ISSN 1003-8035 CN 11-2852/P

    面向东川复杂山地泥石流沟谷三维地形建模及特征分析的无人机遥感探测应用研究

    Application research of unmanned aerial vehicle remote sensing detection for 3D terrain modeling and feature analysis of debris flow gullies in complex mountainous area of Dongchuan

    • 摘要: 以云南省东川区小江流域中游左岸大白泥河支流的泥石流沟谷为研究对象,利用无人机遥感技术采集该泥石流沟谷地表地貌数据,提出结合地面三维激光扫描建模数据进行同名地物控制点提取,实现无人机影像数据的绝对定向方法。通过Smart3D影像数据处理,构建研究区三维地形模型,得到数字正射影像(Digital Orthophoto Map,DOM)、数字表面模型(Digital Surface Model,DSM)和高密集匹配点云。利用PhotoScan软件中的不规则三角网渐进加密技术对点云数据进行处理,得到0.5 m分辨率的数字高程模型(Digital Elevation Model,DEM)。结合ArcGIS和Cloud Compare中的相关地形分析模块,实现对该段泥石流沟谷地区的地形特征分析。基于无人机遥感的泥石流沟谷地形建模及特征分析研究中采用的技术路线和方法,对于定性、定量探测高原复杂山区地质灾害及其监测、防治等具有重要实证案例参考价值与实践指导意义。

       

      Abstract: Taking the debris flow gully of the tributary of the Dabaini River on the left bank of the middle reaches of the Xiaojiang River Basin in Dongchuan District, Yunnan Province as the research object, the surface landform data of the debris flow gully was collected by Unmanned Aerial Vehicle (UAV) remote sensing technology. This paper proposes a method of extracting the control points of the same-named objects in combination with the ground three-dimensional laser scanning modeling data to realize the absolute orientation of UAV image data. Through Smart3D image data processing, a three-dimensional terrain model of the study area is constructed to obtain digital orthophoto map (DOM), digital surface model (DSM) and high-density matching point cloud. The point cloud data is processed using the Irregular Triangle Network progressive encryption technology in PhotoScan software to obtain a digital elevation model (DEM) with a resolution of 0.5 m. Combined with the relevant terrain analysis modules in ArcGIS and Cloud Compare, the terrain characteristics of this section of debris flow valley area can be analyzed. The technical route and method used in the modeling and analysis of debris flow gully terrain based on UAV remote sensing are of important empirical case reference value and practical guiding significance for qualitative and quantitative detection of geological disasters in the plateau complex mountain area and their monitoring and prevention.

       

    /

    返回文章
    返回