坡地质灾害[J]. 中国地质灾害与防治学报,2017,28(2):155. [LIU Chuanzheng. Geological disaster of Heifangtai landslide in Yongjing,Gansu[J]. The Chinese Journal of Geological Hazard and Control,2017,28(2):155. (in Chinese with English abstract)
    [5] 任晓虎. 基于多指标的甘肃黑方台滑坡早期识别研究[D]. 成都: 成都理工大学, 2020

    REN Xiaohu. Research on early identification of Heifangtai loess landslide in Gansu Province based on multiple indexes[D]. Chengdu: Chengdu University of Technology, 2020. (in Chinese with English abstract)

    [6] 许领,戴福初,邝国麟,等. 黑方台黄土滑坡类型与发育规律[J]. 山地学报,2008,26(3):364 − 371. [XU Ling,DAI Fuchu,KUANG Guolin,et al. Types and characteristics of loess landslides at Heifangtai loess Plateau,China[J]. Mountain Research,2008,26(3):364 − 371. (in Chinese with English abstract) DOI: 10.3969/j.issn.1008-2786.2008.03.018
    [7] 张茂省. 引水灌区黄土地质灾害成因机制与防控技术—以黄河三峡库区甘肃黑方台移民灌区为例[J]. 地质通报,2013,32(6):833 − 839. [ZHANG Maosheng. Formation mechanism as well as prevention and controlling techniques of loess geo-hazards in irrigated areas:A case study of Heifangtai immigration area in the Three Gorges Reservoir of the Yellow River[J]. Geological Bulletin of China,2013,32(6):833 − 839. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-2552.2013.06.002
    [8] 张茂省,李同录. 黄土滑坡诱发因素及其形成机理研究[J]. 工程地质学报,2011,19(4):530 − 40. [ZHANG Maosheng,LI Tonglu. Triggering factors and forming mechanism of loess landslides[J]. Journal of Engineering Geology,2011,19(4):530 − 40. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2011.04.014
    [9] 王家鼎,惠泱河. 黑方台台缘灌溉水诱发黄土滑坡群的系统分析[J]. 水土保持通报,2001,21(3):10 − 13. [WANG Jiading,HUI Yanghe. Systems analysis on Heifangtai loess landslide in crows induced by irrigated water[J]. Bulletion of Soil and Water Conservation,2001,21(3):10 − 13. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-288X.2001.04.003
    [10] 潘攀. 黑方台滑坡机理及防治对策研究[D]. 杭州: 浙江大学, 2017

    PAN pan. Study on mechanism and treatment of landslide in Heifangtai[D]. Hangzhou: Zhejiang University, 2017. (in Chinese with English abstract)

    [11] 蔺晓燕. 甘肃黑方台灌区黄土滑坡—泥流形成机理研究[D]. 西安: 长安大学, 2013

    LIN Xiaoyan. Failure and motion mechanism of a rapid loess flowslide triggered by irrigation in Hei Fangtai platform, Gansu Province[D]. Xi’an: Chang’an University, 2013. (in Chinese with English abstract)

    [12] 彭大雷. 黄土滑坡潜在隐患早期识别研究—以甘肃黑方台为例[D]. 成都: 成都理工大学, 2018

    PENG Dalei. Study on early recognition for potentially loess landslide: A case study at Heifangtai terrace, Gansu Province, China[D]. Chengdu: Chengdu University of Technology, 2018. (in Chinese with English abstract)

    [13] 薛强,张茂省,孙萍萍,等. 基于多期DEM和滑坡强度的滑坡风险评估[J]. 地质通报,2013,32(6):925 − 934. [XUE Qiang,ZHANG Maosheng,SUN Pingping,et al. Landslide risk assessment based on multi-period DEM and activity intensity[J]. Geological Bulletin of China,2013,32(6):925 − 934. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-2552.2013.06.016
    [14] 王思源. 黑方台黄土斜坡变形过程数值模拟[D]. 兰州: 兰州大学, 2013

    WANG Siyuan. Numerical simulation of loess landslide deformation process in Heifangtai area[D]. Lanzhou: Lanzhou University, 2013. (in Chinese with English abstract)

    [15] 胡炜,张茂省,朱立峰,等. 黑方台灌溉渗透型黄土滑坡的运动学模拟研究[J]. 工程地质学报,2012,20(2):183 − 188. [HU wei,ZHANG Maosheng,ZHU Lifeng,et al. Kinematic simulation of irrigation-induced loess landslide in Heifangtai[J]. Journal of Engineering Geology,2012,20(2):183 − 188. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2012.02.005
    [16] 贾俊,朱立峰,胡炜. 甘肃黑方台地区灌溉型黄土滑坡形成机理与运动学特征—以焦家崖头13号滑坡为例[J]. 地质通报,2013,32(12):1968 − 1975. [JIA Jun,ZHU Lifeng,HU Wei. The formation mechanism and disaster model of loess landslide induced by irrigation in Heifangtai,Gansu Province:A case study of the 13th landslide in Jiaojiayatou[J]. Geological Bulletin of China,2013,32(12):1968 − 1975. (in Chinese with English abstract)
    [17] 赵纪飞,候晓坤,李同录,等. 甘肃黑方台焦家滑坡泥流运动过程的模拟[J]. 灾害学,2017,32(3):96 − 100. [ZHAO Jifei,HOU Xiaokun,LI Tonglu,et al. Simulation of motion process for the landslide flow located in Heifangtai Jiaojia,Gansu Province[J]. Journal of Catastrophology,2017,32(3):96 − 100. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-811X.2017.03.017
    [18]

    OUYANG C,HE S,XU Q,et al. A MacCormack-TVD finite difference method to simulate the mass flow in mountainous terrain with variable computational domain[J]. Computers & Geosciences,2013,52:1 − 10.

    [19]

    OUYANG C,ZHOU K,XU Q,et al. Dynamic analysis and numerical modeling of the 2015 catastrophic landslide of the construction waste landfill at Guangming,Shenzhen,China[J]. Landslide,2017,14(2):705 − 18. DOI: 10.1007/s10346-016-0764-9

    [20] 周琪,许强,周书,等. 基于数值模拟的突发型黄土滑坡运动过程研究—以黑方台陈家8#滑坡为例[J]. 山地学报,2019,37(4):528 − 537. [ZHOU Qi,XU Qiang,ZHOU Shu,et al. Study on movement process of sudden loess landslide based on numerical simulation:Taking Chenjia 8# landslide in Heifangtai as an example[J]. Mountain Research,2019,37(4):528 − 537. (in Chinese with English abstract)
    [21] 周琪,许强,赵宽耀,等. 基于均匀分布的滑坡数值模拟参数取值概率研究—以甘肃黑方台黄土滑坡为例[J]. 灾害学,2021,36(1):201 − 206,234. [ZHOU Qi,XU Qiang,ZHAO Kuanyao,et al. Parameters probability of landslide numerical model based on uniform distribution:A case study on the Heifangtai terrace[J]. Journal of Catastrophology,2021,36(1):201 − 206,234. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-811X.2021.01.037
    [22] 吴玮江,叶伟林,姚正学,等. 甘肃永靖黑方台4·29罗家坡黄土滑坡的特征[J]. 冰川冻土,2016,38(3):;662 − 670. [WU Weijiang,YE Weilin,YAO Zhengxue,et al. Characteristics of Luojiapo loess landslides at Heifangtai,burst on April 29,2015,in Yongjing County,Gansu Province[J]. Journal of Glaciology and Geocryology,2016,38(3):;662 − 670. (in Chinese with English abstract)
    [23] 许强,彭大雷,亓星,et al. 2015年4.29甘肃黑方台党川2#滑坡基本特征与成因机理研究[J]. 工程地质学报,2016,24(2):167 − 180. [XU Qiang,PENG Dalei,QI Xing,et al. Dangchuan 2# landslide of April 29,2015 in Heifangtai area of Gansu Province:Characteristices and Failure mechanism[J]. Journal of Engineering Geology,2016,24(2):167 − 180. (in Chinese with English abstract)
    [24] 李同录,李颖喆,赵丹旗,等. 对水致黄土斜坡破坏模式及稳定性分析原则的思考[J]. 中国地质灾害与防治学报,2022,33(2):25 − 32. [LI Tonglu,LI Yingzhe,ZHAO Danqi,et al. Thoughts on modes of loess slope failure triggered by water infiltration and the principals for stability analysis[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):25 − 32. (in Chinese with English abstract)
    [25] 朱荣森. 甘肃黑方台黄土滑坡滑带土的物理力学性质研究[D]. 西安: 西北大学, 2019

    ZHU Rongsen. Study on physical a. in Gansu Province[D]. Xi’an: Northwest University, 2019. (in Chinese with English abstract)

    [26] 朱立峰,胡炜,张茂省,等. 甘肃永靖黑方台地区黄土滑坡土的力学性质[J]. 地质通报,2013,32(6):881 − 886. [ZHU Lifeng,HU Wei,ZHANG Maosheng,et al. An analysis of the soil mechanical properties involved in loess landslides in Heifangtai,Gansu Province[J]. Geological Bulletin of China,2013,32(6):881 − 886. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-2552.2013.06.009
    [27] 方汕澳, 许强, 修德皓, 等. 基于斜率模型的突发型黄土滑坡失稳时间预测[J]. 水文地质工程地质,2021,48(4):169 − 179. [FANG Shanao, XU Qiang, XIU Dehao, et al. A study of the predicted instability time of sudden loess landslides based on the SLO model[J]. Hydrogeology & Engineering Geology,2021,48(4):169 − 179. (in Chinese with English abstract)
图(11)  /  表(2)
计量
  • 文章访问数:  1917
  • HTML全文浏览量:  1111
  • PDF下载量:  342
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-01
  • 修回日期:  2022-02-04
  • 网络出版日期:  2022-10-13
  • 刊出日期:  2022-12-21

目录

/

返回文章
返回