Abstract:
Due to the development of geological structure, frequent seismic activity, strong valley cutting, high steep and narrow bank slope, extremely broken rock mass, there have been many large-scale landslides blocking the Jinshajiang River in history.
Taking the two river blocking events of Baige landslide (October 11, 2018 and November 3, 2018) as an example, this paper uses the multi-phase and Multi-source Satellite remote sensing data sources from December 4, 2009 to October 16, 2020 to analyze the deformation characteristics of the slope before sliding, the accumulation characteristics of the slope after sliding and the residual deformation characteristics of the slope after sliding by means of remote sensing identification and comparative analysis The analysis of telemotional states. According to the multi-stage remote sensing images, the deformation characteristics of Baige landslide are divided into five areas: early sliding deformation stage (2009-2011), stable deformation stage (2011-2015), rapid deformation stage (2015-2017), severe deformation stage (2017-2018) and deformation failure stage (after 2018). According to the deformation and failure characteristics of the landslide, the landslide is divided into sliding source area, scraping area, accumulation area and tensile fracture deformation area. According to the deformation and failure characteristics of the landslide after the second sliding, the landslide is divided into the secondary landslide source area, the secondary landslide accumulation area (weir body), the secondary scraping (accumulation) area, the secondary scraping affected area and the tensile fracture deformation area. Based on the above research results, this paper summarizes and analyzes the chain characteristics of Baige landslide disaster, which provides a reference for the research on the chain characteristics of long range and high position landslide disasters in Jinsha River junction zone.