Deformation analysis of Sela landslide in the upper reaches of Jinsha River based on MSBAS technology
-
摘要: 金沙江缝合带是滑坡灾害的高发区,且具有较大的堵江威胁。以堵江风险较高的色拉滑坡为研究对象,选取高时间分辨率的升降轨Sentinel-1A/B数据,利用MSBAS InSAR技术对该滑坡展开地表形变监测研究。文章在利用不同轨道的Sentinel-1A/B获取色拉滑坡2018—2020年间的二维动态形变时间序列的基础上,分析了典型特征点形变时间序列特征。结果表明,在2018年1月—2020年4月色拉滑坡东西向累积形变最高达到165 mm,垂直向累积形变达−102 mm,滑坡体形变加速的时间点被成功地捕获。最后,分析了该滑坡的形变趋势,通过现场调查结果验证了所获得滑坡监测结果的准确性。
-
关键词:
- 多维短基线集技术 /
- 相位堆叠InSAR技术 /
- 色拉滑坡 /
- 滑坡识别 /
- 二维分解
Abstract: The Jinshajiang suture zone is a high-incidence area of landslide disasters and has a greater threat of river jamming. In this paper, the Sela landslide with high risk of blocking rivers was taken as the research object, and the Sentinel-1A/B images were selected and processed by MSBAS InSAR technology to obtain the surface deformation of the landslide. We used the Sentinel-1A/B images from different orbits to obtain the two-dimensional dynamic deformation of the Sela landslide from 2018 to 2020. Deformation time series characteristics of typical points are analyzed. The results show that the cumulative deformation in the east-west direction of Sala landslide reached a maximum of 165 mm, and the cumulative deformation in the vertical direction reached −102 mm from January 2018 to April 2020. We studied the deformation trend of the landslide, and the accuracy of the landslide monitoring results was verified by the field survey results.-
Keywords:
- MSBAS /
- stacking InSAR /
- Sela landslide /
- landslide identification /
- two dimensional decomposition
-
0 引言
曲哇加萨(军功)滑坡位于青海省果洛藏族自治州玛沁县拉加镇,是发育于黄河上游新近系岩层中的巨型老滑坡。滑体前缘长期受黄河强烈侵蚀切割,以及修建公路、坡脚削坡建房等人类工程活动影响,滑体变形迹象明显,历史上曾多次发生局部滑动(图1)。
1985年7月21日老滑坡体中段发生滑坡。2011年8月12日当地居民在老滑坡体前缘削坡建房引发局部滑动。2013年6月1日、2018年5月2日受降雨影响,老滑坡体局部变形加剧。2019年9月20日老滑坡体上H1、H2、H4滑坡发生滑动,造成国道G227上山路段严重变形,损毁公路400 m,前缘18户居民受灾,51间房屋倒塌。同时,造成老滑坡体中前部,即拉加镇军功路南侧坡体出现变形迹象。2020年3月1日,老滑坡体中前部拉加镇军功路南侧坡体前缘局部变形加剧,威胁住户120户、商铺65户,其中19户139间房屋出现不同程度倾斜、地基下沉、墙体开裂等情况[1-4]。
针对曲哇加萨滑坡复杂的变形破坏特征,程强等 [5]提出:这种特殊的新近系以来沉积的高原红层,成岩时间短,力学强度相对较弱,易发生红层与上覆土体界面的大型滑坡灾害。张永康等 [6]通过现场勘查提出青海高原红层滑坡的具有多区、多级、多层的变形破坏特征,且各滑体滑动速度不同。吴永刚等 [7]通过物理模型试验认为青海高原红层滑坡河谷下切引起的坡体卸荷回弹变形使得浅层滑面位移大于深层滑面位移,雨水浸润引起材料强度软化进一步加剧了变形。殷志强等 [8]指出:黄河上游巨型滑坡主要发育于气候的温暖湿润期和气候变化的快速转型期,具有多期次滑动过程特征。Wang等 [9-13]利用安全系数云图分析法模拟出了茂县梯子槽高位滑坡多层滑面安全系数分布,并据此进行防治结构设计,提出了针对性的小口径组合桩群治理方案。李滨等 [14-19]提出此类特大高位地质灾害易形成泥石流、堵江等灾害链,需加强调查与识别能力、监测预警与风险防范能力以及防灾减灾能力建设。
文章以2019年9月20日19时发生于曲哇加萨老滑坡东北段中前缘 H1滑坡为例,在野外调查、形变数据以及稳定性分析的基础上,研究该滑坡的变形破坏特征,并进一步通过动力学模拟分析滑坡的成灾范围,可为后续的综合防治方案提供科学参考。
1. 研究区地质环境条件
曲哇加萨老滑坡所处位置为黄河强烈下切侵蚀区,河谷形态为峡谷。拉加镇段因黄河呈急剧“S”拐弯形成相对开阔的一小型河谷型盆地,其凸岸发育有黄河Ⅱ、Ⅶ级阶地,阶面地形较为平缓。凹岸坡体和河床直接接触,长期遭受强烈的侵蚀切割,形成高几十米至数百米不等的陡坡、陡崖。滑坡区地形地貌主要为黄河Ⅱ、Ⅶ级阶地组成的河谷平原地貌。黄河Ⅱ级阶地分布于滑坡前缘,现为居民区,黄河Ⅶ级阶地分布于老滑坡后缘。老滑坡西侧坡脚长期受黄河冲刷、侵蚀下切(图1)。
滑坡区北侧发育有拉家压扭性逆断层(F1),该断层位于拉加北山,NE60°方向延展,为逆冲断层,断层破碎带宽度10~30 m。挽近时期的隆拗运动在滑坡区的表现也较明显,其隆拗的长轴方向继承了老构造断裂带的走向,多呈东西向展布。该地区地震活动频繁,地震基本烈度Ⅶ度。
老滑坡整体呈宽簸箕形,坡体发育有3~6级滑移台坎。东、南侧滑坡后壁明显,呈陡坡状,局部为陡崖,高度40~50 m,西侧滑坡边界以深切的塔尔隆沟为界;滑体宽约1900 m,长700~900 m,厚30~100 m,方量约1.67×108 m3,整体坡度约25°,主滑方向307°。滑体后缘高程3225~3340 m,前缘高程3040 m,相对高差185~300 m。老滑坡后缘出露地层上部为“二元结构”黄土状土和卵石,下部为新近系泥岩,泥岩产状NE5°∠25°,组成顺向缓倾坡(图2)。
2. 2019年9月20日滑坡特征
2019年9月20日,曲哇加萨老滑坡东北段中前缘H1、H2、H4滑坡发生滑动,造成路面隆起、损毁公路400 m,18户居民受灾,51间房屋倒塌。H4滑坡滑动后造成原来公路的20根抗滑桩裸露,悬臂5~10 m,出现桩间土坍塌变形,桩后 H3滑坡内也形成多条纵向裂缝。灾害发生后,采取了拆除房屋和回填压脚措施[2](图3—6)。
由图4—5可以看出,临近公路位置H1、H2滑坡前缘发育多处土体解体,并挤压公路产生多处放射状鼓胀张拉裂缝,裂缝宽度30~60 cm,深度2 m,裂缝走向与滑坡方向平行或呈小角度相交。公路外侧挡墙产生严重的鼓胀变形,裂缝宽度达5 cm。公路下方由于滑坡滑动鼓胀导致地表隆起,造成51间房屋倒塌。滑坡前缘影响范围至公路挡墙和军功路之间。
由图6可以看出,H1滑坡后缘陡坡下错约2.0 m,侧界清晰,滑坡呈现蠕滑特征,表面裂缝遍布。现场后缘可见水体入渗迹象,土体含水量较高。
为避免滑坡进一步变形致灾,灾害发生后,采取了拆除房屋、回填压脚及截排水措施,9天后,该滑坡逐渐趋于稳定状态。
实际上H1、H2、H4历史上曾出现多次变形。2011年8月12日,由于省道S101线(现为国道G227)修建时开挖该区西侧滑体前缘和当地居民削坡建房等工程活动,引发老滑坡前缘部分滑动,使得H1、H2滑坡后缘和右侧缘形成连续的圈椅状陡壁,高2~6 m。滑坡后缘拉张裂缝密集发育。
根据2013年8月—2014年10月地表变形监测数据监测数据分析,监测点的位移量在2014年6月、2014年8月出现两次明显阶跃,最大水平变形累计达到900 mm[1-4]。根据2014年7月—2019年6月时间序列InSAR监测数据,获得滑坡的年平均形变速率超过70 mm,说明曲哇加萨滑坡一直在变形。
从图7可以看出,8月27日—9月22日近1个月累计降雨量为91.5 mm,其中18—20日3日连续降雨量为23.5 mm,占比25.7%。降雨沿着密集发育的裂缝下渗,加速了地下水的渗流作用,进一步降低了岩土体的强度,最终导致北侧滑坡发生滑动。
为更好说明东北段中前缘滑坡发生的相关机理,选择H1滑坡进行具体分析。结合物探、钻探及探井资料, H1滑坡由上至下共发育4层滑面(图8),从上至下分别为滑面1:位于碎石土与粉质黏土交界层前部,深度约5~10 m,饱水,呈泥团状;滑面2:位于碎石土与粉质黏土交界层附近,深度约20~30 m,含水率较高,呈软塑状,局部可见擦痕;滑面3:位于黏土层与粉质黏土交界层处,深度约35~50 m,含水率较高,呈可塑-软塑状,可见擦痕;滑面4:位于基岩与黏土层的交界处,深度约60~80 m,含水率较高,呈硬塑-可塑状。
选取图8典型剖面进行滑坡稳定性计算,确定降雨对滑坡稳定性的影响程度,根据程柯力等[2]计算结果表明浅层滑面1、滑面2的稳定系数为0.94、1.02,处于不稳定状态和欠稳定状态,易于继续发生变形破坏(图9)。模拟结果很好验证了此次东北段中前缘滑坡主要是由于浅层滑面1蠕滑形成,同时滑面2的滑动可能性也较高,需做相关的动力学预测分析。而深层滑面3、滑面4的稳定系数均为1.35,处于稳定状态,故不需做相关动力学预测分析。
3. 滑坡动力学反演模拟及预测评价
3.1 DAN-W 基本原理
为了分析滑坡剪出后动力学特征和评估成灾范围,采用加拿大Hungr教授开发的DAN-W二维的动力模拟方法进行正演分析。DAN-W是一种基于Windows程序,在连续介质模型基础上将滑体等效为具有流变性质的流体,选用不同的流变模型,通过设定滑坡的滑动路径的参数,从而达到模拟滑坡的运动速度、时间、路程以及堆积体特征效果[20-29]。大量的模拟结果表明摩擦准则和Volleymy准则最能表达滑坡的运动。
摩擦准则是一个单变量的流变准则,其抗剪强度表达式为:
$$ \tau = \sigma \left( {1 - {r_{\rm{u}}}} \right)\tan \varphi $$ (1) 式中:
$\tau $ ——滑坡底部剪应力/Pa;$\sigma $ ——垂直运动方向的总应力/Pa;${r_{\rm{u}}}$ ——孔隙水压力与总正应力之比;$\varphi $ ——摩擦角/(°)。Volleymy准则的抗剪应力表达式为:
$$ \tau=\sigma f+\rho g \frac{v^{2}}{\varepsilon} $$ (2) 式中:f——摩擦系数;
ρ——滑坡的密度/(kg·m−3);
g——重力加速度/(m·s−2);
v——滑坡平均速度/(m·s−2);
ε——湍流系数/(m·s−2)。
该准则中f和ε为两个待定的参数。
3.2 模型建立及反演模拟对比
根据现场调查发现,滑坡主要运动模式是蠕滑,并且前部有公路挡墙和房屋阻挡,并未发生远程滑坡,因此选用摩擦流变模型较为合适。当然,为更好的说明摩擦流变模型的有效性,再选取Volleymy流变模型共同与H1滑坡1号滑面浅层滑动现场调查结果进行对比。采用试参法对摩擦流变模型进行模拟[20],Volleymy流变模型内摩擦角与摩擦流变模型一致,同时,摩擦系数,湍流系数采取工程类比,从而对已发生滑动的曲哇加萨1号浅层滑面进行运动反演模拟对比分析(表1)。
表 1 模型参数选取Table 1. Model parameters模型 内摩擦角/(°) 摩擦系数 湍流系数/(m·s−1) Frictional 16* - - Vollemy 16 0.20 200 注:*表示饱和状态下,内摩擦角直接快剪试验结果为20.3°。 从图10可以看出,1号滑面浅层滑坡运动后,若按照摩擦流变模型将运动堆积到623 m位置,即挡墙至军功路段国道G227和居民区,暂时不会影响到军功路至黄河段。同时,滑坡体积超过50%基本停留在上部滑面上,其余均匀停留在运动路径上,这与现场调查滑坡堆积特征基本相符。若按照Volleymy流变模型运动堆积到682 m位置,即军功路至黄河段居民区,与现场调查结果不符,大于实际运动距离。同时,滑坡体积主要停留在坡脚位置,也与实际情况不符。
3.3 欠稳定状态2号滑面运动预测评价
利用上述反演分析摩擦流变模型的同一套参数(表1)对处于欠稳定状态的2号浅层滑面进行运动预测模拟分析,得出了堆积厚度、范围等运动特征,并与上述1号浅层滑面进行对比(图11)。
研究发现:2号滑面浅层滑坡一旦运动后,将运动堆积到673 m位置,即军功路至黄河段居民区。滑坡体均匀停留在运动路径上。模拟结果说明:目前2号滑面浅层滑坡一旦发生滑动,威胁军功路至黄河段居民区及商铺房屋,但不至引起堵塞黄河灾害发生。
4. 结语
(1)曲哇加萨滑坡坡体呈现多区、多级、多层的变形破坏特征,目前变形破坏强烈,尤其是东北段中前缘滑坡近期频繁出现变形破坏。
(2)东北段中前缘滑坡地表监测曲线、形变速率曲线、钻探数据和现场调查表明,降雨沿着密集发育的裂缝下渗,加速了地下水的渗流作用,进一步降低了岩土体的强度,最终导致滑坡发生变形滑动。
(3)以H1滑坡为代表,在降雨稳定性计算基础上进行动力学反演,反演分析发现1号滑面浅层滑坡按照摩擦流变模型运动后,将运动堆积到挡墙至军功路段国道G227和居民区,这与现场调查滑坡堆积特征基本相符,而Volleymy流变模型运动堆积到682 m位置,即军功路至黄河段居民区,与现场调查结果不符,大于实际运动距离。同时,滑坡体积主要停留在坡脚位置,也与实际情况不符。
(4)利用上述反演分析摩擦流变模型的同一套参数对处于欠稳定状态的2号浅层滑面进行运动预测模拟分析,发现2号滑面浅层滑坡运动后,将运动堆积到军功路至黄河段居民区,但不至于引起堵塞黄河灾害发生。
(5)本文的研究内容可为黄河上游该类滑坡运动预测评价方法提供一定参考。
-
表 1 研究区SAR数据集主要参数
Table 1 Main parameters of the SAR data sets used in this study
轨道方向 升轨 降轨 轨道号 99 33 入射角 33.8° 39.3° 方位角 −10.4° −170.0° 成像模式 IW宽幅模式 IW宽幅模式 极化方式 VV VV 影像数量 66 64 影像时间间隔ΔT 12 12 影像时间范围 2018年1月—2020年4月 2018年1月—2020年4月 表 2 形变参考区内的形变速率标准差
Table 2 Standard deviation of deformation rate in deformation reference area
/(mm·a−1) SAR数据 平均值 标准差 东西向 −0.489 2.115 垂直向 1.499 1.574 -
[1] 柴贺军, 刘汉超, 张倬元. 中国滑坡堵江事件目录[J]. 地质灾害与环境保护,1995,6(4):1 − 9. [CHAI Hejun, LIU Hanchao, ZHANG Zhuoyuan. The catalog of Chinese landslide dam events[J]. Journal of Geological Hazards and Enveronment Preservation,1995,6(4):1 − 9. (in Chinese with English abstract) [2] 刘威, 何思明. 金沙江沃达潜在滑坡诱发灾害链成灾过程数值模拟[J]. 工程科学与技术,2020,52(2):38 − 46. [LIU Wei, HE Siming. Numerical simulation of the evolution process of disaster chain induced by potential landslide in woda of Jinsha River basin[J]. Advanced Engineering Sciences,2020,52(2):38 − 46. (in Chinese with English abstract) [3] 吴瑞安, 马海善, 张俊才, 等. 金沙江上游沃达滑坡发育特征与堵江危险性分析[J/OL]. 水文地质工程地质, 2021: 1-9[2021-09-09]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=SWDG20210619005&uniplatform=NZKPT&v=7FH75KqLtHX01AvljoGHV%25mmd2Bq1GXUphpQf3yIGvTP0S10jYDe69KSjw7lnV4dlZsxC. WU Ruian, MA Haishan, ZHANG Juncai, et al. Developmental characteristics and damming river risk of Woda landslide in the upper reaches of the Jinsha River [J]. Hydrogeology & Engineering Geology, 2021: 1-9[2021-09-09]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=SWDG20210619005&uniplatform=NZKPT&v=7FH75KqLtHX01AvljoGHV%25mmd2Bq1GXUphpQf3yIGvTP0S10jYDe69KSjw7lnV4dlZsxC (in Chinese with English abstract)
[4] 柴贺军, 刘汉超, 张倬元. 中国堵江滑坡发育分布特征[J]. 山地学报,2000,18(增刊1):51 − 54. [CHAI Hejun, LIU Hanchao, ZHANG Zhuoyuan. The temporal-soatial distribution of damming landslides in China[J]. Journal of Mountain Research,2000,18(Sup1):51 − 54. (in Chinese with English abstract) [5] 许强, 李为乐, 董秀军, 等. 四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究[J]. 岩石力学与工程学报,2017,36(11):2612 − 2628. [XU Qiang, LI Weile, DONG Xiujun, et al. Preliminary study on characteristics and genetic mechanism of landslide in Xinmo Village, Diexi Town, Maoxian County, Sichuan Province[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(11):2612 − 2628. (in Chinese with English abstract) [6] 刘传正, 吕杰堂, 童立强, 等. 雅鲁藏布江色东普沟崩滑-碎屑流堵江灾害初步研究[J]. 中国地质,2019,46(2):219 − 234. [LIU Chuanzheng, LYU Jietang, TONG Liqiang, et al. Research on glacial/rock fall-landslide-debris flows in Sedongpu basin along Yarlung Zangbo River in Tibet[J]. Geology in China,2019,46(2):219 − 234. (in Chinese with English abstract) [7] 王群, 张蕴灵, 范景辉, 等. 基于PS-InSAR和offset tracking技术的金沙江白格滑坡形变监测[J]. 大地测量与地球动力学,2020,40(4):340 − 345. [WANG Qun, ZHANG Yunling, FAN Jinghui, et al. Deformation monitoring of the Baige landslide in the Jinsha River using PS-InSAR and offset tracking techniques[J]. Journal of Geodesy and Geodynamics,2020,40(4):340 − 345. (in Chinese with English abstract) [8] 朱赛楠, 殷跃平, 王猛, 等. 金沙江结合带高位远程滑坡失稳机理及减灾对策研究: 以金沙江色拉滑坡为例[J]. 岩土工程学报,2021,43(4):688 − 697. [ZHU Sainan, YIN Yueping, WANG Meng, et al. Instability mechanism and disaster mitigation measures of long-distance landslide at high location in Jinsha River junction zone: Case study of Sela landslide in Jinsha River, Tibet[J]. Chinese Journal of Geotechnical Engineering,2021,43(4):688 − 697. (in Chinese with English abstract) [9] 严容. 岷江上游崩滑堵江次生灾害及环境效应研究[D]. 成都: 四川大学, 2006. YAN Rong. Secondary disaster and environmental effect of landslided and collapsed dams in the upper reaches of Minjiang River[D]. Chengdu: Sichuan University, 2006. (in Chinese with English abstract)
[10] NECULA N, NICULIȚĂ M, FLORIS M, et al. InSAR analysis of Sentinel-1 data for monitoring landslide displacement of the north-easternCopou hillslope, Iaşi city, Romania[C]//Proceedings of the 33rd Romanian Geomorphology Symposium. May 11-14, 2017. Iași, Romania. Iași: Alexandru Ioan Cuza University of Iași Press, 2017: 11-14.
[11] KISELEVA Е, MIKHAILOV V, SMOLYANINOVA E, et al. PS-InSAR monitoring of landslide activity in the black sea coast of the caucasus[J]. Procedia Technology,2014,16:404 − 413. DOI: 10.1016/j.protcy.2014.10.106
[12] COLESANTI C, WASOWSKI J. Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry[J]. Engineering Geology,2006,88(3/4):173 − 199.
[13] 赵富萌, 张毅, 孟兴民, 等. 基于小基线集雷达干涉测量的中巴公路盖孜河谷地质灾害早期识别[J]. 水文地质工程地质,2020,47(1):142 − 152. [ZHAO Fumeng, ZHANG Yi, MENG Xingmin, et al. Early identification of geological hazards in the Gaizi valley near the Karakoran highway based on SBAS-InSAR technology[J]. Hydrogeology & Engineering Geology,2020,47(1):142 − 152. (in Chinese with English abstract) [14] 李壮, 李滨, 高杨, 等. 雅鲁藏布江下游色东普沟高位地质灾害发育特征遥感解译[J]. 中国地质灾害与防治学报,2021,32(3):33 − 41. [LI Zhuang, LI Bin, GAO Yang, et al. Remote sensing interpretation of development characteristics of high-position geological hazards in Sedongpu gully, downstream of Yarlung Zangbo River[J]. The Chinese Journal of Geological Hazard and Control,2021,32(3):33 − 41. (in Chinese with English abstract) [15] 张成龙, 李振洪, 余琛, 等. 滑坡探测 : GACOS辅助下InSAR Stacking在金沙江流域的应用[J/OL].武汉大学学报(信息科学版): 1−16. https://doi.org/10.13203/j.whugis20200675. ZHANG Chenglong, LI Zhenhong, YU Chen, et al. Landslide detection: application of InSAR Stacking assisted by GACOS in Jinsha River Basin [J/OL]. Journal of Wuhan University (Information Science Edition): 1−16. https://doi.org/10.13203/j.whugis20200675. (in Chinese with English abstract)
[16] 康亚. InSAR技术在西南山区滑坡探测与监测的应用[D]. 西安: 长安大学, 2016. KANG Ya. Landslide detection and monitoring over southwestern mountainous area with InSAR[D]. Xi'an: Chang'an University, 2016. (in Chinese with English abstract)
[17] 高杨, 李滨, 高浩源, 等. 高位远程滑坡冲击铲刮效应研究进展及问题[J]. 地质力学学报,2020,26(4):510 − 519. [GAO Yang, LI Bin, GAO Haoyuan, et al. Progress and issues in the research of impact and scraping effect of high-elevation and long-runout landslid[J]. Journal of Geomechanics,2020,26(4):510 − 519. (in Chinese with English abstract) [18] 李滨, 张青, 王文沛, 等. 金沙江乌东德水电站坝区高陡边坡地质灾害监测预警研究[J]. 地质力学学报,2020,26(4):556 − 564. [LI Bin, ZHANG Qing, WANG Wenpei, et al. Geohazard monitoring and risk management of high-steep slope in the Wudongde dam area[J]. Journal of Geomechanics,2020,26(4):556 − 564. (in Chinese with English abstract) [19] 张文馨. InSAR技术在南屯矿区地面形变监测中的应用研究[D]. 徐州: 中国矿业大学, 2018. ZHANG Wenxin. Application of InSAR technology in surface deformation monitoring in nantun mining area[D]. Xuzhou: China University of Mining and Technology, 2018. (in Chinese with English abstract)
[20] 樊晓一, 张睿骁, 胡晓波. 沟谷地形参数对滑坡运动距离的影响研究[J]. 地质力学学报,2020,26(1):106 − 114. [FAN Xiaoyi, ZHANG Ruixiao, HU Xiaobo. Study on the influence of valley topographic parameter on the moving distance of landslide[J]. Journal of Geomechanics,2020,26(1):106 − 114. (in Chinese with English abstract) [21] 苏永华, 蹇宜霖, 张航. 基于滑带软化的滑坡渐进破坏机制分析[J]. 公路工程,2019,44(1):32 − 37. [SHU Yonghua, JIAN Yilin, ZHANG Hang. Analysis of landslide progressive failure mechanism based on sliding zone softening[J]. Highway Engineering,2019,44(1):32 − 37. (in Chinese with English abstract) [22] 张洋, 汪云甲, 闫世勇. 基于Stacking InSAR技术的沛北矿区沉降监测[J]. 煤炭技术,2016,35(7):102 − 105. [ZHANG Yang, WANG Yunjia, YAN Shiyong. Ground subsidence detection of Peibei mining area based on stacking InSAR technology[J]. Coal Technology,2016,35(7):102 − 105. (in Chinese with English abstract) [23] DAI K R, LIU G X, LI Z H, et al. Monitoring highway stability in permafrost regions with X-band temporary scatterers stacking InSAR[J]. Sensors,2018,18(6):1876. DOI: 10.3390/s18061876
[24] SAMSONOV S, D’OREYE N, SMETS B. Ground deformation associated with post-mining activity at the French-German border revealed by novel InSAR time series method[J]. International Journal of Applied Earth Observation and Geoinformation,2013,23:142 − 154. DOI: 10.1016/j.jag.2012.12.008
[25] 许强, 郑光, 李为乐, 等. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J]. 工程地质学报,2018,26(6):1534 − 1551. [XU Qiang, ZHENG Guang, LI Weile, et al. Study on successive landslide damming events of Jinsha River in Baige Village on Octorber 11 and November 3, 2018[J]. Journal of Engineering Geology,2018,26(6):1534 − 1551. (in Chinese with English abstract) -
期刊类型引用(3)
1. 王溢禧,赵俊彦,朱兴华,于美冬,陈彩虹. 贵德盆地席芨滩巨型滑坡前缘次级滑坡特征及其复活机理分析. 中国地质灾害与防治学报. 2024(06): 1-14 . 本站查看
2. 王文沛,殷跃平,王立朝,沈亚麒,石鹏卿,李瑞冬,何清,陈亮,殷保国. 排水抗滑桩技术研究现状及展望. 水文地质工程地质. 2023(02): 73-83 . 百度学术
3. 陈銮. 浅析滑坡勘查过程中滑动面的确定方法. 江西建材. 2023(06): 168-169+172 . 百度学术
其他类型引用(2)