Development and distribution rules of geohazards in Diexi- Songpinggou scenic area in a meizoseismal area
-
摘要: 以强震区叠溪松坪沟景区为研究范围区,通过多元信息手段调查,共发现地质灾害107处,其中崩塌82处,滑坡25处。地质灾害的发育分布的影响因素包括:原始坡度、高程、坡体结构、水系距离及断裂带距离等。灾害发育分布在坡度30°~50°数量多且规模大;高程2200~3400 m灾害发育数量多,尤其是高程2600~3000 m占总量的42.5%,规模则在高程为3400~3600 m较大;斜向坡体发育地质灾害数量及规模均较大,其次为顺向坡和反倾坡;水系对灾害一般最大影响距离为4.0 km,其中0~1.0 km范围内灾害发育,且规模较大;地质灾害沿地震断裂带呈次“串珠状”分布,0~2.0 km范围内最为显著发育,且符合一定的拟合规律。通过统计归纳分析,厘定了强震区叠溪松坪沟景区范围内地质灾害的发育的主要影响因素,系统的总结了其分布规律,为研究区内的基础建设以及防灾减灾提供了科学依据和参考。Abstract: The Songpinggou scenic area in Diexi was taken as the study area and there are 107 geological disasters were found, including 82 collapses and 25 landslides in this meizoseismal area. The influencing factors of the development and distribution of geological disasters include: original slope, development elevation, slope structure, water system distance and fault zone distance. The number and scale of disasters are distributed in the slope of 30 ° to 50 ° and the number and scale of disasters are large; the number of disasters with elevation of 2200~3400 m accounts for 42.5% of the total, especially the elevation of 2600~3000 m accounts for 42.5% of the total; the number and scale of geological disasters developed in oblique slope are relatively large, followed by consequent slope and reverse slope; the maximum influence distance of water system on disaster is 4.0 km, in which the range of 0~1 km is within. The results show that the geological disasters are developed and large-scale; the distribution of geological disasters along the seismic fault zone is sub "string beads", and the most significant development is in the range of 0~4.0 km, which conforms to a certain fitting law. Based on the statistical analysis, the main influencing factors of the development of geological disasters in the Songpinggou scenic area of Diexi are determined, and the distribution rules are systematically summarized, which provides scientific basis and reference for the infrastructure construction and disaster prevention and mitigation in the study area.
-
0 引言
曲哇加萨(军功)滑坡位于青海省果洛藏族自治州玛沁县拉加镇,是发育于黄河上游新近系岩层中的巨型老滑坡。滑体前缘长期受黄河强烈侵蚀切割,以及修建公路、坡脚削坡建房等人类工程活动影响,滑体变形迹象明显,历史上曾多次发生局部滑动(图1)。
1985年7月21日老滑坡体中段发生滑坡。2011年8月12日当地居民在老滑坡体前缘削坡建房引发局部滑动。2013年6月1日、2018年5月2日受降雨影响,老滑坡体局部变形加剧。2019年9月20日老滑坡体上H1、H2、H4滑坡发生滑动,造成国道G227上山路段严重变形,损毁公路400 m,前缘18户居民受灾,51间房屋倒塌。同时,造成老滑坡体中前部,即拉加镇军功路南侧坡体出现变形迹象。2020年3月1日,老滑坡体中前部拉加镇军功路南侧坡体前缘局部变形加剧,威胁住户120户、商铺65户,其中19户139间房屋出现不同程度倾斜、地基下沉、墙体开裂等情况[1-4]。
针对曲哇加萨滑坡复杂的变形破坏特征,程强等 [5]提出:这种特殊的新近系以来沉积的高原红层,成岩时间短,力学强度相对较弱,易发生红层与上覆土体界面的大型滑坡灾害。张永康等 [6]通过现场勘查提出青海高原红层滑坡的具有多区、多级、多层的变形破坏特征,且各滑体滑动速度不同。吴永刚等 [7]通过物理模型试验认为青海高原红层滑坡河谷下切引起的坡体卸荷回弹变形使得浅层滑面位移大于深层滑面位移,雨水浸润引起材料强度软化进一步加剧了变形。殷志强等 [8]指出:黄河上游巨型滑坡主要发育于气候的温暖湿润期和气候变化的快速转型期,具有多期次滑动过程特征。Wang等 [9-13]利用安全系数云图分析法模拟出了茂县梯子槽高位滑坡多层滑面安全系数分布,并据此进行防治结构设计,提出了针对性的小口径组合桩群治理方案。李滨等 [14-19]提出此类特大高位地质灾害易形成泥石流、堵江等灾害链,需加强调查与识别能力、监测预警与风险防范能力以及防灾减灾能力建设。
文章以2019年9月20日19时发生于曲哇加萨老滑坡东北段中前缘 H1滑坡为例,在野外调查、形变数据以及稳定性分析的基础上,研究该滑坡的变形破坏特征,并进一步通过动力学模拟分析滑坡的成灾范围,可为后续的综合防治方案提供科学参考。
1. 研究区地质环境条件
曲哇加萨老滑坡所处位置为黄河强烈下切侵蚀区,河谷形态为峡谷。拉加镇段因黄河呈急剧“S”拐弯形成相对开阔的一小型河谷型盆地,其凸岸发育有黄河Ⅱ、Ⅶ级阶地,阶面地形较为平缓。凹岸坡体和河床直接接触,长期遭受强烈的侵蚀切割,形成高几十米至数百米不等的陡坡、陡崖。滑坡区地形地貌主要为黄河Ⅱ、Ⅶ级阶地组成的河谷平原地貌。黄河Ⅱ级阶地分布于滑坡前缘,现为居民区,黄河Ⅶ级阶地分布于老滑坡后缘。老滑坡西侧坡脚长期受黄河冲刷、侵蚀下切(图1)。
滑坡区北侧发育有拉家压扭性逆断层(F1),该断层位于拉加北山,NE60°方向延展,为逆冲断层,断层破碎带宽度10~30 m。挽近时期的隆拗运动在滑坡区的表现也较明显,其隆拗的长轴方向继承了老构造断裂带的走向,多呈东西向展布。该地区地震活动频繁,地震基本烈度Ⅶ度。
老滑坡整体呈宽簸箕形,坡体发育有3~6级滑移台坎。东、南侧滑坡后壁明显,呈陡坡状,局部为陡崖,高度40~50 m,西侧滑坡边界以深切的塔尔隆沟为界;滑体宽约1900 m,长700~900 m,厚30~100 m,方量约1.67×108 m3,整体坡度约25°,主滑方向307°。滑体后缘高程3225~3340 m,前缘高程3040 m,相对高差185~300 m。老滑坡后缘出露地层上部为“二元结构”黄土状土和卵石,下部为新近系泥岩,泥岩产状NE5°∠25°,组成顺向缓倾坡(图2)。
2. 2019年9月20日滑坡特征
2019年9月20日,曲哇加萨老滑坡东北段中前缘H1、H2、H4滑坡发生滑动,造成路面隆起、损毁公路400 m,18户居民受灾,51间房屋倒塌。H4滑坡滑动后造成原来公路的20根抗滑桩裸露,悬臂5~10 m,出现桩间土坍塌变形,桩后 H3滑坡内也形成多条纵向裂缝。灾害发生后,采取了拆除房屋和回填压脚措施[2](图3—6)。
由图4—5可以看出,临近公路位置H1、H2滑坡前缘发育多处土体解体,并挤压公路产生多处放射状鼓胀张拉裂缝,裂缝宽度30~60 cm,深度2 m,裂缝走向与滑坡方向平行或呈小角度相交。公路外侧挡墙产生严重的鼓胀变形,裂缝宽度达5 cm。公路下方由于滑坡滑动鼓胀导致地表隆起,造成51间房屋倒塌。滑坡前缘影响范围至公路挡墙和军功路之间。
由图6可以看出,H1滑坡后缘陡坡下错约2.0 m,侧界清晰,滑坡呈现蠕滑特征,表面裂缝遍布。现场后缘可见水体入渗迹象,土体含水量较高。
为避免滑坡进一步变形致灾,灾害发生后,采取了拆除房屋、回填压脚及截排水措施,9天后,该滑坡逐渐趋于稳定状态。
实际上H1、H2、H4历史上曾出现多次变形。2011年8月12日,由于省道S101线(现为国道G227)修建时开挖该区西侧滑体前缘和当地居民削坡建房等工程活动,引发老滑坡前缘部分滑动,使得H1、H2滑坡后缘和右侧缘形成连续的圈椅状陡壁,高2~6 m。滑坡后缘拉张裂缝密集发育。
根据2013年8月—2014年10月地表变形监测数据监测数据分析,监测点的位移量在2014年6月、2014年8月出现两次明显阶跃,最大水平变形累计达到900 mm[1-4]。根据2014年7月—2019年6月时间序列InSAR监测数据,获得滑坡的年平均形变速率超过70 mm,说明曲哇加萨滑坡一直在变形。
从图7可以看出,8月27日—9月22日近1个月累计降雨量为91.5 mm,其中18—20日3日连续降雨量为23.5 mm,占比25.7%。降雨沿着密集发育的裂缝下渗,加速了地下水的渗流作用,进一步降低了岩土体的强度,最终导致北侧滑坡发生滑动。
为更好说明东北段中前缘滑坡发生的相关机理,选择H1滑坡进行具体分析。结合物探、钻探及探井资料, H1滑坡由上至下共发育4层滑面(图8),从上至下分别为滑面1:位于碎石土与粉质黏土交界层前部,深度约5~10 m,饱水,呈泥团状;滑面2:位于碎石土与粉质黏土交界层附近,深度约20~30 m,含水率较高,呈软塑状,局部可见擦痕;滑面3:位于黏土层与粉质黏土交界层处,深度约35~50 m,含水率较高,呈可塑-软塑状,可见擦痕;滑面4:位于基岩与黏土层的交界处,深度约60~80 m,含水率较高,呈硬塑-可塑状。
选取图8典型剖面进行滑坡稳定性计算,确定降雨对滑坡稳定性的影响程度,根据程柯力等[2]计算结果表明浅层滑面1、滑面2的稳定系数为0.94、1.02,处于不稳定状态和欠稳定状态,易于继续发生变形破坏(图9)。模拟结果很好验证了此次东北段中前缘滑坡主要是由于浅层滑面1蠕滑形成,同时滑面2的滑动可能性也较高,需做相关的动力学预测分析。而深层滑面3、滑面4的稳定系数均为1.35,处于稳定状态,故不需做相关动力学预测分析。
3. 滑坡动力学反演模拟及预测评价
3.1 DAN-W 基本原理
为了分析滑坡剪出后动力学特征和评估成灾范围,采用加拿大Hungr教授开发的DAN-W二维的动力模拟方法进行正演分析。DAN-W是一种基于Windows程序,在连续介质模型基础上将滑体等效为具有流变性质的流体,选用不同的流变模型,通过设定滑坡的滑动路径的参数,从而达到模拟滑坡的运动速度、时间、路程以及堆积体特征效果[20-29]。大量的模拟结果表明摩擦准则和Volleymy准则最能表达滑坡的运动。
摩擦准则是一个单变量的流变准则,其抗剪强度表达式为:
$$ \tau = \sigma \left( {1 - {r_{\rm{u}}}} \right)\tan \varphi $$ (1) 式中:
$\tau $ ——滑坡底部剪应力/Pa;$\sigma $ ——垂直运动方向的总应力/Pa;${r_{\rm{u}}}$ ——孔隙水压力与总正应力之比;$\varphi $ ——摩擦角/(°)。Volleymy准则的抗剪应力表达式为:
$$ \tau=\sigma f+\rho g \frac{v^{2}}{\varepsilon} $$ (2) 式中:f——摩擦系数;
ρ——滑坡的密度/(kg·m−3);
g——重力加速度/(m·s−2);
v——滑坡平均速度/(m·s−2);
ε——湍流系数/(m·s−2)。
该准则中f和ε为两个待定的参数。
3.2 模型建立及反演模拟对比
根据现场调查发现,滑坡主要运动模式是蠕滑,并且前部有公路挡墙和房屋阻挡,并未发生远程滑坡,因此选用摩擦流变模型较为合适。当然,为更好的说明摩擦流变模型的有效性,再选取Volleymy流变模型共同与H1滑坡1号滑面浅层滑动现场调查结果进行对比。采用试参法对摩擦流变模型进行模拟[20],Volleymy流变模型内摩擦角与摩擦流变模型一致,同时,摩擦系数,湍流系数采取工程类比,从而对已发生滑动的曲哇加萨1号浅层滑面进行运动反演模拟对比分析(表1)。
表 1 模型参数选取Table 1. Model parameters模型 内摩擦角/(°) 摩擦系数 湍流系数/(m·s−1) Frictional 16* - - Vollemy 16 0.20 200 注:*表示饱和状态下,内摩擦角直接快剪试验结果为20.3°。 从图10可以看出,1号滑面浅层滑坡运动后,若按照摩擦流变模型将运动堆积到623 m位置,即挡墙至军功路段国道G227和居民区,暂时不会影响到军功路至黄河段。同时,滑坡体积超过50%基本停留在上部滑面上,其余均匀停留在运动路径上,这与现场调查滑坡堆积特征基本相符。若按照Volleymy流变模型运动堆积到682 m位置,即军功路至黄河段居民区,与现场调查结果不符,大于实际运动距离。同时,滑坡体积主要停留在坡脚位置,也与实际情况不符。
3.3 欠稳定状态2号滑面运动预测评价
利用上述反演分析摩擦流变模型的同一套参数(表1)对处于欠稳定状态的2号浅层滑面进行运动预测模拟分析,得出了堆积厚度、范围等运动特征,并与上述1号浅层滑面进行对比(图11)。
研究发现:2号滑面浅层滑坡一旦运动后,将运动堆积到673 m位置,即军功路至黄河段居民区。滑坡体均匀停留在运动路径上。模拟结果说明:目前2号滑面浅层滑坡一旦发生滑动,威胁军功路至黄河段居民区及商铺房屋,但不至引起堵塞黄河灾害发生。
4. 结语
(1)曲哇加萨滑坡坡体呈现多区、多级、多层的变形破坏特征,目前变形破坏强烈,尤其是东北段中前缘滑坡近期频繁出现变形破坏。
(2)东北段中前缘滑坡地表监测曲线、形变速率曲线、钻探数据和现场调查表明,降雨沿着密集发育的裂缝下渗,加速了地下水的渗流作用,进一步降低了岩土体的强度,最终导致滑坡发生变形滑动。
(3)以H1滑坡为代表,在降雨稳定性计算基础上进行动力学反演,反演分析发现1号滑面浅层滑坡按照摩擦流变模型运动后,将运动堆积到挡墙至军功路段国道G227和居民区,这与现场调查滑坡堆积特征基本相符,而Volleymy流变模型运动堆积到682 m位置,即军功路至黄河段居民区,与现场调查结果不符,大于实际运动距离。同时,滑坡体积主要停留在坡脚位置,也与实际情况不符。
(4)利用上述反演分析摩擦流变模型的同一套参数对处于欠稳定状态的2号浅层滑面进行运动预测模拟分析,发现2号滑面浅层滑坡运动后,将运动堆积到军功路至黄河段居民区,但不至于引起堵塞黄河灾害发生。
(5)本文的研究内容可为黄河上游该类滑坡运动预测评价方法提供一定参考。
-
-
[1] 黄润秋, 李为乐. “5·12”汶川大地震触发地质灾害的发育分布规律研究[J]. 岩石力学与工程学报,2008,27(12):2585 − 2592. [HUANG Runqiu, LI Weile. Research on development and distribution rules of geohazards induced by Wenchuan earthquake on 12th May, 200[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(12):2585 − 2592. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2008.12.028 [2] 许强, 李为乐. 汶川地震诱发大型滑坡分布规律研究[J]. 工程地质学报,2010,18(6):818 − 826. [XU Qiang, LI Weile. Distribution of large-scale landslides induced by the Wenchuan earthquake[J]. Journal of Engineering Geology,2010,18(6):818 − 826. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2010.06.002 [3] 戴岚欣, 许强, 范宣梅, 等. 2017年8月8日四川九寨沟地震诱发地质灾害空间分布规律及易发性评价初步研究[J]. 工程地质学报,2017,25(4):1151 − 1164. [DAI Lanxin, XU Qiang, FAN Xuanmei, et al. A preliminary study on spatial distribution patterns of landslides triggered by Jiuzhaigou earthquake in Sichuan on August 8th, 2017 and their susceptibility assessment[J]. Journal of Engineering Geology,2017,25(4):1151 − 1164. (in Chinese with English abstract) [4] 王佳运, 张成航, 高波, 等. 玉树震区地质灾害分布规律与发育特征[J]. 工程地质学报,2013,21(4):508 − 515. [WANG Jiayun, ZHANG Chenghang, GAO Bo, et al. Distribution regularity and development characteristics of geohazards in Yushu earthquake area[J]. Journal of Engineering Geology,2013,21(4):508 − 515. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2013.04.005 [5] 殷志强, 赵无忌, 褚宏亮, 等. “4·20”芦山地震诱发地质灾害基本特征及与“5·12”汶川地震对比分析[J]. 地质学报,2014,88(6):1145 − 1156. [YIN Zhiqiang, ZHAO Wuji, CHU Hongliang, et al. Basic characteristics of geohazards induced by Lushan earthquake and compare to them of Wenchuan earthquake[J]. Acta Geologica Sinica,2014,88(6):1145 − 1156. (in Chinese with English abstract) [6] 殷志强, 徐永强, 陈红旗, 等. 2014年云南鲁甸地震触发地质灾害发育分布规律及与景谷、盈江地震对比研究[J]. 地质学报,2016,90(6):1086 − 1097. [YIN Zhiqiang, XU Yongqiang, CHEN Hongqi, et al. The development and distribution characteristics of geohazards induced by August 3, 2014 Ludian earthquake and comparison with Jinggu and Yingjiang earthquakes[J]. Acta Geologica Sinica,2016,90(6):1086 − 1097. (in Chinese with English abstract) DOI: 10.3969/j.issn.0001-5717.2016.06.003 [7] 陈成, 胡凯衡. 汶川、芦山和鲁甸地震滑坡分布规律对比研究[J]. 工程地质学报,2017,25(3):806 − 814. [CHEN Cheng, HU Kaiheng. Comparison of distribution of landslides triggered by Wenchuan, Lushan, and Ludian earthquakes[J]. Journal of Engineering Geology,2017,25(3):806 − 814. (in Chinese with English abstract) [8] FAN X M, GIANVITO SCARINGI, XU Q, et al. Coseismic landslides triggered by the 8th August 2017 Ms 7.0 Jiuzhaigou earthquake (Sichuan, China): factors controlling their spatial distribution and implications for the seismogenic blind fault identification[J]. Landslides,2018,15:967 − 983. DOI: 10.1007/s10346-018-0960-x
[9] 程强. 汶川强震区公路沿线地震崩滑灾害发育规律研究[J]. 岩石力学与工程学报,2011,30(9):1747 − 1760. [CHENG Qiang. Research on development rules of seismic landslide and collapse along highways in highly seismic region of Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(9):1747 − 1760. (in Chinese with English abstract) [10] 程强, 胡朝旭, 杨绪波. 九寨沟地震区公路沿线地质灾害发育规律及防治对策[J]. 中国地质灾害与防治学报,2018,29(4):114 − 120. [CHENG Qiang, HU Chaoxu, YANG Xubo. Developmental regularity and preventive countermeasures of geological hazards along the highway in Jiuzhaigou earthquake area[J]. The Chinese Journal of Geological Hazard and Control,2018,29(4):114 − 120. (in Chinese with English abstract) [11] 梁靖, 裴向军, 温勇, 等. 2017年九寨沟地震地质灾害发育分布规律研究[J]. 自然灾害学报,2019,28(5):181 − 188. [LIANG Jing, PEI Xiangjun, WEN Yong, et al. Research on development and distribution rules of geohazards in Jiuzhaigou earthquake in 2017[J]. Journal of Natural Disasters,2019,28(5):181 − 188. (in Chinese with English abstract) [12] 王绚, 范宣梅, 陈怡, 等. 九寨沟震后地质灾害分布特征与活动性预测[J]. 人民长江,2020,51(9):114 − 121. [WANG Xuan, FAN Xuanmei, CHEN Yi, et al. Distribution characteristics and activity prediction of geological disasters in Jiuzhaigou Valley after“2017.08.08”earthquake[J]. Yangtze River,2020,51(9):114 − 121. (in Chinese with English abstract) [13] 高会会, 裴向军, 崔圣华, 等. 汶川震区震后地质灾害发育分布及演化特征统计分析[J]. 长江科学院院报,2019,36(8):73 − 80. [GAO Huihui, PEI Xiangjun, CUI Shenghua, et al. Geological hazards after earthquake in Wenchuan earthquake area: distribution and evolvement features[J]. Journal of Yangtze River Scientific Research Institute,2019,36(8):73 − 80. (in Chinese with English abstract) DOI: 10.11988/ckyyb.20180109 [14] 李明威, 唐川, 陈明, 等. 汶川震区北川县泥石流流域崩滑体时空演变特征[J]. 水文地质工程地质,2020,47(3):182 − 190. [LI Mingwei, TANG Chuan, CHEN Ming, et al. Spatio-temporal evolution characteristics of landslides in debris flow catchment in Beichuan County in the Wenchuan earthquake zone[J]. Hydrogeology & Engineering Geology,2020,47(3):182 − 190. (in Chinese with English abstract) [15] 陈冠, 孟兴民, 乔良, 等. “7•22”岷县漳县地震地质灾害分布、特征及与影响因子间关系分析[J]. 工程地质学报,2013,21(5):750 − 760. [CHEN Guan, MENG Xingmin, QIAO Liang, et al. Distribution, characteristics, and associated influencial factors of the geohazards induced by Minxian-Zhangxian earthquake on 22 July, 2013, Gansu, China[J]. Journal of Engineering Geology,2013,21(5):750 − 760. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2013.05.011 [16] 习朝辉. 强震区地质灾害多源信息识别及发育分布特征研究-以叠溪松坪沟为例[D]. 成都: 成都理工大学, 2019. XI Zhaohui. Recognition and development of geological disasters based on multi-source information in meizoseismal areas—Take DieXi Songpinggou as an example[D]. Chengdu: Chengdu University Tecchnology, 2019. (in Chinese with English abstract)
[17] 张世殊, 裴向军, 张雄, 等. 强震区泥石流坡面物源发育规律与侵蚀坡度效应研究[J]. 岩石力学与工程学报,2016,35(增刊2):4139 − 4147. [ZHANG Shishu, PEI Xiangjun, ZHANG Xiong, et al. Source development and slope gradient effect of debris flow source in earthquake zone[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(Sup2):4139 − 4147. (in Chinese with English abstract) [18] 郭沉稳, 姚令侃, 段书苏, 等. 汶川、芦山、尼泊尔地震触发崩塌滑坡分布规律[J]. 西南交通大学学报,2016,51(1):71 − 77. [GUO Chenwen, YAO Lingkan, DUAN Shusu, et al. Distribution regularities of landslides induced by Wenchuan earthquake, Lushan earthquake and Nepal earthquake[J]. Journal of Southwest Jiaotong University,2016,51(1):71 − 77. (in Chinese with English abstract) DOI: 10.3969/j.issn.0258-2724.2016.01.011 [19] 许冲, 田颖颖, 马思远, 等. 1920年海原8.5级地震高烈度区滑坡编录与分布规律[J]. 工程地质学报,2018,26(5):1188 − 1195. [XU Chong, TIAN Yingying, MA Siyuan, et al. Inventory and spatial distribution of landslides inⅸ-xihigh intensity areas of 1920 Haiyuan (China) 8.5 earthquake[J]. Journal of Engineering Geology,2018,26(5):1188 − 1195. (in Chinese with English abstract) -
期刊类型引用(3)
1. 王溢禧,赵俊彦,朱兴华,于美冬,陈彩虹. 贵德盆地席芨滩巨型滑坡前缘次级滑坡特征及其复活机理分析. 中国地质灾害与防治学报. 2024(06): 1-14 . 本站查看
2. 王文沛,殷跃平,王立朝,沈亚麒,石鹏卿,李瑞冬,何清,陈亮,殷保国. 排水抗滑桩技术研究现状及展望. 水文地质工程地质. 2023(02): 73-83 . 百度学术
3. 陈銮. 浅析滑坡勘查过程中滑动面的确定方法. 江西建材. 2023(06): 168-169+172 . 百度学术
其他类型引用(2)